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In recent years, the accumulation of space debris has become an increas-

ingly pressing issue, and adequately monitoring it is a formidable task for desig-

nated ground-based sensors. Supplementing the capabilities of these ground-based

networks with orbiting sensing platforms would dramatically enhance the ability of

such systems to detect, track, identify, and characterize resident space objects — the

primary goals of modern space situational awareness (SSA). Space-based space situ-

ational awareness (SBSSA), then, is concerned with achieving the stated SSA goals

through coordinated orbiting sensing platforms. To facilitate the design of satel-

lite constellations that promote SSA goals, an optimization approach is selected,

which inherently requires a pre-defined mathematical representation of a cost index

or measure of merit. Such representations are often analytically available, but when

considering optimal constellation design for SBSSA applications, a closed-form ex-

pression for the cost index is only available under certain assumptions. The present
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study focuses on a subset of cases that admit exact representations. In this case,

geometrical arguments are employed to establish an analytical formulation for the

coverage area provided as well as for the coverage multiplicity. These analytical re-

sults are essential in validating numerical approximations that are able to simulate

more complex configurations.
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Chapter 1

Introduction

Since 1957, the ground-based Space Surveillance Network (SSN) has been

monitoring near-Earth space objects in an effort to provide a sense of space situa-

tional awareness (SSA). Unfortunately, the increasingly cluttered state of this region

of space is taxing the already limited capabilities of these ground-based sensors.

They fail under a number of circumstances, such as under poor atmospheric condi-

tions or when viewing small or distant objects. As currently envisioned, space-based

space situational awareness (SBSSA) overcomes these inadequacies by employing a

network of space-based sensors to supplement ground sensing capabilities in the de-

tection, tracking, identification, and characterization (DTI&C) of active or passive

resident space objects (RSOs). Such a group of artificial satellites working in concert

to achieve some common goal is also called a satellite constellation, of which there

are many types and applications.

Satellite constellations that meet SBSSA objectives are markedly different

from traditional ones. Early on, constellations were designed to act as Earth com-

munication networks and were thus concerned with providing partial or complete

Earth coverage. The widely-used streets-of-coverage technique, proposed by David

Lüders, was developed with this objective in mind, and is one of the first docu-

mented methods for constellation design.2 The Earth coverage problem falls under

1
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the purview of below-the-horizon (BTH) coverage — the term used to describe the

type of coverage provided by a constellation for which the region of interest lies be-

low the horizon of each satellite. It also implies that the region of interest is viewed

against an Earth background. For example, any space-based global navigation satel-

lite system (GNSS), such as the Global Positioning System (GPS), is concerned with

BTH coverage. But applications of BTH coverage are not limited to navigation. The

Tracking and Data Relay Satellite System (TDRSS) is a communications network

designed for continuous global coverage, but it is used to relay information between

Earth and spacecraft in low Earth orbit (LEO), which is different from traditional

networks that simply link points on Earth. The novel contribution of TDRSS is

its capability to increase the window of communication between Earth and other

spacecraft. With TDRSS, a spacecraft can communicate with Earth for approxi-

mately 85 to 100 percent of its orbit, whereas before TDRSS, communication was

only possible for less than 15 percent of each orbit.3

But what if, instead of providing continuous global coverage, TDRSS were

designed to provide continuous coverage of the region in LEO in which the satellites

of interest reside? What if a constellation’s objective were to provide coverage of

a region in space instead of a region on the ground? Such a constellation would

be especially useful if atmospheric interference prevented the sensors from looking

toward the Earth or if they were used to sense objects that were too small or far

away for a ground-based sensor to detect. This alternative type of coverage is called

above-the-horizon (ATH) coverage — that provided by a constellation for which

the region of interest lies above the horizon of each satellite. ATH coverage implies

2



that the region of interest is viewed against a space background, in contrast to

BTH coverage, where the region of interest is viewed against an Earth background.

Above-the-horizon coverage is the focus of this work.

1.1 Background

This thesis examines a specific ATH coverage problem, and to make it

tractable analytically, a number of simplifying assumptions must be made. To put

these in context, it is necessary to become acquainted with common constellation

design variables before discussing different types of ATH coverage.

1.1.1 Properties of Constellations

Constellation design is subject to considerations both regarding the individ-

ual constituent satellite trajectories and also the collective performance of the group

of satellites. The number of satellites and their relative orbital arrangements are

clear design parameters, but their ideal values are unique to a given application.

Indeed, a constellation designed to meet the goals of one mission may prove to be

inadequate in meeting the goals of another. Russia’s geographic location necessi-

tated particularly high elliptical orbits for their desired communications network to

have good coverage, leading to the Molniya satellites.4 For its application to navi-

gation, GPS was required to have four satellites visible to any object on the ground

at any time in order to determine the target’s position and velocity — an entirely

different design objective that stemmed an entirely different constellation.5 Such

a desired coverage multiplicity — the number of satellites that can simultaneously

3



view a particular region — is an essential design specification for any constellation,

usually ensured for some high-level mission requirement.

There are copious considerations to make in the design of a constellation,

and many trade-offs. The total number of satellites is the primary cost and coverage

driver.4 But other design variables significantly impact coverage as well, such as the

constellation pattern, the number of orbital planes, and the satellite altitudes. Alti-

tude, naturally, directly affects individual satellite design, too, because with higher

altitude comes increased harmful radiation from the space environment. In contrast,

the drag associated with a low-altitude orbit may be undesirable.4 Furthermore, an

orbit’s inclination, which is one aspect of a constellation pattern, can be tuned to

achieve particular latitude coverage requirements. For BTH coverage, Draim showed

that using elliptical orbits can greatly reduce the number of satellites required to

achieve continuous Earth coverage,6,7 and even for arbitrary coverage multiplicity,8

but a benefit of elliptical orbits is yet to be demonstrated for ATH coverage.

1.1.2 ATH Coverage

For this study and earlier ones on ATH coverage, the local horizon is defined

differently as compared to the traditional BTH coverage problem, where the horizon

is drawn tangent to the Earth’s surface. Instead, the horizon is defined relative to

the so-called tangent height shell (THS), which loosely represents the atmosphere.

The THS is actually sensor-specific, and is defined by a tangent height, at which

the sensor to target line-of-sight (LOS) penetration of the atmosphere causes some

maximum allowable sensor degradation. In this context, poor sensor performance

4



is caused by atmospheric interference like airglow, Earth limb, aurora, and albedo

phenomena.9 The THS serves thus as a reference surface, a sphere concentric with

the Earth and whose radius exceeds the Earth’s by the tangent height. The local

horizon, henceforth referred to as the tangent line (TL), is an imaginary line ex-

tending from the satellite sensor and tangent to any point on the THS, so that the

locus of TLs traces out a cone, termed the tangent height cone (THC). Therefore,

the region of interest in BTH coverage becomes the region inside the THC, while

for ATH coverage it becomes the region outside the THC. Per this definition, and

as mentioned in the discussion of TDRSS, BTH coverage is not limited to ground

coverage. For this reason, objects that may be visible to a satellite sensor but which

lie within the THC are outside the satellite’s region of regard in the ATH coverage

problem. This does not mean that such an object would be invisible to the entire

constellation, though, because an object below the horizon of one satellite could be

above the horizon of another.

Two types of ATH coverage problems have been proposed and studied in

the literature. Single-altitude band coverage is concerned with the region between

the THS and some user-specified upper target altitude shell (UTAS) that is some

distance above the THS. Any objects above this target altitude would be of no

interest to the satellites in the constellation. Dual-altitude band coverage, which is

the focus of this study, defines a second target altitude shell between the THS and

UTAS, and then considers the region of interest as lying between this lower target

altitude shell (LTAS) and the UTAS. Evidence of fundamental differences between

single- and dual-altitude band coverage are apparent in Figure 1.1, which uses the

5
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Figure 1.1: Differences between single- and dual-altitude band coverage1
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example of a single satellite equipped with an omnidirectional sensor to quantify

coverage as a cross-sectional area.

1.1.2.1 Single-Altitude Band Coverage

All literature examining the single-altitude band ATH coverage problem con-

siders only satellites in circular orbits with a purely analytical approach to the con-

stellation design process.9–11 Most studies also restrict their analysis to symmetric

orbits, in which satellites and orbital planes are equally spaced, though some results

can be found on nonsymmetric satellite distributions. Many implement and discuss

the effects of latitude constraints as well.

Beste12 is the first to solve a constellation design problem where the desired

coverage region is of some spherical shell concentric with the Earth, specified by

some altitude range. It is similar to the single-altitude band ATH coverage problem

in terms of the geometry of the region to be covered, except it appears that his

solution used BTH coverage in a fashion akin to that of TDRSS.

Rider’s9 treatment only considers single and double continuous global cover-

age with satellites symmetrically distributed along a circular orbit in the equatorial

plane. In the study requiring at least single coverage, Rider presents an optimal

six-satellite and an optimal eight-satellite constellation, each with continuous sin-

gle coverage on the equator and increasing coverage multiplicity with increasing

latitude. These constellations are optimal in the sense that for a fixed number of

satellites, the constellation has minimal values of target altitude and satellite alti-

tude.
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Hanson and Linden10 restrict their investigation to single ATH coverage,

where the satellites are constrained to circular orbits at the same altitude and incli-

nation. Their approach examined the meshing of coverage circles of satellites in one

orbital plane or between multiple orbital planes, forming “streets of coverage” — es-

sentially lanes of continuous coverage. By using a streets-of-coverage approach,2,13

they show that constellations with nonsymmetric satellite placement can also be

modeled analytically. As such, this work is an extension of that put forth by Adams

and Rider.13 One interesting finding of this study was that the Walker delta constel-

lations14 serve as a good benchmark for single ATH coverage constellation design,

even though the delta constellation is optimized for double BTH coverage. In sev-

eral but not all examples, Hanson and Linden were able to improve on the delta

constellation for single ATH coverage in the sense that fewer satellites were actually

necessary than a delta constellation would suggest.

1.1.2.2 Dual-Altitude Band Coverage

Very little research has been published on the dual-altitude band coverage

problem. It was first studied by Rider,15 who considers constellations in low to

medium altitudes with multiple orbital planes, where the satellites lie within or

above the dual-altitude band. In his approach, Rider uses spherical geometry and

the streets-of-coverage method2,13 to derive formulas that determine coverage multi-

plicity from geometrical parameters. Rider then relates coverage multiplicity to the

required number of orbital planes, required number of satellites per orbital plane,

and latitude constraints. Thus, given a desired coverage multiplicity, the required
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number of sensors for global coverage is completely determined.

Marchand and Kobel16 proposed an entirely different approach that actu-

ally quantifies the coverage provided by a constellation analytically, so that the

ultimate constellation that provides the desired coverage is designed by a numerical

optimization process instead of by a set of specialized equations. One of the most

difficult aspects of this problem is the definition of the cost index, namely the cov-

erage provided by the sensors. As demonstrated by Marchand and Kobel16 in their

initial study, even under extremely simplified assumptions, such as omnidirectional

sensors, obtaining a closed-form representation of the cost index is a complex pro-

cess. Figure 1.2 illustrates the relevant problem geometry in the single satellite case

studied by Marchand and Kobel.16

The three concentric circles that surround the Earth in Figure 1.2 represent

reference boundaries. The region of interest to the sensors lies outside the THC,

within the sensor range shell (RS), and inside the region between the UTAS and

LTAS. This region represents a three-dimensional volume, and the constellation’s

goal is to maximize coverage of this region. Due to the inherent symmetry introduced

by the omnidirectional sensor assumption, maximizing the ATH coverage volume is

equivalent to maximizing the cross-sectional coverage area.16 This cross-sectional

area of coverage appears shaded yellow in Figure 1.2. Under these assumptions,

a nonlinear piecewise differentiable objective function fully describes the coverage

area for all possible satellite altitudes constrained to be above the tangent height and

below rs3 , which is associated with the critical altitude at which no ATH coverage

is provided.16
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Figure 1.2: Coverage problem for a single satellite on a circular orbit with above-
the-horizon coverage area shaded yellow
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This initial work by Marchand and Kobel16 is a powerful approach for the

dual-altitude band problem as compared to previous research on the subject largely

because their approach can be implemented numerically. Takano and Marchand1,17

demonstrate this by using geometrical arguments similar to those first introduced

by Marchand and Kobel16 but with techniques from computational geometry. There

are many advantages to this computational approach. For example, the algorithms

used to solve the symmetric problem numerically are inherently valid for computing

coverage area when asymmetry is introduced. A good analogy that conveys the

value of computational geometry versus analytical geometry is that of numerical in-

tegration versus analytical integration. But this by no means implies that Marchand

and Kobel’s investigation is the end-all to the analytical method. Indeed, numerical

schemes are always computationally more expensive than analytical ones, plus the

work of Takano and Marchand1,17 benefits from analytical validation. Significant

insight can also be gleaned from developing the theory to analytically model the

ATH coverage area provided by a constellation.

First, it is useful to understand the fundamental differences between the last

three examples of previous work. Rider’s approach uses purely analytical geometry

to design a constellation that provides the desired coverage. Marchand and Kobel’s

uses purely analytical geometry to determine the quality of a given constellation,

and then uses numerical optimization to design it to specifications, where a given

constellation, in this case, would be an initial guess. Takano and Marchand1,17

employ computational geometry to facilitate the determination of ATH coverage

area, a process that can then be integrated with numerical optimization techniques in
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a closed-loop design process. All three techniques represent important perspectives

on the problem, each with its own contribution, advantages, and varying degrees of

insight.

1.2 Present Study

As stated previously, this thesis presents research in the topic of SBSSA,

an application of ATH coverage. The present investigation focuses specifically on

a constellation of space-based sensors, uniformly distributed along a circular orbit,

and is an extension of the work previously presented by Marchand and Kobel16

for a single satellite. Consistent with the assumptions of this earlier study, the

present investigation considers only the coverage of a region that exists above the

horizon of the satellites and within a pre-specified altitude band. The objective is

to maximize the coverage provided by the constellation sensors within the region of

interest. An example of such a constellation is depicted in Figure 1.3. While a similar

constellation could be designed for ATH coverage using Rider’s method, the goal here

is to establish a foundation for an alternative analytical approach that offers much

greater flexibility and the potential to carry that flexibility through to the three-

dimensional case. That is to say that in the planar case, using constellation coverage

area as a design metric allows for the accommodation of a greater variety of problem

specifications and constraints. First, Rider15 did not consider satellites located

between the THS and LTAS. If for some reason the satellite altitude were restricted

to be below the LTAS, the coverage area approach offers a solution. Secondly, this

coverage area can be used as a cost index in an optimization process that can more
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Figure 1.3: Seven-satellite constellation on a circular orbit

clearly describe and lend insight to the quality of a solution.

Of course, there are limitations to any analytical approach. If, for example,

more complex sensor profiles are desired, the loss of symmetry makes an analytical

solution especially difficult. For such scenarios, a more suitable approach is the

numerical method proposed by Takano and Marchand.1,17 Since their method ap-

proximates the coverage area, it benefits from validation by an analytical approach,

which is demonstrated in this investigation as a secondary goal.

To maintain continuity relative to the initial work of Marchand and Ko-

bel,16 the methodology presented is based on geometrical arguments. First, key

shell intersections are determined. Then, based on the spatial interaction of these

13



intersections, geometrical elements are identified for a unique region of each cover-

age multiplicity considered. Finally, a non-unique, nonlinear piecewise differentiable

objective function is developed that characterizes the coverage area for rt ≤ rs < rs3

and maximum coverage multiplicity of pmax = 2 — alternatively referred to as 2-

fold or double coverage — provided by two adjacent satellites. This restriction is

imposed for now because analysis becomes prohibitively complex if greater coverage

multiplicities and coverage by non-adjacent satellites are permitted.

1.3 Thesis Organization

Chapter 2 begins with a brief overview of the method used by Marchand

and Kobel to solve the ATH coverage problem for a single satellite. The remainder

of Chapter 2 develops the theory for extending their result to constellations along

with supplementary theory on coverage multiplicity, identifying 22 possible shape

types of the 2-fold coverage region in the process.

The goal of Chapter 3 is two-fold: to convey clearly the capabilities of the

analytical model developed thus far as well as to validate the numerical results of

Takano and Marchand.1,17 This is done primarily by comparing plots of total cov-

erage area versus satellite altitude and the results of a simple optimal constellation

design problem, though an introduction to larger parameter spaces is presented as

well.

Finally, Chapter 4 presents some concluding remarks. It re-iterates impor-

tant assumptions and puts findings in the context of long-term goals, ending with

some suggestions for a future research direction.
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The appendices provide important material that is either based on previous

work or simply not inserted in the main body in the interest of being concise.

Appendix A reformulates the single satellite analytical model for ATH coverage in

favor of a simple objective function that is also easily compared to the original cost

index proposed by Marchand and Kobel.16 This is precisely what was implemented

for this research. A collection of 22 figures corresponding to the 2-fold coverage

regions with labeled vertices is given in Appendix B as a reference. Next, Appendix

C contains a thorough derivation of conditions discussed in Chapter 2 regarding the

existence of certain coverage multiplicities. Finally, Appendix D provides figures of

analytical results illustrating how total coverage area varies with satellite altitude

while indicating the 2-fold coverage region shape type at each data point.
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Chapter 2

Coverage Area Methodology for Constellation Design

This chapter develops the theory and analysis required for designing con-

stellations using ATH coverage area as a metric. The single satellite case will be

presented first because the techniques employed for constellation design build on

the framework developed for determining the coverage area provided by a single

satellite. Since this scenario was studied extensively by Marchand and Kobel,16 it

is discussed in only enough detail so as to clearly convey the process of generalizing

the single satellite analysis to a multiple satellite analysis.

Next, the coverage area model is developed for constellations, beginning with

a discussion of total coverage area and assumptions on coverage multiplicity. Then,

new shell intersections are defined, followed by an introduction to new geometrical

elements, the development culminating in the establishment of a piecewise-smooth

function for strictly 2-fold coverage area provided by multiple adjacent satellites in

a single orbit. These results are used in conjunction with those of Marchand and

Kobel16 to compute the total coverage area provided by the constellation.

Finally, conditions are derived for determining the existence of arbitrary

coverage multiplicities, providing a convenient way to test whether certain coverage

multiplicities of interest exist. Results given here are subject to the assumption that

coverage is provided only by adjacent satellites.
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2.1 Coverage Provided by a Single Satellite

The simplest analyzable scenario is a single satellite on a circular orbit.

Although this was thoroughly investigated by Marchand and Kobel,16 the reader

will find that reviewing this topic will facilitate the understanding of how coverage

area can be computed for constellations. Figure 2.1 depicts all 14 shell intersections

x̂

ŷ

R

S1

B1B2

A1A2

U1BU2B

U1AU2A

L1B
L2B

L1A
L2A

T1T2

Earth

THS

LTAS

UTAS

rt

rl

ru

Sensor Range Shell

Figure 2.1: Shell intersections for a single satellite on a circular orbit with ATH
coverage area shaded yellow

associated with satellite S1, using the original notation adopted by Marchand and
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Kobel, as well as the coverage area, which is shaded yellow. Each intersection point

is denoted with A, B, L, U , or T , depending on the type of intersection. Table

2.1 defines each of the five types of intersections and Table 2.2 defines the possible

subscripts. Notice in Figure 2.1 that each intersection point has a subscript in order

to give each one a unique label. The coordinates of all 14 intersection points were

Table 2.1: Definitions of Five Types of Intersections for a Single Satellite
Name Definition

A Intersections of RS and LTAS
B Intersections of RS and UTAS
L Intersections of TL and LTAS
U Intersections of TL and UTAS
T Intersections of TL and RS

defined analytically by Marchand and Kobel, and are given in Appendix A in Eqs.

(A.1–A.14) for easy reference.

Table 2.2: Subscripts Used to Label Intersections for a Single Satellite
Subscript Definition

1 Intersection to the right of S1

2 Intersection to the left of S1

A Intersection between a target shell and TL
that is farthest from S1

B Intersection between a target shell and TL
that is closest to S1

Another set of results from Marchand and Kobel that are essential for the

development in this thesis pertain to the fundamental shapes that comprise the

coverage area: the triangle, circular segment, circular sector, composite teardrop

sector, two types of composite triangle, and overlap region of two circles. These

shapes are fundamental in the sense that the coverage area A1×,1 (originally referred
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to by Marchand and Kobel as “A” for the single satellite case) can be expressed

as the area of a combination of these shapes. In other words, the region visible to

the satellite can be decomposed into different sets of these geometrical elements.

Table 2.3 shows the notation used for each shape, while the actual equations for

calculating these areas are given in Eqs. (A.15–A.30). The subscript “AS” is an

Table 2.3: Notation for the Area of Fundamental Geometrical Elements
Name Definition

A4 Area of a triangle
AΣ Area of a circular segment
Aπ1 Area of a circular sector
Aπ2 Area of a composite teardrop sector
AΛ1 Area of a type 1 composite triangle
AΛ2 Area of a type 2 composite triangle

AAS∩RS Area of an overlap region of two circles

abbreviation of “altitude shell”, which can refer to the LTAS or UTAS. Effectively,

this subscript, which was first proposed by Takano and Marchand,1,17 allows for a

compact way of describing the areas ALTAS∩RS and AUTAS∩RS in one function.

Ultimately, as mentioned in Chapter 1, Marchand and Kobel showed that

the ATH coverage area provided by a single satellite can be expressed as a continuous

piecewise differentiable function. But their representation — comprised of 18 cases

— is not unique, and in fact was simplified by Takano and Marchand,1,17 who offered

a revised ATH coverage model consisting of only 12 cases. Explicit conditions for

identifying each case are provided in Tables A.1–A.3. The model employed in this

thesis for computing A1×,1 is then given in Tables A.4–A.6, using a combination

of the revised 12-case structure presented by Takano and Marchand1,17 and the

equations developed by Marchand and Kobel with minor adjustments.
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2.2 Computing the Total Coverage Area

The computational methods employed for determining the total coverage

area provided by multiple satellites build upon the work of Marchand and Kobel16

while taking advantage of the inherent symmetry in the constellation. Recall that for

the single satellite problem, the area computed for S1 was denoted as A and referred

to a region of 1-fold coverage. For a constellation, an analogous area exists for each

satellite j subject to a coverage multiplicity p ≥ 1, so the notation is modified to

A1×,j and computed according to the methods described in Marchand and Kobel.16

Next, this notation is generalized by first defining Cp× as the collection of

regions of coverage multiplicity greater than or equal to p that lie within the “region

of interest” — that is, within the dual-altitude band, outside the THC, and within

the RS. Similarly, define C ′p× as the collection of regions of coverage multiplicity

strictly equal to p that lie within the region of interest. Then, let Ap× refer to the

area of Cp× and A′p× refer to the area of C ′p×. In fact, A1× is the desired total area

covered by the entire constellation within the region of interest, but computing it

analytically is especially challenging.

As shown by Marchand and Kobel,16 shell intersections are used to define

the vertices of polygons, the areas of which are computed analytically by completely

surveying all possible geometries that the intersections of shells could form. For a

multi-satellite constellation, even though all shell intersections can be analytically

determined with a few equations, the polygon identification process becomes much

more cumbersome. Marchand and Kobel16 showed that it is advantageous to com-

pute the areas of complex geometries by adding up areas of elementary components
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— triangles, composite triangles, circular sectors and segments — that are easily de-

termined analytically. But for computing coverage area, as the single satellite case

requires explicit conditions and equations for each shell configuration, the multi-

satellite case requires explicit conditions and equations for each shell configuration

and for each coverage multiplicity. This reasoning suggests that Apc×, for any cov-

erage multiplicity pc of interest, could be expressed as a composition of A′p× for all

p ∈ [pc, pmax]:

Apc× ≡
pmax∑
p=pc

A′p× (2.1)

The quantity Apc× actually has many uses in formulating optimization schemes.

Suppose, for example, that it is desired to have continuous 2-fold coverage of the

annular region bounded by the dual-altitude band shell, termed DABS. This area is

simply expressed as

ADABS = π(r2
u − r2

l ) (2.2)

In this case, A2× should be as close to ADABS as possible. For the scope of this

thesis, only the total coverage area is of interest, so Eq. (2.1) would be used with

pc = 1. However, Eq. (2.1) does not take advantage of the results of Marchand and

Kobel,16 so an alternative approach is presented here that uses A1×,j .

Consider summing all A1×,j . By this action, each region C ′p× would be

counted p times for all p ∈ [2, pmax]. Thus, A′p× must be subtracted p − 1 times

from the sum to obtain the actual total coverage area:

A1× =

n∑
j=1

A1×,j −
pmax∑
p=2

(p− 1)A′p× (2.3)
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Also, observe in Eq. (2.3) that in general, A1×,j could be different for each j, but

since the satellites have equal range shells and are uniformly distributed along a

circular orbit, the area A1×,j is equal for each satellite:

A1×,j = A1×,1 ∀ j (2.4)

Recall that this thesis limits the discussion of coverage area calculations to max-

imum coverage multiplicity pmax = 2. Let A′2×,jk refer to the region formed by

the intersection of the range shells of Sj and Sk that is also within the region of

interest and subject to strictly 2-fold coverage. Then, A′2× is obtained from adding

up A′2×,jk for all j and k, leading to the following result:

A′2× ≡
1

2

n∑
j=1

n∑
k=1
k 6=j

A′2×,jk =

n−1∑
j=1

n∑
k=j+1

A′2×,jk (2.5)

However, due to the significant symmetry of the problem, strictly 2-fold coverage

typically only occurs for pairs of adjacent satellites. As such, this observation is

restated as a constraint for further simplicity. Thus, Eq. (2.5) can be re-expressed

as

A′2× = A′2×,1n +
n−1∑
j=1

A′2×,j(j+1) (2.6)

or more compactly as

A′2× =
n∑
j=1

A′2×,j(1+j mod n) (2.7)

Notice that for n = 2 or 3, satellites are adjacent for all possible pairs. As for

Eq. (2.4), since the satellites have equal range shells and are uniformly distributed

along a circular orbit, the overlap area A′2×,jk is equal for each pair of adjacent

satellites. Thus, the derivation arbitrarily focuses on S1 and S2 without loss of
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generality. Furthermore, the number of satellite pairs is equal to the number of

satellites, so Eq. (2.6) becomes

A′2× = nA′2×,12 (2.8)

where

A′2×,12 =

{
1
2 (A1×,1 ∩A1×,2) n = 2

A1×,1 ∩A1×,2 n > 2
(2.9)

The first case in Eq. (2.9) is degenerate and differentiated from the second in order

for it to function properly with Eq. (2.3). Finally, by substituting Eq. (2.8) and

Eq. (2.4) into Eq. (2.3) and simplifying, Eq. (2.3) reduces to

A1× = n
(
A1×,1 −A′2×,12

)
(2.10)

which in conjunction with Eq. (2.9) is used to compute the total coverage area of

the constellation. In fact, much of the following discussion focuses on obtaining

analytical formulas for the area defined by Eq. (2.9). The method for determining

A1×,1 is given in Appendix A.

2.3 Key Intersection Points

With the extension to satellite constellations, the original 14 key intersec-

tions derived by Marchand and Kobel16 are still valid and are defined by the five

problem parameters rs, ru, rl, rt, and R. It is useful to label the original 14 in-

tersections as Type I, defined as those that are associated with only one satellite,

occurring between the range shell and a reference boundary or between a tangent

line and a reference boundary. However, the analysis is complicated by the mani-

festation of new intersection points associated with regions of coverage multiplicity
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p > 1. As is evident from Figure 1.3, when multiple satellites are introduced, each

satellite has associated with it these same 14 intersection points rotated through

appropriate multiples of the satellite separation angle,

θs =
2π

n
(2.11)

where n, a sixth problem parameter, is the number of satellites in the constellation.

In addition to these 14n Type I intersections, surfaces associated with one satellite

intersecting those of another create new intersections denoted as Type II, which are

of a variety that cannot exist in the single satellite case. These changes in geometry

necessitate a modified system for labeling intersection points that is illustrated in

Figure 2.2.
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Figure 2.2: Key shell intersections for a satellite constellation on a circular orbit

The labels for Type I intersections are unchanged with two exceptions. First,

at least one subscript is appended after a comma to denote the associated satellite.

For example, point B2,3 refers to point B2 of S3. Secondly, Type I T intersections,

which involve the intersection of the TL and RS of one satellite, have a modified first
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subscript to accommodate the complexity of Type II intersections. The following

are sample transformations from the notation of Marchand and Kobel16 for Type I

intersections of S1:

B2 −→ B2,1

T1 −→ T1A,11

Unlike points A, B, L, and U , T intersections can involve two satellites, thus requir-

ing two numbers after the comma to precisely describe which satellites are associated

with that intersection. The first number after the comma refers to the satellite from

which the TL originates, and the second number refers to the satellite whose RS

intersects that TL. For subscripts before the comma, “1” and “2” still indicate in-

tersections to the right and left of a satellite, respectively. To be precise, n rotating

coordinate frames Ej , for j = 1, . . . , n, are defined as follows: ê2,j is the unit vector

directed from the center of the Earth to Sj ; ê3,j is the unit vector normal to the

plane of motion of the satellite constellation, along the angular momentum vector;

and ê1,j = ê2,j × ê3,j . The origin of Ej , indicated with an O, is located at the center

of the Earth for all j. In fact, the E1 frame is identical to the rotating coordinate sys-

tem used by Marchand and Kobel16 and all intersections are determined relative to

this coordinate system. To facilitate comparison to Marchand and Kobel,16 a short-

hand notation is therefore defined for the E1 unit vectors: x̂ = ê1,1, ŷ = ê2,1, and

ẑ = ê3,1. Thus, for all intersection points, subscript “1” refers to intersections with

a positive ê1,j component and subscript “2” refers to intersections with a negative

ê1,j component. The “A” and “B” subscripts have a similar interpretation to that

used by Marchand and Kobel,16 where “A” refers to intersections between a TL of
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Sj and target shell that are farthest from Sj and “B” refers to intersections between

a TL of Sj and target shell that are closest to Sj . Mathematically, these subscripts

are used to distinguish between the two solutions produced by a quadratic equation,

and they are added to the subscript of the T intersections because with the inclu-

sion of Type II intersections, the quadratic equation associated with T intersections

can have two valid solutions. For convenience, define the following subscripts for

intersections A, B, L, U , T , W , and D:

ρ ∈ {1, 2}

σ ∈ {1A, 1B, 2A, 2B}

τ ∈ {3, 4}

(2.12)

Their use is described throughout the remainder of this section. Should ρ and σ

appear in the same equation, then they must be coupled and have the following

special relationship:

σ ∈ {ρA, ρB} (2.13)

In the single satellite case, the only T intersections are the result of the

satellite’s TL intersecting its own RS; the TL can only exit the RS because the

satellite from which the TL originates is within the RS. However, with Type II

intersections in a constellation, a satellite’s TL can both enter and exit another’s

RS. Observe in Figure 2.2 that if R is increased until S1 is within the RS of S2, point

T1B ,12 disappears while point T1A,12 remains. This is a concrete scenario showing

that if only one T intersection truly exists, it must have subscript “A”. From this

result, a convention for ambiguous cases is defined. For example, if the intersection
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of a TL emanating from Sj intersects its own RS, that intersection must be T1A,jj

or T2A,jj .

There are two other intersection points to define: intersections of two range

shells and intersections of two tangent lines. The former is indicated with a W and

three numbers in the subscript. If the Wτ,jk intersection is farthest from the origin,

then τ = 3; if the Wτ,jk intersection is closest to the origin, then τ = 4. The two

subscripts after the comma indicate the satellites associated with the intersection,

where j < k by convention. The intersection of two tangent lines is marked with

Dρjρk,jk. The ρj and ρk subscripts are equal to 1 or 2 and respectively indicate

which TL of satellite j and k is associated with the intersection. For example, the

intersection of the left TL of S1 with the right TL of S3 would be denoted as D21,13.

Again, even though D12,12 and D21,21 are identical, a convention is imposed such

that j < k. Thus, D12,12 is used to label Figure 2.2.

As in the single satellite case, the locations of these intersection points are

integral to the computation of satellite coverage area. To simplify the determination

of intersection points, this approach uses the same rotating coordinate system as

implemented by Marchand and Kobel.16 As depicted in Figure 2.2, the ŷ-axis

extends from the Earth to S1, and the x̂-axis is perpendicular to the ŷ-axis and in

the plane of the orbit. This rotating coordinate system gives a simple formula for

the location of the jth satellite in Cartesian coordinates as

(xsj , ysj ) = (rs sin(j − 1)θs, rs cos(j − 1)θs) (2.14)

where the satellites are numbered clockwise in increasing order. Thus, for a constel-
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lation with positive angular momentum, S1 can be viewed as the leading satellite.

2.3.1 Type I Intersections

Let Z be an auxiliary intersection point in the sense that

Zζ ∈
{
Aρ,j , Bρ,j , Lσ,j , Uσ,j , TρA,jj , Tσ,jk,Wτ,jk, Dρjρk,jk

}
(2.15)

This definition of Z is convenient in Section 2.4 for labeling vertices of overlap areas,

where its subscript ζ is simply a number for counting vertices. Then, let Z∗ be an

auxiliary Type I intersection point in the sense that

Z∗j ∈ {Aρ,j , Bρ,j , Lσ,j , Uσ,j , TρA,jj} (2.16)

Since the original 14 intersections were defined relative to S1, the correct rotation

that gives the remaining 14(n− 1) Type I intersections is analogous to that used in

Eq. (2.14), which describes the location of each satellite. Thus, all Type I intersec-

tions of the constellation can be identified in the E1 frame as[
xZ∗j
yZ∗j

]
=

[
cos(j − 1)θs sin(j − 1)θs
− sin(j − 1)θs cos(j − 1)θs

] [
xZ∗1
yZ∗1

]
(2.17)

which is essentially a clockwise rotation of the input vector. For example, using

the coordinates of A2,1 as the input to Eq. (2.17), the output coordinates would be

those of A2,j . In fact, Eq. (2.14) is absorbed by Eq. (2.17) by letting Z∗j = Sj . If

symmetry is lost, either by uneven satellite spacing or unequal range shells, then Z∗j

locations can be determined for all j from Eqs. (A.1–A.14).
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2.3.2 Type II Intersections

The remaining intersection points for a constellation of n satellites are of

Type II. Recall that these include W and D intersections as well as certain T

intersections. Since these intersections can be computed for an arbitrary satellite

pair, there is no need to use Eq. (2.17) for Type II intersections.

2.3.2.1 Intersections of Two Range Shells

The intersections of the RS of Sj with the RS of Sk (W3,jk,W4,jk) are denoted

as Wτ,jk, and are most easily computed via the use of coordinate transformations.

First, realize that the midpoint of a line connecting Sj and Sk is

Mjk =

(
xsj + xsk

2
,
ysj + ysk

2

)
(2.18)

The midpoint is used in the definition of a new reference frame Rjk: r̂2,jk is the unit

vector directed from the center of the Earth to Mjk; r̂3,jk is the unit vector normal

to the plane of motion of the satellite constellation, along the angular momentum

vector; and r̂1,jk = r̂2,jk×r̂3,jk. The origin ofRjk is chosen to be at Mjk because this

greatly simplifies the math. For W intersections, Sj has a negative r̂1,jk component

and Sk has a positive r̂1,jk component by convention. A shorthand for the distance

between two satellites is also defined as

djk = |SjSk| (2.19)
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Interpreting Fewell’s18 result, the general formula for the positive solution of the

intersection of two range shells with arbitrary radii is

xW3,jk
=
R2
j −R2

k + d2
jk

2djk

yW3,jk
=

1

2djk

√
2d2

jk

(
R2
j +R2

k

)
−
(
R2
j −R2

k

)2
− d4

jk

(2.20)

when viewed in a frame identical to the Rjk frame, but with the origin placed at Sj .

Recall that the Rjk frame is defined with equal range shells in mind, so it is known

that a line connecting the W intersections must pass through Mjk. If the range

shells were to have arbitrary radii, then it would be easier to make the coordinates

of the Rjk frame identical to those used by Fewell, but this generalization is not

presented here. For the purposes of this study, Rj = Rk, so Eq. (2.20) becomes

RxW3,jk
= 0; RyW3,jk

=
1

2

√
4R2 − d2

jk (2.21)

where the superscriptR indicates that the coordinates are given in theRjk frame. It

is important to note that Eq. (2.21) is only valid if djk ≤ 2R so that the coordinates

are real numbers. Furthermore, symmetry implies that

RxW4,jk
= RxW3,jk

; RyW4,jk
= −RyW3,jk

(2.22)

Transforming these intersections to the E1 frame requires both a rotation by

angle η and a translation, where η is the angle between the ŷ and r̂2,jk unit vectors.

Using a fundamental property of the dot product, the magnitude of this angle is

given by

η = cos−1 (ŷ · r̂2,jk) (2.23)
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which enforces the condition that 0 ≤ η ≤ π; however, this does not distinguish be-

tween clockwise and counterclockwise rotations and is undesirable. Thus, Eq. (2.23)

is corrected by adding the following convention: η > 0 if r̂2,jk has a positive x̂ com-

ponent and η < 0 if r̂2,jk has a negative x̂ component, which determines whether

the appropriate rotation is clockwise or counterclockwise. Re-expressing Eq. (2.23)

with this correction gives:

η =

{
+ cos−1 (ŷ · r̂2,jk) , if x̂ · r̂2,jk > 0

− cos−1 (ŷ · r̂2,jk) , if x̂ · r̂2,jk < 0
(2.24)

Lastly, the translation, which is associated with the displacement between the origin

of each frame, must be properly handled by shifting xMjk
in the x̂ direction and

yMjk
in the ŷ direction. Then, the total transformation from the Rjk frame to the

E1 frame is

E1[ xWτ,jk

yWτ,jk

]
=

[
cos η sin η
− sin η cos η

]Rjk[ xWτ,jk

yWτ,jk

]
+
E1[ xMjk

yMjk

]
(2.25)

For η > 0, the direction cosine matrix gives a counterclockwise rotation of the frame.

Should djk = 2R, then the two range shells intersect at only one point, which is the

midpoint Mjk.

2.3.2.2 Intersections of Two Tangent Lines

The intersections of a TL of Sj and a TL of Sk are denoted as Dρjρk,jk in

the most general form. This gives four possible D intersections per satellite pair,

collectively identified as (D11,jk, D12,jk, D21,jk, D22,jk). For certain geometries, it

is possible that less than four intersections exist, such as when two TLs are parallel

or when they diverge. First, some results from Marchand and Kobel16 must be
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generalized for constellations. One result states that the TL of S1 is tangent to the

THS when

θt = cos−1

(
rt
rs

)
(2.26)

which actually holds for any TL, where θt is the above-the-horizon coverage angle

at the point of tangency. The slope of each TL of Sj can then be expressed in terms

of the satellite location and the points of tangency as follows:

mρ,j =
ytρ,j − ysj
xtρ,j − xsj

(2.27)

for

xtρ,j =

{
rt sin [(j − 1)θs + θt] if ρ = 1

rt sin [(j − 1)θs − θt] if ρ = 2

ytρ,j =

{
rt cos [(j − 1)θs + θt] if ρ = 1

rt cos [(j − 1)θs − θt] if ρ = 2

(2.28)

Each intersection is given by the solution to the following system of equations:

yDρjρk,jk = mρj ,jxDρjρk,jk + bρj ,j ; yDρjρk,jk = mρk,kxDρjρk,jk + bρk,k (2.29)

where b is the y-coordinate of the point at which the TL intersects the ŷ-axis,

determined as

bρj ,j = ysj −mρj ,jxsj ; bρk,k = ysk −mρk,kxsk (2.30)

Using Eq. (2.29) to solve for xDρjρk,jk by substitution gives

xDρjρk,jk =
bρk,k − bρj ,j
mρj ,j −mρk,k

(2.31)

Then, substituting Eq. (2.30) into Eq. (2.29) and Eq. (2.31) gives

xDρjρk,jk =
mρj ,jxsj −mρk,kxsk − ysj + ysk

mρj ,j −mρk,k

yDρjρk,jk = mρj ,j

(
xDρjρk,jk − xsj

)
+ ysj

(2.32)
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Of course, Eqs. (2.31) and (2.32) are not valid if mρj ,j = mρk,k since the denominator

would go to zero. Such a scenario implies that the intersection does not exist, which

makes sense physically because two parallel lines cannot intersect, assuming they

are not collinear. Should two TLs happen to be collinear, as in Figure 2.3, then

Dρjρk,jk becomes meaningless and adds no new information to the geometry. Under

 

 

1× Coverage
2× Coverage

Figure 2.3: Collinear tangent lines for n = 4, Dρjρk,jk ≡Mjk

such circumstances, let Dρjρk,jk be equivalent to Mjk, which can be expressed as

Dρjρk,jk ≡Mjk if mρj ,j = mρk,k and bρj ,j = bρk,k (2.33)
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If two TLs are parallel but not collinear, then Dρjρk,jk does not exist, which can be

expressed as

Dρjρk,jk = ∅ if mρj ,j = mρk,k and bρj ,j 6= bρk,k (2.34)

One situation in which this can occur is when rs = rt and n is even, as in Figure

 

1× Coverage

2× Coverage

Figure 2.4: Parallel but not collinear tangent lines for n = 8 and rs = rt

2.4. Further observe that Eq. (2.32) assumes each TL is a line, though in reality the

TL does not extend above the satellite from which it originates. Thus, care should

be taken to ignore a solution given by Eq. (2.32) if the computed intersection is
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located above the satellites from which each TL emanates.

2.3.2.3 Intersections of Tangent Lines with Range Shells

The intersection of a TL of Sj with the RS of Sk for j 6= k is a Type

II intersection denoted as Tσ,jk. There are at most four such T intersections per

satellite pair, collectively identified as (T1A,jk, T1B ,jk, T2A,jk, T2B ,jk). Note the

application of Eq. (2.13) to Eqs. (2.35–2.37). The coordinates are given by the

solution to the following system of equations:

(
xTσ,jk − xsk

)2
+
(
yTσ,jk − ysk

)2
= R2; yTσ,jk = mρ,jxTσ,jk + bρ,j (2.35)

where bρ,j is interpreted as bρ,j = ysj −mρ,jxsj from Eq. (2.30). In general, solving

Eq. (2.35) for xTσ,jk gives

xTσ,jk =

− [mρ,j (bρ,j − ysk)− xsk ]±
√

(m2
ρ,j + 1)R2 − (bρ,j − ysk +mρ,jxsk)2

m2
ρ,j + 1

(2.36)

which has at most two real solutions. It has no real solution if (m2
ρ,j + 1)R2 <

(bρ,j − ysk + mρ,jxsk)2. However, Eq. (2.36) has an issue analogous to that of

Eq. (2.32), which is that if the TL originates within the RS, it will still give two

real solutions even if only one T intersection exists. The term “exist”, as used here,

implies that the intersection exists if the RS does not intersect the TL above the

altitude of the satellite from which the TL originates. Should only one T intersection

exist, ignore the TρB ,jk intersection. However, it is useful to compute a nonexisting T

intersection for certain purposes, such as for some of the conditions given in Section

2.5 that are used to identify the overlap region polygon C ′2×,12.
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Determining which solution corresponds to subscript “A” and which to sub-

script “B” is nontrivial and is summarized as

xTρA,jk =



x+
Tσ,jk

, if xsj < 0

x−Tσ,jk , if xsj = 0, ysj > 0,mρ,j > 0

x+
Tσ,jk

, if xsj = 0, ysj > 0,mρ,j < 0

x+
Tσ,jk

, if xsj = 0, ysj < 0,mρ,j > 0

x−Tσ,jk , if xsj = 0, ysj < 0,mρ,j < 0

x−Tσ,jk , if xsj > 0

(2.37)

where x+
Tσ,jk

corresponds to the solution of Eq. (2.36) with the positive square root

term and x−Tσ,jk corresponds to the solution of Eq. (2.36) with the negative square

root term. Then, xTρB,jk is the other solution of Eq. (2.36) not defined by Eq. (2.37).

The complete solution to the system of equations given in Eq. (2.35) is then formed

by using Eqs. (2.36–2.37) in conjunction with the equation for the TL:

yTσ,jk = mρ,j

(
xTσ,jk − xsj

)
+ ysj (2.38)

2.4 Geometrical Elements of Regions Subject to 2-fold Coverage

As demonstrated by Marchand and Kobel16 for the single satellite case, the

coverage area is at best reduced to a continuous piecewise differentiable function, and

the same holds for areas subject to 2-fold coverage in a constellation. The overlap

area A′2×,jk refers to the area of a region C ′2×,jk between two satellites that is within

view of both satellites. Recall that for 2-fold coverage restricted to pairs of adjacent

satellites, C ′2×,12 can be analyzed instead without loss of generality. This region is a

polygon whose vertices are connected by lines and/or circular arcs, and which can

have 16 unique shapes, categorized according to the number of vertices that the
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overlap area has. Table 2.4 shows the relation between the number of vertices and

number of unique shapes. Due to the geometry of the problem, C ′2×,12 cannot have

Table 2.4: Relation between the Number of Vertices and Number of Unique Shapes
for C ′2×,12

Number of Vertices Number of Unique Shapes

2 1
3 3
4 3
5 3
6 3
7 2
8 1

greater than eight vertices. The following discussion defines all of the fundamental

geometrical elements necessary for creating a piecewise differentiable function for

the 2-fold coverage area A′2×,12, using a combination of triangles, quadrilaterals,

and circular segments. The area A′2×,12 is then computed by summing the areas of

the appropriate fundamental shapes, though this step is reserved for Section 2.5.

2.4.1 Composite Triangles

Composite triangles are formed by adding to and/or subtracting from a base

triangle one or more circular segments. The areas AΛ1 and AΛ2 denote the first

two types of composite triangle, which were originally defined by Marchand and

Kobel.16 Their formulas are given in Eqs. (A.25) and (A.26).

For the 3-vertex shapes, new composite triangles must be defined. Shape 3.i
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requires the definition of a new composite triangle, Λ3, made up of three arcs:

AΛ3(r1,r2, r3, q1, q2, q3) = A4(q1, q2, q3)

−AΣ(r1, q1) + AΣ(r2, q2) + AΣ(r3, q3)
(2.39)

where rζ denotes a radial quantity and qζ denotes an edge length. A4 refers to the

area of a triangle computed using Heron’s formula, where each argument is a side of

the triangle.16 AΣ refers to the area of a circular segment, where the first argument

is the circle’s radius and the second is the associated chord.16 The equation for AΛ3

essentially adds an AΣ term to the definition of AΛ1 .

For shape 3.ii, a new composite triangle, Λ4, is defined, also made up of

three arcs but with different convexity:

AΛ4(r1,r2, r3, q1, q2, q3) = A4(q1, q2, q3)

+ AΣ(r1, q1) + AΣ(r2, q2) + AΣ(r3, q3)
(2.40)

The equation for AΛ4 is similar to that for AΛ3 except all circular segment areas

are added to the base triangle.

A new composite triangle, Λ5, must be defined for case 3.iii.a and 3.iii.b. Λ5

is pie-shaped, consisting of one arc and two line segments:

AΛ5(r1, q1, q2, q3) = A4(q1, q2, q3) + AΣ(r1, q1) (2.41)

The equation for AΛ5 is similar to that for AΛ2 except that the circular segment

area is added to the base triangle. λ5 is also used in the construction of other regions

of overlap.

For overlap areas with greater than three vertices, it is helpful to define an

additional composite triangle, Λ6:

AΛ6(r1, r2, q1, q2, q3) = A4(q1, q2, q3) + AΣ(r1, q1) + AΣ(r2, q2) (2.42)
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Z1

Z2

Z3Z4

c1

c2

Figure 2.5: A general convex quadrilateral

Λ6 is used in defining some of the regions with five, six, and seven vertices.

2.4.2 Convex Quadrilaterals

Formulas for the areas of composite quadrilaterals are derived from the gen-

eral formula for the area of a convex quadrilateral based on its diagonals.19 Each

vertex is an intersection point Zζ , defined in Eq. (2.15), and which is numbered

clockwise. For example, consider a convex quadrilateral Z1Z2Z3Z4, which is illus-

trated in Figure 2.5. If its diagonals are defined as the vectors

c1 = (xZ3 − xZ1)x̂ + (yZ3 − yZ1)ŷ

c2 = (xZ4 − xZ2)x̂ + (yZ4 − yZ2)ŷ
(2.43)

then the area of quadrilateral Z1Z2Z3Z4 can be expressed as

A (Z1, Z2, Z3, Z4) =
1

2
|c1 × c2| (2.44)
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An alternative means of determining the area of a convex quadrilateral is with

Bretschneider’s formula:20

A (q1, q2, q3, q4, c1, c2) =
1

4

√
4c2

1c
2
2 − (q2

2 + q2
4 − q2

1 − q2
3)2 (2.45)

However, it is simpler to use Eq. (2.44) because the function has fewer arguments

and requires less calculations. Thus, Eq. (2.44) is employed in this thesis for all

computations of the area of convex quadrilaterals.

2.4.3 Composite Quadrilaterals

Composite quadrilaterals are formed by adding to and/or subtracting from

a base convex quadrilateral one or more circular segments. Six types of composite

quadrilaterals are introduced. For case 4.i.a, the area of overlap can be described

as a composite quadrilateral AΠ1 , defined as

AΠ1(r1,r2, Z1, Z2, Z3, Z4) = A (Z1, Z2, Z3, Z4)

+ AΣ(r1, |Z1Z2|)−AΣ(r2, |Z3Z4|)
(2.46)

The five remaining types of composite quadrilaterals are defined in Eqs. (2.47–2.51).

AΠ2(r1,r2, r3, r4, Z1, Z2, Z3, Z4) = A (Z1, Z2, Z3, Z4) + AΣ(r1, |Z1Z2|)

−AΣ(r2, |Z3Z4|) + AΣ(r3, |Z2Z3|) + AΣ(r4, |Z4Z1|)
(2.47)

AΠ3(r1,r2, Z1, Z2, Z3, Z4) = A (Z1, Z2, Z3, Z4)

+ AΣ(r1, |Z1Z2|)−AΣ(r2, |Z4Z1|)
(2.48)

AΠ4(r1,r2, r3, Z1, Z2, Z3, Z4) = A (Z1, Z2, Z3, Z4)

+ AΣ(r1, |Z1Z2|) + AΣ(r2, |Z2Z3|) + AΣ(r3, |Z4Z1|)
(2.49)
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AΠ5(r1,Z1, Z2, Z3, Z4) = A (Z1, Z2, Z3, Z4) + AΣ(r1, |Z1Z2|) (2.50)

AΠ6(r1,r2, r3, Z1, Z2, Z3, Z4) = A (Z1, Z2, Z3, Z4)

−AΣ(r1, |Z1Z2|) + AΣ(r2, |Z2Z3|) + AΣ(r3, |Z4Z1|)
(2.51)

2.5 Above-the-Horizon 2-fold Coverage Area for a Constellation in
a Circular Orbit

The 2-fold coverage area computations are organized in a way that empha-

sizes the relationship expressed in Table 2.4. Table 2.5 identifies the conditions that

must be satisfied for each of 22 possible cases, termed “shape types”, and outlines

the naming convention used. The first number denotes the number of vertices and

the second number denotes the type. Thus, shape type 3.ii is a 3-vertex overlap

area of the second kind. Shape types are labeled with an “a” or “b” when the shape

is the same but some of the vertices are different intersection points. This is why

there are 22 shape types for only 16 unique shapes.

Once the shape type is identified from Table 2.5, the appropriate formula for

computing the 2-fold coverage area is found in Table 2.6. As mentioned previously,

the way that each complex shape is divided into more fundamental shapes is not

unique, and Table 2.6 merely shows one possible scheme. Effort is also made to

describe the geometry in a systematic way. For example, quadrilaterals are labeled

clockwise from the top-left corner, and fundamental areas are summed in the order

in which they are stacked within the complex shape. Figures 2.6–2.7 contain clear
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examples of all 22 shape types, zoomed in on the region C ′2×,12. Greater detail on

the coverage area for each of the 22 shape types, with labeled vertices, is given in

Figures B.1–B.22.
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Table 2.5: Conditions for Identifying the Overlap Region Polygon C ′2×,12

Conditions Shape Type

rl < |OW4,12| < |OM12|, |OD12,12| < |OW4,12| < |OM12|, 2
|OW3,12| < ru, |OT1B ,12| < |OW4,12| < |OM12|
|OD12,12| < rl, xW4,12 < rl sin(θs/2), rl < |OW3,12| ≤ ru, |OT1B ,12| < rl 3.i
rl < |OW4,12| < |OM12|, |OD12,12| < |OW4,12| < |OM12|, ru < |OW3,12|, 3.ii
|D12,12S1| < |T1A,12S1|, |D12,12S1| < |T1B ,12S1|
rl ≤ rs, |D12,12S1| < |L1B ,1S1|, xW4,12

< xD12,12
, ru ≤ |OT1B ,12| 3.iii.a

|L1A,1S1| < |D12,12S1|, xW4,12
< xD12,12

, ru ≤ |OT1A,11| 3.iii.b
rl ≤ rs, |OD12,12| < rl, xW4,12 < rl sin(θs/2), ru ≤ |OT1B ,12|, 4.i.a
|L1B ,1S1| < |T1A,12S1|
|OD12,12| < rl, xW4,12

< rl sin(θs/2), ru ≤ |OT1A,11|, 4.i.b
|OT1B ,12| < |OT1A,11|
|OD12,12| < rl, xW4,12

< rl sin(θs/2), ru < |OW3,12|, |OT1B ,12| < rl 4.ii
rl ≤ rs, |D12,12S1| < |L1B ,1S1|, xW4,12

< xD12,12
, 4.iii.a

|OD12,12| < |OW3,12| ≤ ru
|L1A,1S1| < |D12,12S1|, xW4,12

< xD12,12
, |OD12,12| < |OW3,12| ≤ ru 4.iii.b

rl ≤ rs, |OD12,12| < rl, xW4,12 < rl sin(θs/2), |OW3,12| < ru, 5.i.a
rl < |OT1B ,12|, |OT1A,11| < |OT1B ,12|, |L1B ,1S1| < |T1A,12S1|
|OD12,12| < rl, xW4,12

< rl sin(θs/2), |OW3,12| < ru, rl < |OT1A,11|, 5.i.b
|OT1B ,12| < |OT1A,11|
rl ≤ rs, |D12,12S1| < |L1B ,1S1|, xW4,12

< xD12,12
, ru < |OW3,12|, 5.ii.a

|OT1B ,12| < ru
|L1A,1S1| < |D12,12S1|, xW4,12 < xD12,12 , ru < |OW3,12|, 5.ii.b
|T1A,11S1| < |U1A,1S1|
rl < |OW4,12| < |OM12|, |OD12,12| < |OW4,12| < |OM12|, ru < |OW3,12|, 5.iii
rl < |OT1A,12| < ru, rl < |OT1B ,12| < ru
|OD12,12| < rl, xW4,12 < rl sin(θs/2), ru < |OW3,12|, rl < |OT1B ,12| < ru, 6.i.a
|OT1A,11| < |OT1B ,12|
|OD12,12| < rl, xW4,12

< rl sin(θs/2), ru < |OW3,12|, rl < |OT1A,11| < ru, 6.i.b
|OT1B ,12| < |OT1A,11|
|OD12,12| < |OW4,12| < |OM12|, xW4,12 < rl sin(θs/2), ru < |OW3,12|, 6.ii
rl < |OT1A,12| < ru, ru < |OT1B ,12|
rl < |OW4,12| < |OM12|, |OD12,12| < |OW4,12| < |OM12|, 6.iii
|OW3,12| < ru, |OM12| < |OT1B ,12|
rl < |OW4,12| < |OM12|, |OD12,12| < |OW4,12| < |OM12|, ru < |OW3,12|, 7.i
rl < |OT1A,12| < ru, rl < |OT1B ,12| < ru
xW4,12 < rl sin(θs/2) , |OD12,12| < |OW4,12| < |OM12| , |OW3,12| < ru, 7.ii
|OM12| < |OT1B ,12|
xW4,12 < rl sin(θs/2), |OD12,12| < |OW4,12| < |OM12|, ru < |OW3,12|, 8
rl < |OT1A,12| < ru, rl < |OT1B ,12| < ru
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Table 2.6: Piecewise Formulation for 2-fold Coverage Area A′2×,12

Shape Type 2-fold Coverage Area A′2×,12

2 A′2×,12 = 2AΣ(R, |W3,12W4,12|)
3.i A′2×,12 = AΛ3

(rl, R,R, |A1,1A2,2|, |A1,1W3,12|, |A2,2W3,12|)
3.ii A′2×,12 = AΛ4

(ru, R,R, |B1,1B2,2|, |B1,1W4,12|, |B2,2W4,12|)
3.iii.a A′2×,12 = AΛ5

(ru, |U1B ,1U2B ,2|, |U1B ,1D12,12|, |U2B ,2D12,12|)
3.iii.b A′2×,12 = AΛ5

(ru, |U2A,2U1A,1|, |U2A,2D12,12|, |U1A,1D12,12|)
4.i.a A′2×,12 = AΠ1

(ru, rl, U1B ,1, U2B ,2, L2B ,2, L1B ,1)
4.i.b A′2×,12 = AΠ1

(ru, rl, U2A,2, U1A,1, L1A,1, L2A,2)
4.ii A′2×,12 = AΠ2

(ru, rl, R,R,B2,2, B1,1, A1,1, A2,2)
4.iii.a A′2×,12 = AΠ3

(R,R,W3,12, T2B ,21, D12,12, T1B ,12)
4.iii.b A′2×,12 = AΠ3

(R,R,W3,12, T1A,11, D12,12, T2A,22)
5.i.a A′2×,12 = AΠ1

(R, rl,W3,12, T2B ,21, L2B ,2, L1B ,1)

+ AΛ5
(R, |T1B ,12W3,12|, |W3,12L1B ,1|, |L1B ,1T1B ,12|)

5.i.b A′2×,12 = AΠ1
(R, rl,W3,12, T1A,11, L1A,1, L2A,2)

+ AΛ5
(R, |T2A,22W3,12|, |W3,12L2A,2|, |L2A,2T2A,22|)

5.ii.a A′2×,12 = AΠ4
(ru, R,R,B2,2, B1,1, T2B ,21, T1B ,12)

+ A4(|T2B ,21D12,12|, |D12,12T1B ,12|, |T1B ,12T2B ,21|)
5.ii.b A′2×,12 = AΠ4

(ru, R,R,B2,2, B1,1, T1A,11, T2A,22)

+ A4(|T1A,11D12,12|, |D12,12T2A,22|, |T2A,22T1A,11|)
5.iii A′2×,12 = AΠ5

(ru, U1B ,1, U2B ,2, T2A,21, T1A,12)

+ AΛ6
(R,R, |T2A,21W4,12|, |W4,12T1A,12|, |T1A,12T2A,21|)

6.i.a A′2×,12 = AΠ1
(ru, rl, B2,2, B1,1, L2B ,2, L1B ,1)

+ AΛ5
(R, |B1,1T2B ,21|, |T2B ,21L2B ,2|, |L2B ,2B1,1|)

+ AΛ5
(R, |T1B ,12B2,2|, |B2,2L1B ,1|, |L1B ,1T1B ,12|)

6.i.b A′2×,12 = AΠ1
(ru, rl, B2,2, B1,1, L1A,1, L2A,2)

+ AΛ5
(R, |B1,1T1A,11|, |T1A,11L1A,1|, |L1A,1B1,1|)

+ AΛ5
(R, |T2A,22B2,2|, |B2,2L2A,2|, |L2A,2T2A,22|)

6.ii A′2×,12 = AΠ5(ru, U1B ,1, U2B ,2, T2A,21, T1A,12)
+ AΠ6(rl, R,R,A1,1, A2,2, T1A,12, T2A,21)

6.iii A′2×,12 = A (T2B ,21, T2A,21, T1A,12, T1B ,12)

+ AΛ6(R,R, |T1B ,12W3,12|, |W3,12T2B ,21|, |T2B ,21T1B ,12|)
+ AΛ6(R,R, |T2A,21W4,12|, |W4,12T1A,12|, |T1A,12T2A,21|)

7.i A′2×,12 = AΠ4(ru, R,R,B2,2, B1,1, T2B ,21, T1B ,12)
+ A (T2B ,21, T2A,21, T1A,12, T1B ,12)

+ AΛ6
(R,R, |T2A,21W4,12|, |W4,12T1A,12|, |T1A,12T2A,21|)

7.ii A′2×,12 = AΛ6(R,R, |T1B ,12W3,12|, |W3,12T2B ,21|, |T2B ,21T1B ,12|)
+ A (T2B ,21, T2A,21, T1A,12, T1B ,12)

+ AΠ6
(rl, R,R,A1,1, A2,2, T1A,12, T2A,21)

8 A′2×,12 = AΠ4
(ru, R,R,B2,2, B1,1, T2B ,21, T1B ,12)

+ A (T2B ,21, T2A,21, T1A,12, T1B ,12)
+ AΠ6

(rl, R,R,A1,1, A2,2, T1A,12, T2A,21)
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2 3.i 3.ii

3.iii.a 3.iii.b 4.i.a

4.i.b 4.ii 4.iii.a

4.iii.b 5.i.a 5.i.b

Figure 2.6: Taxonomy of Overlap Areas A′2×,12

46



5.ii.a 5.ii.b 5.iii

6.i.a 6.i.b 6.ii

6.iii 7.i 7.ii

8

Figure 2.7: Taxonomy of Overlap Areas A′2×,12
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2.6 The Existence of Arbitrary Coverage Multiplicities

This section aims to determine explicitly the coverage multiplicities present

for a given constellation at an instant in time using arguments based on shell inter-

sections. Due to the complexity of this endeavor, exhaustive conditions are outside

the scope of this thesis. However, partial conditions are provided to illustrate a

basic approach that could be used to derive the remaining conditions.

In a sense, coverage multiplicities are created and destroyed systematically.

There are several ways in which this can occur, but to adhere to previously made

assumptions, the conditions presented here focus on only one of these ways in which

coverage multiplicities are manifested — strictly between adjacent satellites. First,

generalized conditions for the existence of p-fold coverage between adjacent satellites

are derived. Then, conditions on the existence of 2-fold coverage are given separately

since all results and validation presented in this thesis are subject to a maximum

2-fold coverage constraint and it is thus useful to have these conditions explicitly

stated for this special case.

2.6.1 Partial Conditions on the Existence of p-fold Coverage

Recall that, according to previously mentioned assumptions that led to

Eq. (2.10), strictly 2-fold coverage only occurs for pairs of adjacent satellites. This

rule can be extended to 3-fold coverage by stating that strictly 3-fold coverage only

occurs for triplets of adjacent satellites. Indeed, a fundamental argument in the

derivation of conditions on the existence of p-fold coverage simply extends these

observations to say that p-fold coverage only occurs for p adjacent satellites.
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Using 2-fold coverage creation as an example, the sequence of Figures 2.8,

2.9, and 2.10 shows how additional coverage multiplicity for some region can be

created. The ratio of the range shell to the distance between certain satellites turns

out to be an important quantity in determining existence of coverage multiplicities.

Notice that initially, in Figure 2.8, only single coverage or 1-fold coverage exists

because 1 > 2R
d12

. As the radius of the range shell is increased, a threshold is

 

 

1× Coverage
2× Coverage

R

d12

Figure 2.8: Only 1-fold coverage exists: d12 > 2R

reached, shown in Figure 2.9, beyond which 2-fold coverage exists. Thus, this state
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1× Coverage
2× Coverage

d12

R

Figure 2.9: Upper limit of 1-fold coverage; threshold of creation of 2-fold coverage:
d12 = 2R

can be considered as an upper limit of 1-fold coverage or a lower limit of 2-fold

coverage, occurring when 1 = 2R
d12

. Hereinafter, the term “threshold” is used in the

sense that the geometry is assumed fixed with R = 0, and then as R is increased,

the threshold of p-fold coverage — represented as a point — is reached. Figure 2.10

illustrates the case where both 1-fold and 2-fold coverage exist, which gives one of
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1× Coverage
2× Coverage

d12

R

Figure 2.10: 1-fold and 2-fold coverage exist: d12 < 2R

the necessary conditions for the existence of 2-fold coverage:

1 <
2R

d12
(2.52)

Eq. (2.52) essentially states that a necessary condition for 2-fold coverage is that

the range shells of S1 and S2 must intersect. For the second necessary condition

on the existence of 2-fold coverage, consider the case where the intersection of two

particular tangent lines, D12,12, is outside the UTAS. Examples are given in Figures

2.11–2.12. These examples show that the condition
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1× Coverage

2× Coverage

Figure 2.11: Case 1 — |OD12,12| ≥ ru with rs < ru

|OD12,12| < ru (2.53)

must be satisfied for 2-fold coverage to exist, because otherwise the region above

the horizon of the satellite pair is outside the region DABS. A final requirement for

2-fold coverage is that the intersection D12,12 itself must exist, which is to say that

D12,12 6= ∅ (2.54)

The only configuration for which Eq. (2.54) is violated is when the right TL of S1
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 1× Coverage

2× Coverage

Figure 2.12: Case 2 — |OD12,12| ≥ ru with rs > ru

and the left TL of S2 are parallel but not collinear:

m1,1 = m2,2 and b1,1 6= b2,2 (2.55)

which is derived from Eq. (2.34). Eq. (2.55) represents a rare scenario that ostensibly

can only occur for unrealistic constellations in which rs = rt. An example is shown

in Figure 2.13. Due to this special case, Eq. (2.54) is included as the third necessary

condition for the existence of 2-fold coverage. Otherwise, D12,12 is guaranteed to

exist because the right TL of S1 and the left TL of S2 are usually only parallel
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1× Coverage

2× Coverage

Figure 2.13: Parallel but not collinear tangent lines for n = 2 and rs = rt

if they are also collinear. In other words, m1,1 = m2,2 is usually only satisfied if

b1,1 = b2,2 is satisfied as well. One could argue for additional necessary conditions,

but they would not apply to all possible satellite configurations. These are the only

three conditions that must hold for all possible satellite configurations in order for

2-fold coverage to exist.

Much of the derivation is performed using symmetry arguments, as in Eqs. (2.4)

and (2.8). Essentially, by choosing to analyze appropriate groupings of adjacent
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satellites, the threshold of even coverage multiplicities will always be associated

with the bisector of a line segment connecting S1 and S2. Similarly, the threshold

of odd coverage multiplicities will always be associated with the bisector of a line

segment connecting S2 and Sn or with both TLs of S1, depending on the satellite

altitude. Evidence of the even coverage case is in Figures 2.8–2.10, while evidence

of the odd coverage case is in Figure 2.12. For the latter, if ru were increased be-

yond rs, then a region of triple coverage between three adjacent satellites would be

associated with the bisector of a line segment connecting S2 and Sn and with both

TLs of S1, since S1 would be the threshold. This concept will become clearer in the

subsequent derivation in Section 2.6.1.2.

2.6.1.1 Necessary Conditions for Existence

Now that the geometry of the problem is more clearly established, the nec-

essary conditions given in Eqs. (2.52) and (2.53) for 2-fold coverage can easily be

generalized to p-fold coverage, respectively, as

1 <
2R

dικ
(2.56)

and

|OD21,ικ| < ru (2.57)

Similarly, Eqs. (2.54–2.55) are generalized to a third necessary condition for p-fold

coverage as

D21,ικ 6= ∅ ⇐⇒ if m2,ι = m1,κ, then b2,ι = b1,κ (2.58)

Eq. (2.58) states that requiring D21,ικ to exist is equivalent to requiring that the

right TL of Sκ and the left TL of Sι are parallel only if also collinear. Two addi-
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tional necessary conditions arise when considering odd p-fold coverage by adjacent

satellites:

|OD21,1n| < ru for p odd (2.59)

|OD21,ι1| < ru for p odd (2.60)

Eqs. (2.59–2.60) are analogous to Eq. (2.57) except that they only apply for odd

p. Their similarities should become apparent later in the derivation, specifically in

Appendix C during discussions related to and including Eq. (C.33).

2.6.1.2 Derivation of the Fundamental Necessary Condition for Exis-
tence

Before beginning the derivation of the fundamental necessary condition on

the existence of p-fold coverage, it is helpful to outline a different notation for labeling

intersection points as well as some new variables. Specifically, the use of a different

satellite numbering convention requires the use of different indices: ι = 2, 3, 4, . . .

and κ = 1, n, n−1, . . . . It will be shown subsequently that the indices ι and κ never

overlap. Thus, Sι is clockwise from S1 and Sκ is counterclockwise from S1. It is also

essential to define an auxiliary point Qp for p = 2, 3, 4, . . . , pmax, located along the

bisector of a line segment connecting special satellite pairs, which are unique for each

coverage multiplicity. Recall that pmax is some specified desired maximum coverage

multiplicity that clearly cannot exceed the number of satellites in the constellation.

The maximum coverage multiplicity also should not be less than a test value p since

it is pointless to test for coverage multiplicities above some desired value. The need

for such a test value would arise under certain circumstances. For example, consider
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that pmax-fold coverage is required and does not exist for some constellation, say,

some suboptimal design solution. Testing, then, for (pmax − 1)-fold coverage or

less would reveal how close the coverage achieved by the constellation is to the

desired coverage. Thus, p and pmax should presumably be restricted to the range

2 ≤ p ≤ pmax ≤ n, although it will be shown later that due to the way in which the

fundamental necessary condition is derived, the case pmax = n is treated separately.

With these considerations in mind, the initial step is not actually to de-

fine Qp, but to determine what information Qp gives about coverage multiplicity.

First, as a convention for systematic analysis, it is arbitrarily decided to define the

threshold of existence of some coverage multiplicity p as the lower limit of p-fold

coverage. For example, as shown in Figures 2.8–2.10, the threshold of 2-fold cover-

age is 2R
d12

= 1, which is the lower limit of 2-fold coverage. The term “lower limit”

is used here because if the ratio 2R
d12

is less than unity, double coverage cannot ex-

ist and single coverage becomes the maximum coverage multiplicity that can exist

(“can exist” is used because it is possible for no coverage to exist as well). While the

existence of p-fold coverage could alternatively be formulated in terms of an upper

limit of (p− 1)-fold coverage, this would actually complicate the analysis.

Now, the derivation is done by considering the existence of coverage multi-

plicities 2 through 5 as four separate examples. From here, a pattern emerges that

leads to the formulation of a key equation for determining the existence of coverage

multiplicities. For even p, the lower limit of p-fold coverage is linked geometrically to

changes in intersection points along the bisector of a line segment S1S2 connecting

satellites S1 and S2. Notice that this does not contradict what was said previously,
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even though now references to even or odd coverage multiplicities are in the context

of lower limits. The geometry is depicted in Figure 2.14 for p = 2, where

O

rQ2

rs

LTAS

UTAS

d2

Q2

1
2θs

S1

S2

S3

Sn

x̂

ŷ

Figure 2.14: Lower limit (threshold) for p = 2

d2 = |Q2S2| (2.61)

The new quantity d2 is used instead of d12 because d12 does not directly relate to

the bisector of S1S2. Indeed, d2 can be used to determine whether W3,21 is above

point Q2 in the sense that |OW3,21| > |OQ2|. Alternatively, d2 can be used to

determine whether W4,21 is below point Q2 in the sense that xW4,21 < xQ2 (this

becomes important when rs > ru, as will be shown). Using d2 in place of d12 is only

permissible due to considerable symmetry in the constellation.
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An alternative representation of the distance d2 can be obtained by invoking

the law of cosines. Letting l1, l2, and l3 be the lengths of the legs of a triangle

opposite angles φ1, φ2, and φ3, respectively, the law of cosines states that

l1 =
√
l22 + l23 − 2l2l3 cosφ1

l2 =
√
l21 + l23 − 2l1l3 cosφ2

l3 =
√
l21 + l22 − 2l1l2 cosφ3

(2.62)

In applying the law of cosines to the problem at hand, Figure 2.14 reveals that d2

can also be written as

d2 =

√
r2
s + r2

Q2
− 2rsrQ2 cos

1

2
θs (2.63)

where

rQp ≡ |OQp| =
√
x2
Qp

+ y2
Qp

(2.64)

Due to symmetry, Eq. (2.64) can also be written as

rQp =

{√
x2
Qp

+ y2
Qp

p even

yQp p odd
(2.65)

In an effort to relate the satellite indices to the coverage multiplicity of interest, it

is useful to keep track of their values for each of the four example coverage multi-

plicities. For p = 2,

ι =
1

2
(2 + 2) = 2

κ = 1

(2.66)

For odd p, the lower limit of p-fold coverage is, in some cases, linked geomet-

rically to changes in intersection points along the ŷ-axis. The fact that this occurs

along the ŷ-axis is pure coincidence and a result of the chosen coordinate frames.
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More importantly, the changes in intersection points occur along the bisector of a

line segment S2Sn connecting satellites S2 and Sn. Under other circumstances, the

lower limit of p-fold coverage is linked to changes in intersection points along both

TLs of S1, symmetric about the bisector of S2Sn. Due to symmetry, while these

changes occur along both TLs, it is only necessary to analyze the geometry for one

TL. As will be demonstrated later in the derivation, the left TL of S1 is chosen to

be consistent with Eq. (2.61), where Qp is compared to Sι. The relevant geometry

for the first scenario mentioned is depicted in Figure 2.15 for p = 3, where

O

rQ3

rs

LTAS

UTAS

d3

Q3

θs

S1

S2

S3

Sn

Sn – 1

x̂

ŷ

Figure 2.15: Lower limit (threshold) for p = 3

d3 = |Q3S2| (2.67)

As should be evident already from Eqs. (2.61) and (2.67), d2 and d3 are actually dp
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for p = 2 and p = 3, respectively. In fact, for a general p (even or odd), Eq. (2.61)

can be written as

dp = |QpSι| for p = 2, 3, 4, . . . , n (2.68)

when used with the correct formula for ι, which will be given shortly in Eq. (2.75).

Thus, in some cases, dp is used to determine whether W3,ικ is above point Qp in

the sense that |OW3,ικ| > |OQp|. In other cases, dp is used to determine whether

W4,ικ is below point Qp in the sense that xW4,ικ < xQp . Note that the previous two

statements hold true for even and odd p. Using the law of cosines, an alternative

representation for the distance d3 is

d3 =

√
r2
s + r2

Q3
− 2rsrQ3 cos

2

2
θs =

√
r2
s + r2

Q3
− 2rsrQ3 cos θs (2.69)

Lastly, note that for p = 3, satellite indices are given by

ι =
1

2
(3 + 1) = 2

κ = n+ 2− 2 = n

(2.70)

Next, incrementing the coverage multiplicity to p = 4 gives new geometry

shown in Figure 2.16. Notice that the geometry is similar to that in Figure 2.14

for p = 2, except that the critical distance is associated with a different satellite

pair. The new pair is S3 and Sn, which is the next closest pair to point Q2 that is

symmetric about the bisector of S1S2. From Figure 2.16, observe that an alternative

representation for the distance d4 is

d4 =

√
r2
s + r2

Q4
− 2rsrQ4 cos

3

2
θs (2.71)
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O

rQ4

rs

LTAS

UTAS

d4

Q4

3
2θs

S1

S2

S3

Sn

x̂

ŷ

Figure 2.16: Lower limit (threshold) for p = 4

again obtained from the law of cosines. Satellite indices for p = 4 are

ι =
1

2
(4 + 2) = 3

κ = n+ 3− 3 = n

(2.72)

Incrementing the coverage multiplicity to p = 5 again presents new but

familiar geometry, where the geometry illustrated in Figure 2.17 is similar to that in

Figure 2.15 for p = 3, except that the critical distance is associated with a different

satellite pair. The new pair is S3 and Sn−1, which is the next closest pair to point Q3

that is symmetric about the bisector of S2Sn. The distance d5 is given by Eq. (2.68),

or alternatively by

d5 =

√
r2
s + r2

Q5
− 2rsrQ5 cos

4

2
θs =

√
r2
s + r2

Q5
− 2rsrQ5 cos 2θs (2.73)
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Satellite indices for p = 5 are found to be

ι =
1

2
(5 + 1) = 3

κ = n+ 2− 3 = n− 1

(2.74)

O

rQ5

rs

LTAS

UTAS

d5

Q5

2θs

S1

S2

S3

Sn

Sn – 1

x̂

ŷ

Figure 2.17: Lower limit (threshold) for p = 5

At this point, it is important to notice that the bisector of SιSκ is always

equivalent to the bisector of S1S2 for even p and the bisector of S2Sn for odd p. This

is a direct consequence of the aforementioned symmetry, which greatly simplifies the

analysis because all coverage multiplicity thresholds are associated with changes in

intersection points along only two distinct and clearly defined lines. Even when the

constraint of only considering coverage between adjacent satellites is relaxed, cov-
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erage multiplicity thresholds are still associated with changes in intersection points

along the same two lines except that the link between even and odd p changes.

From the preceding four examples, a pattern emerges from Eqs. (2.66),

(2.70), (2.72), and (2.74) suggesting that satellite indices can be expressed in terms

of the coverage multiplicity p as

ι =

{
1
2(p+ 2) p even
1
2(p+ 1) p odd

(2.75)

κ =

{
[(n+ 2− ι) mod n] + 1 p even

n+ 2− ι p odd
(2.76)

The equation for even p in Eq. (2.76) is obtained from simplifying the following

more obvious expression:

κ =

{
1 if ι = 2

n+ 3− ι if ι > 2
(2.77)

A pattern also emerges from Eqs. (2.63), (2.69), (2.71), and (2.73), leading to the

following alternative expression for dp as compared to Eq. (2.68):

dp =

√
r2
s + r2

Qp
− 2rsrQp cos

(
p− 1

2
θs

)
for p = 2, 3, 4, . . . , n (2.78)

Note that Eq. (2.78) is valid for both even and odd p. Another nice aspect of this

expression becomes apparent by substituting Eq. (2.11) into Eq. (2.78):

dp =

√
r2
s + r2

Qp
− 2rsrQp cos

π(p− 1)

n
for p = 2, 3, 4, . . . , n (2.79)

Eq. (2.79) shows more clearly the dependence of coverage multiplicity on the number

of satellites in the constellation since n appears explicitly in the formula. However,

a clear disadvantage to defining dp with Eq. (2.79) instead of Eq. (2.68) is that

Eq. (2.79) can only be used for odd p if Qp is located on the bisector of S2Sn.
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Finally, the ultimate necessary condition for p-fold coverage becomes dp < R,

or

1 <
R

dp
for p = 2, 3, 4, . . . , n (2.80)

Next, it helps to paint a more complete picture of the bounds on the coverage

multiplicity conditions. For example, if a maximum allowable coverage multiplicity

pmax is to be imposed, this condition is simply expressed as dpmax+1 ≥ R or

1 ≥ R

dpmax+1
for pmax < n (2.81)

The equality is imposed because pmax+1-fold coverage still does not exist when R and

dpmax+1 are equal; it only exists when R exceeds dpmax+1. Furthermore, this does

not mean that pmax-fold coverage must exist, simply that the maximum coverage

multiplicity allowed is pmax. Observe that Eqs. (2.80) and (2.81) are always finite:

dp 6= 0 and dpmax+1 6= 0 because the location of each satellite of a pair associated

with p-fold coverage (Sι and Sκ) is never equal to the location of Qp. It could only

occur if Sι = Sκ, which is impossible since the satellites are uniformly distributed.

If Eq. (2.81) is imposed, it may be helpful to write the inequalities in

Eqs. (2.80) and (2.81) as one expression:

R

dpmax+1
≤ 1 <

R

dp
for p = 2, 3, 4, . . . , pmax (2.82)

Several comments and observations should be made about Eq. (2.80–2.82). For

existence, the fundamental necessary condition for p-fold coverage is Eq. (2.80). If

some maximum coverage multiplicity is to be required, then the condition

R

dpmax+1
≤ 1 <

R

dpmax
for pmax < n (2.83)
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must be satisfied. Also note that Eq. (2.81) is only valid if the coverage multiplicity

p being tested satisfies the condition p < n, and more specifically, p ≤ pmax < n. If

p = n or pmax = n, then the only condition for existence is, respectively, Eq. (2.80)

or

1 <
R

dpmax
(2.84)

In either case, though, the actual condition is on the existence of n-fold coverage:

1 <
R

dn
(2.85)

2.6.1.3 Necessary and Sufficient Conditions for Existence

Compare Eq. (2.80) to Eq. (2.56) and note the differences. They are both

necessary, but Eq. (2.56) is much more conservative. The fundamental idea behind

this is that Eq. (2.56) is strictly concerned with the intersection of range shells, while

Eq. (2.80) must ensure that the intersection region of range shells occurs entirely

or partially above the horizon of the satellite pair (Sι, Sκ) and all preceding pairs.

This is the precise function of Qp and is the very idea that leads to the series of

conditions in Tables 2.7–2.8. The other necessary conditions given by Eqs. (2.57–

2.60) ensure that the intersection region of range shells occurs entirely or partially

within the dual-altitude band. Thus, coupling Eqs. (2.57–2.60) with the fundamental

condition derived in this section creates a set of necessary and sufficient conditions

for the existence of p-fold coverage provided by p adjacent satellites.
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2.6.1.4 Determining the Location of Qp

Before discussing the conditions in Tables 2.7–2.8, the reader might benefit

from some observations about Qp. First, notice that if n = 2, then Q2 lies on the x̂-

axis. Furthermore, Qp is bounded by the LTAS and UTAS, and in many instances,

the threshold occurs when Qp coincides with a Mικ midpoint or a D21,ικ intersection.

As mentioned before, different satellite indices (ι and κ) are used here and the index

conventions adopted in the derivation of shell intersection point locations no longer

apply. For this reason, D21,21 appears in Table 2.8 instead of D12,12. Also, recall

that, in reality, Eq. (2.80) compares Qp to Wτ,ικ for one of the two possible values of

τ . Depending on the satellite altitude, τ takes on one of two values. Usually, τ = 3

is relevant, but not when the satellite altitude exceeds the UTAS (rs > ru). In that

case, τ = 4 may be relevant. The basic strategy for deriving Tables 2.7–2.8 takes the

dependence on satellite altitude into account by dividing the conditions into three

cases, separately for even and odd p, where each case is a range of satellite altitude:

rt ≤ rs < rl, rl ≤ rs < ru, and ru ≤ rs < rs3 . For a detailed derivation of how to

determine the location of Qp, see Appendix C.

In the process of locating Qp, it is necessary to define a new point P2,1ι,

which is similar to Mικ in that it is a special point on a line. Mικ is the midpoint

of a line connecting Sι and Sκ, while P2,1ι is the point on the left TL of S1 that

is closest to Sι. Neither Mικ nor P2,1ι is an intersection point in the same sense

as Type I and II intersections, because they do not result from the intersection

of shells and/or tangent lines. Rather, these two points are geometric constructs.

The derivation of P2,1ι, as well as an explanation of its significance, is included as
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part of the derivation of Qp in Appendix C, but the results are repeated here for

convenience. The coordinates of P2,1ι are

xP2,1ι =
m2,1

m2
2,1 + 1

(
xsι
m2,1

+ ysι − rs
)

yP2,1ι = m2,1xP2,1ι + rs

(2.86)

The necessary and sufficient conditions on the existence of p-fold coverage

are partial — not complete — because they are valid only for p-fold coverage oc-

curring between p adjacent satellites. In general, for satellites with omnidirectional

sensors uniformly distributed along a circular orbit, above-the-horizon p-fold cover-

age can occur between non-adjacent satellites as well, which includes coverage by

combinations of adjacent and non-adjacent satellites. Note that generalized con-

ditions would not replace the partial conditions just derived; rather, they would

augment the partial conditions and lead to the creation of more tables similar to

Tables 2.7–2.8. For example, then, to fully test for the existence of 3-fold coverage

would require examining Table 2.7 and another one that accounts for the possibility

of 3-fold coverage being provided by non-adjacent satellites.

Ultimately, the conditions and equations derived in Appendix C are compiled

into separate tables for even and odd p. Eq. (C.1), Eqs. (C.4–C.6), Eqs. (C.24–C.29),

and Eqs. (C.38–C.48) are used to populate Table 2.7 for odd p, while Eq. (C.1),

Eqs. (C.4–C.6), and Eqs. (C.7–C.16) are used to populate Table 2.8 for even p.

To keep Table 2.8 within the margins, the shorthand “LTAS” is adopted for the

point
(
rl sin

π
n , rl cos πn

)
and “UTAS” is adopted for the point

(
ru sin π

n , ru cos πn
)

in

the Qp column. The modified notation (D21,21)y = yD21,21 for indicating the y-

coordinate of a point is also used in Tables 2.7–2.9 to help keep the tables within
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the margins. Each table should be read from left to right, following a particular

chain of conditions to ultimately identify Qp. For example, consider a test for 5-fold

coverage in the range rl ≤ rs < ru, assuming that Eqs. (2.57–2.60) are satisfied.

Suppose that yL2B,1
≤ yP2,13 < rs, which is one of the three possible conditions in

the first column of Table 2.7. Next, in the second column, yD22,31 must be compared

with yP2,13 . Suppose that yP2,13 < yD22,31 . Lastly, in the third column, yD22,31 must

be compared with yD21,1n . If yD21,1n ≤ yD22,31 , then it is clear from the fourth column

that Q5 = D22,31. Finally, if |Q5S3| < R (from Eq. (2.80)), then 5-fold coverage

exists.
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Table 2.7: Flow Chart — Conditions for Determining the Location of Qp, Odd p ≥ 2

Conditions Qp

r t
≤
r s
<
r l

|OD21,ικ| ≤ rl (0, rl)

rl < |OD21,ικ| D21,ικ

r l
≤
r s
<
r u

(P2,1ι)y < (L2B ,1)y

(D22,ι1)y ≤ (L2B ,1)y
(D21,1n)y ≤ (L2B ,1)y L2B ,1

(L2B ,1)y < (D21,1n)y D21,1n

(L2B ,1)y < (D22,ι1)y
(D21,1n)y ≤ (D22,ι1)y D22,ι1

(D22,ι1)y < (D21,1n)y D21,1n

(D22,ι1)y ≤ (P2,1ι)y
(D21,1n)y ≤ (P2,1ι)y P2,1ι

(L2B ,1)y ≤ (P2,1ι)y (P2,1ι)y < (D21,1n)y D21,1n

< rs (P2,1ι)y < (D22,ι1)y
(D21,1n)y ≤ (D22,ι1)y D22,ι1

(D22,ι1)y < (D21,1n)y D21,1n

rs ≤ (P2,1ι)y
|OD21,ικ| ≤ rs S1

rs < |OD21,ικ| D21,ικ

r u
≤
r s
<
r s

3

(P2,1ι)y < (L2B ,1)y

(D22,ι1)y ≤ (L2B ,1)y
(D21,1n)y ≤ (L2B ,1)y L2B ,1

(L2B ,1)y < (D21,1n)y D21,1n

(L2B ,1)y < (D22,ι1)y
(D21,1n)y ≤ (D22,ι1)y D22,ι1

(D22,ι1)y < (D21,1n)y D21,1n

(D22,ι1)y ≤ (P2,1ι)y
(D21,1n)y ≤ (P2,1ι)y P2,1ι

(L2B ,1)y ≤ (P2,1ι)y (P2,1ι)y < (D21,1n)y D21,1n

< (U2B ,1)y (P2,1ι)y < (D22,ι1)y
(D21,1n)y ≤ (D22,ι1)y D22,ι1

(D22,ι1)y < (D21,1n)y D21,1n

(U2B ,1)y ≤ (P2,1ι)y U2B ,1
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Table 2.8: Flow Chart — Conditions for Determining the Location of Qp, Even
p ≥ 2

Conditions Qp

r t
≤
r s
<
r l

|OD21,ικ| ≤ rl LTAS

rl < |OD21,ικ| D21,ικ

r l
≤
r s
<
r u

(Mικ)y ≤ rl cos πn

|OD21,ικ| ≤ rl
|OD21,21| ≤ rl LTAS

rl < |OD21,21| D21,21

rl < |OD21,ικ|
(D21,21)y ≤ (D21,ικ)y D21,ικ

(D21,ικ)y < (D21,21)y D21,21

rl cos πn < (Mικ)y
(D21,21)y ≤ (Mικ)y Mικ

(Mικ)y < (D21,21)y D21,21

r u
≤
r s
<
r s

3

(Mικ)y ≤ rl cos πn

|OD21,ικ| ≤ rl
|OD21,21| ≤ rl LTAS

rl < |OD21,21| D21,21

rl < |OD21,ικ|
(D21,21)y ≤ (D21,ικ)y D21,ικ

(D21,ικ)y < (D21,21)y D21,21

rl cos πn < (Mικ)y < ru cos πn
(D21,21)y ≤ (Mικ)y Mικ

(Mικ)y < (D21,21)y D21,21

ru cos πn ≤ (Mικ)y UTAS

2.6.2 Partial Conditions on the Existence of 2-fold Coverage

From Eqs. (2.68) (also in Eq. (2.61)) and (2.80), the fundamental necessary

condition for the existence of 2-fold coverage by adjacent satellites is

|Q2S2| < R (2.87)

where Q2 is an auxiliary point defined in Table 2.9, covering all possible parameter

configurations. In short, the results are obtained from Table 2.8 by using p =

2. Greater detail and discussion is given in Appendix C for even p, but a brief
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explanation follows. Notice in Figure 2.2 that a line drawn from the origin to W3,12

bisects the region C ′2×,12. By definition, 2-fold coverage by two adjacent satellites

is created at a point Q2 on this bisector and within the region of interest. In the

absence of altitude shells, 2-fold coverage would be created at the midpoint Q2 =

M12, but when altitude shells are taken into account, the location of Q2 depends

on the satellite altitude and other factors. Table 2.9 provides a simplified version of

Table 2.8; simplifications are valid because for p = 2, clearly D21,ικ = D21,21, which

creates redundant conditions. Thus, all redundant conditions involving D21,ικ are

removed. The same does not hold for Mικ because even though Mικ = M12, no

redundant conditions are created as a result. Also, note in Table 2.9 that D12,12 is

used instead of D21,21, which is used in Tables 2.7–2.8. This change in notation is

made to facilitate comparison to Figure 2.2 as well as to previous discussions of D

intersections. M12 is then used instead of M21 for consistency, even though ι = 2

and κ = 1.

Remaining necessary conditions for the existence of 2-fold coverage (or less)

for adjacent satellites are

d12 < 2R

|OD12,12| < ru

D12,12 6= ∅ ⇐⇒ if m1,1 = m2,2, then b1,1 = b2,2

(2.88)

which when coupled with Eq. (2.87) constitutes a set of necessary and sufficient

conditions for existence.
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Table 2.9: Flow Chart — Conditions for Determining the Location of Qp, p = 2

Conditions Q2

r t
≤
r s
<
r l

|OD12,12| ≤ rl (rl sin
π
n , rl cos πn)

rl < |OD12,12| D12,12

r l
≤
r s
<
r u

(M12)y ≤ rl cos πn

|OD12,12| ≤ rl (rl sin
π
n , rl cos πn)

rl < |OD12,12| D12,12

rl cos πn < (M12)y
(D12,12)y ≤ (M12)y M12

(M12)y < (D12,12)y D12,12

r u
≤
r s
<
r s

3

(M12)y ≤ rl cos πn

|OD12,12| ≤ rl (rl sin
π
n , rl cos πn)

rl < |OD12,12| D12,12

rl cos πn < (M12)y < ru cos πn
(D12,12)y ≤ (M12)y M12

(M12)y < (D12,12)y D12,12

ru cos πn ≤ (M12)y (ru sin π
n , ru cos πn)
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Chapter 3

Results and Validation

Much insight to the dependency of coverage area on the parameters can be

gained by implementing the development in Chapter 2. The results given in this

chapter serve that purpose in addition to validating the computational approach

proposed by Takano and Marchand.1,17 The discussion and presentation of results

is preceded by a section establishing some constraints on the parameter space. Next,

basic validation of the coverage area calculation is accomplished, followed by valida-

tion of an example optimal constellation design problem with a single independent

variable. Lastly, sample parameter spaces are examined for constellation design with

multiple independent variables.

3.1 Constraints on the Parameter Space

The development in Chapter 2 limits analytical simulations to constellations

providing at most 2-fold coverage by adjacent satellites. To ensure that no coverage

multiplicities greater than two exist for an arbitrary simulation, a condition can be

imposed stating that triplets of adjacent satellites cannot intersect:

d2n ≥ 2R (3.1)

which precludes the existence of coverage multiplicities p ≥ 3 in general and p = 2

for non-adjacent satellites. This is a conservative constraint, however, because it is
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possible for only 1-fold coverage and 2-fold coverage by adjacent satellites to exist

with d2n < 2R. Alternative constraints could also be devised.

3.2 Parameter Space and Validation of Numerical Methods

With the preceding analysis and development complete, initial exploration

of the parameter space can be performed. The results in this section impose the

constraint given by Eq. (3.1). Figures 3.1–3.3 show three possible types of behavior
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Figure 3.1: Total coverage area vs. satellite altitude (Example 1) is a continuous
smooth curve: Optimal altitude corresponds to maximum coverage area

for how the total coverage area varies with satellite altitude, hs, when all other

parameters are held fixed. The tangent height, ht, is conservatively chosen to be 100
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Figure 3.2: Total coverage area vs. satellite altitude (Example 2) is a continuous
smooth curve: Maximum coverage area saturation observed at low altitudes

km for all of the following simulations to avoid line of sight penetration of the portion

of the atmosphere that could contain Earth limb, airglow, and auroral effects.15

Figure 3.1 shows a case where there is a clear optimal satellite altitude corresponding

to a maximum coverage area provided by the constellation. Under other conditions,

as shown in Figure 3.2, saturation can occur at low satellite altitudes; these are

regimes in which varying hs offers no coverage benefit. Another interesting artifact

of total coverage area is observed in Figure 3.3, where a sharp corner is apparent

near hs ≈ 10, 820 km. The explanation for this is that the overlap area shape C ′2×,12

changes type rapidly over a small range — approximately 70 km — of satellite
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Figure 3.3: Total coverage area vs. satellite altitude (Example 3) is a continuous
non-smooth curve: Global maximum exists only at the start of the altitude range
considered

altitude.

Another purpose of this analysis is to provide an analytical means of validat-

ing the numerical process proposed by Takano and Marchand.1,17 The numerical

algorithm employed by these authors is generally applicable to the time-varying and

the time-invariant case, with generalized sensor profiles. However, since closed form

solutions are not available in the generalized case, an intermediate step is to validate

a set of simplified cases, such as those discussed here. For example, the simulation

results presented in Figures 3.1–3.3 do not encompass all possible scenarios, but
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do validate a subset of satellite configurations in a single circular orbit against the

numerical model derived by Takano and Marchand.1,17 An even larger subset of
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Figure 3.4: Example 4: Total coverage area vs. satellite altitude

satellite configurations is validated in Figures 3.4–3.7, which together with Figures

3.1–3.3 cover all 22 cases defined in Tables 2.5–2.6. Appendix D provides evidence

in Figures D.1–D.10 that all 22 cases are indeed validated.

Figures 3.1–3.7 compare analytical and numerical results for continuous cov-

erage area by fixing all parameters and then increasing the satellite altitude. Further

notice that the values of the fixed parameters are different in each simulation. The

present study seeks to provide complete validation of the numerical process under

the stated simplified set of assumptions, including the constellation coverage area
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(a) Example 5
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(b) Example 6

Figure 3.5: Total coverage area vs. satellite altitude
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(a) Example 7
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(b) Example 8

Figure 3.6: Total coverage area vs. satellite altitude
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(a) Example 9
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(b) Example 10

Figure 3.7: Total coverage area vs. satellite altitude
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calculation and the 2-fold coverage constraint. The numerical approach1,17 consid-

ers a cost index determined numerically through the synthesis of computer graphics

methods. The process employed here, in contrast, provides validation with an ana-

lytically determined cost index.

3.3 Optimal Constellation Design

The analytical model’s capabilities are more fully demonstrated when ap-

plied to optimal constellation design. The optimization problem posed in this ex-

ample is to minimize the number of satellites required to achieve at least 99.9%

single coverage of DABS over a range of satellite altitudes. This example is bor-

rowed from Takano and Marchand17 so that the analytical results obtained can be

compared with his numerical results.

For simplicity, the problem is designed to have only one independent variable,

so four of the parameters — ht, hl, hu, and R — are fixed, with values given in Figure

3.8. Furthermore, the value employed in this example for the equatorial radius of the

Earth is 6378.14 km, as opposed to 6378 km, which was used for all other analysis

in this investigation. Although Takano and Marchand considered a satellite altitude

range of 100 to 6000 km, this is not possible with the current analytical model,

because the only coverage multiplicities with associated objective functions are 1-

fold coverage and 2-fold coverage between adjacent satellites. Thus, the altitude

range is limited in this study to be between 100 and 1212 km, which is the highest

altitude for which a minimal number of satellites can be analytically determined

with these four particular parameter values. The necessary and sufficient conditions
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Figure 3.8: Minimum number of satellites vs. satellite altitude
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in Section 2.6 are implemented to ensure proper restriction of the parameter space.

For consistency with the numerical results, a 1 km resolution is employed over

the constellation altitude range. To optimize the constellation, a grid search is

performed at each altitude, ultimately affording the results in Figure 3.8. While the

model implemented is strictly analytical, the results are still subject to roundoff and

truncation error. Consequently, coverage area up to 10−10% greater than ADABS is

also allowed to prevent loss of data or erroneous results. In other words, acceptable

coverage area values are within the following range:

0.999ADABS ≤ A1× ≤ (1 + 10−12)ADABS

The limits of the analytical model are also evident within the altitude range

considered. Between altitudes of 121 and 127 km, no analytical result is available

because triple coverage exists for those cases. The gap in data appears as a missing

segment of the blue curve in Figures 3.8–3.10. The primary source of discrepancy

between the analytical and numerical results are that Takano and Marchand did not

use the true value of ADABS; rather, they computed its value numerically, approx-

imating each altitude shell as a regular polygon with 100 vertices. Thus, the valid

range of A1× is not identical for the analytical and numerical methods. In Figure

3.8, this difference affects the satellite altitude at which the minimum number of

satellites transitions to a higher or lower value. Figure 3.9 reveals that the primary

source of error is a bias introduced by the numerical method in the calculation of

ADABS. For further error analysis, the relative error in A1× is computed as

A1×,err =
|A1× −A1×,num|

A1×
(3.2)
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Figure 3.9: Maximum total coverage area vs. satellite altitude for the minimum
number of satellites
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Figure 3.10: Percent relative error in maximum total coverage area vs. satellite
altitude for the minimum number of satellites
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and plotted in Figure 3.10 as a percentage, where A1×,num is the numerical approx-

imation of A1×. As expected, the error is below 0.1%, which is to the specifications

of the algorithm proposed by Takano and Marchand.1,17

3.4 Multiple Independent Variables

A more realistic constellation design problem would consider optimization

with a greater number of free parameters. For example, hs could be varied together

with R or hu, where the minimum number of satellites required for 99.9% coverage

of DABS is still the objective in either case. Sample parameter spaces are shown in

Figures 3.11–3.12. A clearly defined maximum coverage area exists in Figure 3.11,

while Figure 3.12 shows the same saturation characteristics seen in Figures 3.2 and

3.5(a), except now with a planar region of maximum coverage area saturation.
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89



Chapter 4

Conclusion

The problem of constellation design for space-based space situational aware-

ness applications is considered from an analytical perspective. The model developed

allows for computation of the above-the-horizon coverage area, where the region of

interest — located within a pre-specified dual-altitude band — is subject to a max-

imum of 2-fold coverage by adjacent satellites. First, geometrical arguments are

employed to establish an analytical formulation for coverage area provided by a pla-

nar, circular constellation of equally spaced satellites with omnidirectional sensors.

This leads to a piecewise differentiable exact representation for the total coverage

area provided by the constellation. Analytical conditions are also established for

determining the existence of arbitrary coverage multiplicities manifested strictly

between adjacent satellites.

While the results of this study are presently limited to simulating a max-

imum of 2-fold coverage between adjacent satellites, the method’s utility is quite

evident. By using the exact expression of the total coverage area as a cost index in

an optimization process, it is demonstrated that under the given assumptions, this

approach can be employed for optimal constellation design. The results of this in-

vestigation are also successfully validated against a generalized numerical algorithm

developed under a parallel study.
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Appendix A

Modified Single Satellite ATH Coverage Model

This appendix serves two purposes. First, it restates the equations that de-

fine shell intersections for a single satellite as well as the geometrical elements that

make up the coverage area A1×,1 — all derived by Marchand and Kobel16 — with

updated notation employed in this thesis. Secondly, it combines results from Marc-

hand and Kobel16 with those of Takano and Marchand1,17 to yield a representation

of A1×,1 (the area of the ATH coverage region visible to a single satellite and sub-

ject to 1-fold coverage or greater) that is not only compact, but which also, when

possible, follows more closely the original formulas used by Marchand and Kobel.

A major advantage to the representation given here is that the notation for Type

I intersections, as described in Section 2.3, is used instead of the original notation

for intersections developed by Marchand and Kobel. Surely this will alleviate any

sources of confusion arising from comparing this thesis to previous work.

A.1 Type I Shell Intersections

The following Eqs. (A.1–A.14) define the coordinates of all 14 Type I inter-

sections associated with Sj . Naturally, using j = 1 would give the original intersec-

tion points used for the single satellite model. The notation is updated from that

of Marchand and Kobel to be consistent with that of this thesis.
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A.1.1 Intersections of Altitude Shells with the Range Shell

xA1,j =
√
r2
l − y2

A1,j

yA1,j =
r2
l + r2

s −R2

2rs

(A.1)

xA2,j = −xA1,j

yA2,j = yA1,j

(A.2)

xB1,j =
√
r2
u − y2

B1,j

yB1,j =
r2
u + r2

s −R2

2rs

(A.3)

xB2,j = −xB1,j

yB2,j = yB1,j

(A.4)

A.1.2 Intersections of Tangent Lines with Altitude Shells

xL1A,j
=
−2m2

1,jrs +
√

4m2
1,jr

2
s − 4(1 +m2

1,j)(r
2
s − r2

l )

2(1 +m2
1,j)

yL1A,j
= m1,jxL1A,j

+ rs

(A.5)

xL2A,j
= −xL1A,j

yL2A,j
= yL1A,j

(A.6)

xL1B,j
=
−2m2

1,jrs −
√

4m2
1,jr

2
s − 4(1 +m2

1,j)(r
2
s − r2

l )

2(1 +m2
1,j)

yL1B,j
= m1,jxL1B,j

+ rs

(A.7)

xL2B,j
= −xL1B,j

yL2B,j
= yL1B,j

(A.8)
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xU1A,j
=
−2m2

1,jrs +
√

4m2
1,jr

2
s − 4(1 +m2

1,j)(r
2
s − r2

u)

2(1 +m2
1,j)

yU1A,j
= m1,jxU1A,j

+ rs

(A.9)

xU2A,j
= −xU1A,j

yU2A,j
= yU1A,j

(A.10)

xU1B,j
=
−2m2

1,jrs −
√

4m2
1,jr

2
s − 4(1 +m2

1,j)(r
2
s − r2

u)

2(1 +m2
1,j)

yU1B,j
= m1,jxU1B,j

+ rs

(A.11)

xU2B,j
= −xU1B,j

yU2B,j
= yU1B,j

(A.12)

A.1.3 Intersections of Tangent Lines with the Range Shell

xT1A,jj =
R√

1 +m2
1,j

yT1A,jj = m1,jxT1A,jj + rs

(A.13)

xT2A,jj = −xT1A,jj

yT2A,jj = yT1A,jj

(A.14)

A.2 Fundamental Geometrical Elements

The area of the complex regions described in Section A.3 are most easily

computed by decomposing them into more fundamental shapes. This section defines

all of the shapes relevant to the development of the piecewise differentiable objective

function for the coverage area A1×,1.
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A.2.1 Triangles

The area of a triangle is

A4(q1, q2, q3) =
√
s(s− q1)(s− q2)(s− q3) (A.15)

where s is the semiperimeter, defined as half the perimeter of a polygon. For a

triangle, the semiperimeter is

s =
q1 + q2 + q3

2
(A.16)

A.2.2 Circular Segments

The area of a standard circular segment is

AΣ(r, c) = r2 sin−1
( c

2r

)
− c

4

√
4r2 − c2 (A.17)

where r is the radius of the circle and c is the chord length. The complement of

the area of a circular segment is used instead of the result obtained from Eq. (A.17)

when the angle subtended is larger than π. This complementary area is defined as

ÃΣ(r, c) = πr2 −AΣ(r, c) (A.18)

A.2.3 Circular Sectors

The area of a circular sector can be expressed as

Aπ1(r, c) =
1

2
βr2 (A.19)

where r is the radius of the circle and β is the angle in radians subtended at the

center. The input to Aπ1 does not contain β because it can be expressed in terms
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of r and a chord length c by using trigonometry:

β = 2 sin−1
( c

2r

)
(A.20)

or

β = cos−1

(
1− c2

2r2

)
(A.21)

Thus, by substituting Eq. (A.20) into Eq. (A.19), the area of a circular sector can

be rewritten as

Aπ1(r, c) = r2 sin−1
( c

2r

)
(A.22)

As with the circular segment, the complement of the area of a circular sector is

simply

Ãπ1(r, c) = πr2 −Aπ1(r, c) (A.23)

A.2.4 Composite Teardrop Sectors

A new quantity, R̃, is defined as the radius of an imaginary shell centered

on a satellite, not to be confused with R, the radius of a satellite’s range shell. The

area of a composite teardrop sector is

Aπ2(r, R̃, c, rs) =

{
A4(R̃, c, R̃) + AΣ(r, c) rs ≤

√
R̃2 − r2

A4(R̃, c, R̃) + ÃΣ(r, c) rs >
√
R̃2 − r2

(A.24)

where R̃ ≥ r in order for the conditions to be real. The conditions are derived

from the Pythagorean theorem, where the equality rs =
√
R̃2 − r2 corresponds to

the case when the chord c passes through the origin O. Both cases arise in the

construction of A1×,1. For example, the condition rs ≤
√
R̃2 − r2 is satisfied in case

3(e), while rs >
√
R̃2 − r2 is satisfied in case 1(b).

96



Do not confuse Aπ2(r, R̃, c, rs) with AΛ5(r1, q1, q2, q3), which assumes no

symmetry about the shape and no relationship between the lengths of each side of

the triangle or the satellite altitude. They are conceptually similar shapes, but have

fundamentally different definitions.

A.2.5 Composite Triangles

The area of the composite triangle of the first kind, which was used by

Marchand and Kobel, is

AΛ1(r1, r2, q1, q2, q3) = A4(q1, q2, q3)−AΣ(r1, q2) + AΣ(r2, q3) (A.25)

though it is not needed or employed in the modified formulation of A1×,1. The

composite triangle of the second kind is used, however, and its area is computed as

AΛ2(r1, q1, q2, q3) = A4(q1, q2, q3)−AΣ(r1, q2) (A.26)

The subscript “2” for Λ2 is retained for consistency and to prevent confusion.

A.2.6 Overlap Region of Two Circles

The result presented here describes the taxonomy of the region formed by

the intersection of two circles. If the overlap region exists, the area is either that of

a circle or of the sum of two circular segments, but complications arise when there is

a lack of symmetry. If the radii are unequal, then for a circular segment, the angle

subtended at the center could be a reflex angle, which means that the area of this

circular segment would be greater than half the area of the associated circle.

The following results are given in terms of the application to the ATH cov-

erage problem, where r is the radius of an altitude shell and R is the radius of a
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satellite’s range shell. The subscript “AS” stands for altitude shell and refers to the

altitude shell of choice (LTAS or UTAS). If the LTAS is used, then r = rl, while if

the UTAS is used, then r = ru.

AAS∩RS(r,R, c, rs) = 0 rs ≥ R+ r (A.27)

AAS∩RS(r,R, c, rs) =

{
πR2 r ≥ R+ rs

πr2 R ≥ r + rs
(A.28)

AAS∩RS(r,R, c, rs) =

{
ÃΣ(R, c) + AΣ(r, c) rs ≤

√
r2 −R2

AΣ(R, c) + AΣ(r, c) rs >
√
r2 −R2

(A.29)

The inequalities in Eq. (A.29) must be real, so it is also required that r ≥ R.

AAS∩RS(r,R, c, rs) =

{
AΣ(R, c) + ÃΣ(r, c) rs ≤

√
R2 − r2

AΣ(R, c) + AΣ(r, c) rs >
√
R2 − r2

(A.30)

The inequalities in Eq. (A.30) must be real, so it is also required that R ≥ r.

A.3 Piecewise Differentiable Representation of Coverage Area A1×,1

Table A.1: Coverage Region C1×,1 Subcases for rt ≤ rs < rl

Conditions Case no.

R < |L1A,1S1| 1(a)

|L1A,1S1| ≤ R < |U1A,1S1| 1(b)

|U1A,1S1| ≤ R 1(c)
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Table A.2: Coverage Region C1×,1 Subcases for rl ≤ rs < ru

Conditions Case no.

R < |L1B ,1S1| 2(a)

|L1B ,1S1| ≤ R < |L1A,1S1| 2(b)

|L1A,1S1| ≤ R < |U1A,1S1| 2(c)

|U1A,1S1| ≤ R 2(d)

Table A.3: Coverage Region C1×,1 Subcases for ru ≤ rs < rs3

Conditions Case no.

R < |U1B ,1S1| 3(a)

|U1B ,1S1| ≤ R < |L1B ,1S1| 3(b)

|L1B ,1S1| ≤ R < |L1A,1S1| 3(c)

|L1A,1S1| ≤ R < |U1A,1S1| 3(d)

|U1A,1S1| ≤ R 3(e)

Table A.4: Coverage Area A1×,1 for rt ≤ rs < rl

Case no. Area Subject to 1-fold Coverage or Greater
1(a) A1×,1 = AAS∩RS(ru, R, |B1,1B2,1|, rs)−AAS∩RS(rl, R, |A1,1A2,1|, rs)
1(b) A1×,1 = AAS∩RS(ru, R, |B1,1B2,1|, rs)− πr2

l −Aπ1
(R, |T1A,11T2A,11|)

+ Aπ2
(rl, |L1A,1S1|, |L1A,1L2A,1|, rs)

1(c) A1×,1 = πr2
u − πr2

l −Aπ2
(ru, |U1A,1S1|, |U1A,1U2A,1|, rs)

+ Aπ2
(rl, |L1A,1S1|, |L1A,1L2A,1|, rs)
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Table A.5: Coverage Area A1×,1 for rl ≤ rs < ru

Case no. Area Subject to 1-fold Coverage or Greater
2(a) A1×,1 = AAS∩RS(ru, R, |B1,1B2,1|, rs)−Aπ1

(R, |T1A,11T2A,11|)
2(b) A1×,1 = AAS∩RS(ru, R, |B1,1B2,1|, rs)−AAS∩RS(rl, R, |A1,1A2,1|, rs)

−AΛ2
(rl, |L1B ,1S1|, |L1B ,1L2B ,1|, |L1B ,1S1|)

2(c) A1×,1 = AAS∩RS(ru, R, |B1,1B2,1|, rs)− πr2
l −Aπ1

(R, |T1A,11T2A,11|)
+ Aπ2

(rl, |L1A,1S1|, |L1A,1L2A,1|)
−AΛ2

(rl, |L1B ,1S1|, |L1B ,1L2B ,1|, |L1B ,1S1|)
2(d) A1×,1 = πr2

u − πr2
l −Aπ2

(ru, |U1A,1S1|, |U1A,1U2A,1|, rs)
+ Aπ2

(rl, |L1A,1S1|, |L1A,1L2A,1|, rs)
−AΛ2

(rl, |L1B ,1S1|, |L1B ,1L2B ,1|, |L1B ,1S1|)

Table A.6: Coverage Area A1×,1 for ru ≤ rs < rs3

Case no. Area Subject to 1-fold Coverage or Greater
3(a) A1×,1 = 0
3(b) A1×,1 = AAS∩RS(ru, R, |B1,1B2,1|, rs)−Aπ1

(R, |T1A,11T2A,11|)
+ AΛ2

(ru, |U1B ,1S1|, |U1B ,1U2B ,1|, |U1B ,1S1|)
3(c) A1×,1 = AAS∩RS(ru, R, |B1,1B2,1|, rs)−AAS∩RS(rl, R, |A1,1A2,1|, rs)

−AΛ2
(rl, |L1B ,1S1|, |L1B ,1L2B ,1|, |L1B ,1S1|)

+ AΛ2
(ru, |U1B ,1S1|, |U1B ,1U2B ,1|, |U1B ,1S1|)

3(d) A1×,1 = AAS∩RS(ru, R, |B1,1B2,1|, rs)− πr2
l −Aπ1

(R, |T1A,11T2A,11|)
+ Aπ2

(rl, |L1A,1S1|, |L1A,1L2A,1|, rs)
−AΛ2

(rl, |L1B ,1S1|, |L1B ,1L2B ,1|, |L1B ,1S1|)
+ AΛ2

(ru, |U1B ,1S1|, |U1B ,1U2B ,1|, |U1B ,1S1|)
3(e) A1×,1 = πr2

u − πr2
l −Aπ2

(ru, |U1A,1S1|, |U1A,1U2A,1|, rs)
+ Aπ2

(rl, |L1A,1S1|, |L1A,1L2A,1|, rs)
−AΛ2

(rl, |L1B ,1S1|, |L1B ,1L2B ,1|, |L1B ,1S1|)
+ AΛ2

(ru, |U1B ,1S1|, |U1B ,1U2B ,1|, |U1B ,1S1|)
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Appendix B

Details of the 22 Shape Types for A′2×,12

Figures B.1–B.22 are included in this appendix to supplement the discussion

and derivation in Sections 2.4 and 2.5 regarding the 22 shape types for A′2×,12.

While each shape type is depicted in Figures 2.6–2.7 and a sound understanding of

the taxonomy of overlap regions can be extracted from them, the overlap regions

are small, making it difficult to discern from the figures which intersection points

are located at which vertices. For such a small size, it is also impossible to label

each vertex of each of the 22 regions without cluttering the figures. To remedy the

issue, this appendix contains enlarged versions of each of the 22 polygons and labels

all the vertices of each one. The intention is that Figures B.1–B.22 will facilitate

understanding the origin of the conditions and equations in Tables 2.5 and 2.6,

respectively.
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W4,12

W3,12

Figure B.1: Case 2
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W3,12

A1,1

A2,2

Figure B.2: Case 3.i
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B2,2

B1,1

W4,12

Figure B.3: Case 3.ii
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D12,12

U2B ,2

U1B ,1

Figure B.4: Case 3.iii.a
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D12,12

U1A,1

U2A,2

Figure B.5: Case 3.iii.b
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U2B ,2

U1B ,1

L1B ,1

L2B ,2

Figure B.6: Case 4.i.a
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U1A,1

L1A,1

L2A,2

U2A,2

Figure B.7: Case 4.i.b
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A2,2

B2,2

B1,1

A1,1

Figure B.8: Case 4.ii
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T2B ,21

D12,12

T1B ,12

W3,12

Figure B.9: Case 4.iii.a

110



D12,12

W3,12

T1A,11

T2A,22

Figure B.10: Case 4.iii.b
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T2B ,21

T1B ,12

L1B ,1

L2B ,2

W3,12

Figure B.11: Case 5.i.a
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W3,12

T2A,22

T1A,11

L2A,2

L1A,1

Figure B.12: Case 5.i.b

113



T1B ,12

B2,2

D12,12 T2B ,21

B1,1

Figure B.13: Case 5.ii.a
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T1A,11

B1,1

B2,2

D12,12

T2A,22

Figure B.14: Case 5.ii.b
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W4,12

T1A,12

T2A,21

U1B ,1

U2B ,2

Figure B.15: Case 5.iii
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B2,2

L2B ,2

T2B ,21

B1,1

T1B ,12

L1B ,1

Figure B.16: Case 6.i.a
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B1,1

B2,2

L1A,1

L2A,2

T1A,11

T2A,22

Figure B.17: Case 6.i.b
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U2B ,2

T1A,12

A1,1

T2A,21

A2,2

U1B ,1

Figure B.18: Case 6.ii
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W4,12

T2B ,21

T1B ,12

T1A,12
T2A,21

W3,12

Figure B.19: Case 6.iii
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B1,1

W4,12

T2B ,21

T2A,21

T1A,12

T1B ,12

B2,2

Figure B.20: Case 7.i
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A2,2
A1,1

T2B ,21

T2A,21

T1A,12

T1B ,12

W3,12

Figure B.21: Case 7.ii
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B2,2

B1,1

A1,1

A2,2
T2A,21

T2B ,21

T1B ,12

T1A,12

Figure B.22: Case 8
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Appendix C

Derivation: Determining the Location of Qp

Recall that the conditions in Tables 2.7–2.8 are divided into three major

cases, each of which is a range of satellite altitude: rt ≤ rs < rl, rl ≤ rs < ru,

and ru ≤ rs < rs3 . The easiest conditions to derive of the three satellite altitude

ranges are in the range rt ≤ rs < rl. In fact, these conditions are the same for even

and odd p. When the satellites are below the LTAS, intuition tells us that Qp is

located on the LTAS because, for example, 2-fold coverage would be created when

|OW3,12| > rl in most circumstances. This implies

Qp =

{(
rl sin

π
n , rl cos πn

)
p even

(0, rl) p odd
(C.1)

In other words, a satellite’s range shell need only be large enough for 2-fold coverage

to occur. But the statement does not hold true when p increases beyond a certain

point. Consider how D21,ικ varies for odd p, for instance. Figure C.1 attempts to

illustrate geometrically how the location of D21,ικ changes by displaying the relevant

TLs with progressively darker shades of green as p increases from 3. This particular

image uses n = 25 because it provides the most clarity for explaining the point being

made. There are two dramatic changes that can occur in the behavior and location
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Figure C.1: For odd p, shows tangent lines associated with D21,ικ, which moves first
down the ŷ-axis and then up the ŷ-axis as p increases (n = 25)

of D21,ικ, and they happen under the following conditions:

m2,ι = m1,κ; b2,ι = b1,κ collinear TLs (C.2)

m2,ι = m1,κ; b2,ι 6= b1,κ parallel but not collinear TLs (C.3)

which are derived from Eqs. (2.33–2.34). Eq. (C.2) is satisfied when the TLs are

collinear (approximately ι = 6 and κ = 21 in Figure C.1); Eq. (C.3) is satisfied

when the TLs are parallel but not collinear (approximately ι = 12 and κ = 15 in
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Figure C.1). At first, as p increases from p = 3, D21,ικ moves down the ŷ-axis until

the theoretical geometry in Eq. (C.2) is reached such that the TLs are collinear. As

p increases further, D21,ικ then begins to move up until the theoretical geometry in

Eq. (C.3) is reached such that the TLs are parallel but not collinear. This is the only

scenario for which D21,ικ does not exist. Beyond this value of p, computing D21,ικ

from Eq. (2.32) would actually give a negative y-coordinate that slowly increases

as it approaches the satellite altitude, which would be the theoretical limit. This

limit is only close to attainable when the Sι and Sκ pair with the most negative y-

coordinates are extremely close to the THS or when n is unrealistically large so that

the satellite separation angle, θs, is small. However, for the purposes of ascertaining

the state of p-fold coverage, it is only important to observe that for these higher

values of p (beyond the state defined by Eq. (C.3)), p-fold coverage does not exist

for any R. Figure C.2 clearly shows how D21,ικ varies for odd p by plotting the

y-coordinate as a function of coverage multiplicity.

With the preceding discussion in mind, it should be clear that D21,ικ has a

role in determining where Qp is located for any satellite altitude range and for both

even and odd p. What makes the lowest satellite altitude range easy for analysis

is that the entire region AS is above the horizon of the satellites. In other words,

satellite location is not important within this range. The key to understanding the

conditions for rt ≤ rs < rl is that Eq. (C.1) is only valid in this range if part of the

region above the horizon of Sι and Sκ is below the LTAS. This condition can be

expressed as

|OD21,ικ| ≤ rl (C.4)
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Figure C.2: Evidence that D21,ικ does not monotonically increase along the ŷ-axis
as p increases (n = 25, odd p)

which also says that D21,ικ is below the LTAS. If Eq. (C.4) is not satisfied, then

rl < |OD21,ικ| (C.5)

is satisfied and it follows that

Qp = D21,ικ (C.6)

Realize that careful attention is given throughout this derivation to comparing radial

distances to radial distances and coordinates to coordinates. Clearly, Eqs. (2.33) and

(C.5) cannot be satisfied simultaneously for this satellite altitude range, so analysis

of this altitude range is complete.
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At this juncture, it is more logical to complete the derivation of these con-

ditions for even p first because these conditions are more straightforward to derive.

For the next satellite altitude range rl ≤ rs < ru, the location of Mικ is crucial; the

same is actually true for the entire range rl ≤ rs < rs3 , whenever the satellites are

above the LTAS. In fact, if

yMικ ≤ rl cos
π

n
(C.7)

is satisfied, then the same conditions for rt ≤ rs < rl (Eqs. (C.4) and (C.5)) apply

with a modification. The modification is understood from Figures C.1 and C.2

and applies to almost all remaining conditions for even p: almost all candidate Qp

intersection points must be compared in some way to D21,21 for p > 2. This is

because D21,ικ could be below or above D21,21. Let the term “pairs of interest”

refer to the (Sι, Sκ) pair and all preceding pairs. If D21,ικ is above D21,21, then the

region above the horizon of the (Sι, Sκ) pair is above the horizon of all preceding

pairs since D21,ικ has the greatest altitude of all pairs of interest. If D21,ικ is below

D21,21, then this is no longer the case. Instead, the region above the horizon of

all pairs of interest must be above the horizon of the (S2, S1) pair since D21,21 has

the greatest altitude of all pairs of interest. It is interesting to note that if D21,ικ

is below D21,2n and |OD21,2n| ≥ ru, as shown in Figure C.1 (or if D21,ικ is below

D21,21 and |OD21,21| ≥ ru), then the entire necessary and sufficient condition scheme

breaks down in the sense that testing for p-fold coverage would not correspond to

the expected satellite pair determined by Eqs. (2.75–2.76); the (Sι, Sκ) pair would

actually be offset according to how many preceding D21,ικ intersections are outside

the UTAS. While this is an important observation, realize that it does not invalidate
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the results because this scenario actually violates the assumption that this derivation

considers coverage multiplicity strictly between adjacent satellites. If D21,2n ≥ ru

for odd p or D21,21 ≥ ru for even p, then it is impossible to provide coverage by

adjacent satellites for p ≥ 2. The previous statement is only true for those two

satellite pairs, and even applies for n = 2 or n = 3.

Consider the scenario when |OD21,ικ| ≤ rl. Several subcases are possible. If

|OD21,21| ≤ rl (C.8)

is also satisfied, then the region above the horizon of the (S2, S1) pair is above the

horizon of all satellite pairs of interest and Eq. (C.1) applies. It does not matter

whether yD21,ικ is greater than or less than yD21,21 . Alternatively, if

rl < |OD21,21| (C.9)

is satisfied, then the region above the LTAS is not above the horizon of all pairs of

interest. Thus,

Qp = D21,21 (C.10)

since only the region above the horizon of the (S2, S1) pair — not the entire region

above the LTAS — is above the horizon of all satellite pairs of interest and within

the region AS. It turns out, in this case, that yD21,ικ < yD21,21 , though it is not

really relevant. If, instead, rl < |OD21,ικ|, then direct comparison between yD21,ικ

and yD21,21 is essential because depending on where yD21,ικ falls in the curve in

Figure C.2, yD21,ικ could be greater than or less than yD21,21 . The region above the

horizon of all satellite pairs of interest is equivalent to the region above the horizon
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of whichever one of these two intersections has a greater y-coordinate. Thus,

Qp =

{
D21,ικ if yD21,21 ≤ yD21,ικ

D21,21 if yD21,ικ < yD21,21

(C.11)

If the midpoint Mικ is instead located such that

rl cos
π

n
< yMικ (C.12)

then D21,ικ is clearly below or equal to D21,21, since Sι and Sκ must be in the first

quadrant for Eq. (C.12) to hold. In other words, the region above the horizon of

D21,21 is above the horizon of all satellite pairs of interest. Therefore, if yD21,21 ≤

yMικ , then Mικ is in the region of interest, which means that for this particular

scenario, Eq. (2.56) is both a necessary and sufficient condition for p-fold coverage

when coupled with Eqs. (2.57–2.60). To show this, use Eqs. (2.68) and (2.80) with

Qp = Mικ:

dp < R

|QpSι| < R

|MικSι| < R

1

2
dικ < R

dικ < 2R

The result is identical to Eq. (2.56). Conversely, if yMικ < yD21,21 , then Eq. (C.10)

applies. Thus, Qp is equal to whichever of D21,21 and Mικ is at a higher altitude:

Qp =

{
Mικ if yD21,21 ≤ yMικ

D21,21 if yMικ < yD21,21

(C.13)
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For the final satellite altitude range ru ≤ rs < rs3 , it should be evident and

not surprising that the same conditions and equations given in Eq. (C.7–C.13) still

apply, as was hinted earlier, except that Eq. (C.12) must be modified to

rl cos
π

n
< yMικ < ru cos

π

n
(C.14)

since the satellite altitude range allows for Mικ to be outside the UTAS. In fact,

ru cos
π

n
≤ yMικ (C.15)

is the final condition for even p in determining the location of Qp. If Eq. (C.15) is

satisfied, then yD21,21 ≤ yMικ is implied because the necessary condition given by

Eq. (2.57) must be satisfied. Thus, no comparison to D21,21 is shown in the row of

Table 2.8 corresponding to Eq. (C.15). In this scenario, however, Mικ is not in the

region of interest even though it is at a higher altitude, setting this case apart from

Eq. (C.13). This is a situation where it must be determined whether W4,ικ is below

point Qp in the sense that xW4,ικ < xQp . Thus,

Qp =
(
ru sin

π

n
, ru cos

π

n

)
(C.16)

Entirely different issues arise when considering the satellite altitude range

rl ≤ rs < ru for odd p. First, observe that Mικ is always below the satellite altitude.

Next, define a new point P2,1ι, illustrated in Figures C.3 and C.4 for ι = 2, as the

intersection of the left TL of S1 and a line emanating from Sι that is perpendicular

to the left TL of S1. The coordinates of P2,1ι are given by the solution to the

following system of equations:

yP2,1ι = m2,1xP2,1ι + ys1 ; yP2,1ι = − 1

m2,1
xP2,1ι + bP2,1ι (C.17)
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P2,12
S1

S2Sn

Figure C.3: Depiction of point P2,12 with yP2,12 ≥ rs and |P2,12S2| < |S1S2| < R

where bP2,1ι is the y-coordinate of the point at which the line perpendicular to the

right TL of S1 intersects the ŷ-axis, determined as

bP2,1ι = ysι +
1

m2,1
xsι (C.18)

Setting the two equations in Eq. (C.17) equal to each other and rearranging, with

ys1 = rs, gives (
m2,1 +

1

m2,1

)
xP2,1ι + rs = bP2,1ι (C.19)
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P2,12

S1

S2Sn

Figure C.4: Depiction of point P2,12 with yP2,12 < rs and |P2,12S2| < R < |S1S2|

Eq. (C.19) can be solved for xP2,1ι as

xP2,1ι =
m2,1

m2
2,1 + 1

(
bP2,1ι − rs

)
(C.20)

Then, substituting Eq. (C.18) into Eq. (C.20) leads to

xP2,1ι =
m2,1

m2
2,1 + 1

(
xsι
m2,1

+ ysι − rs
)

(C.21)

After determining the x-coordinate of P2,1ι from Eq. (C.21), the y-coordinate can
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then be computed from

yP2,1ι = m2,1xP2,1ι + rs (C.22)

Now that P2,1ι is defined, notice in Figures C.3–C.4 that the location of P2,1ι

and the distance |P2,1ιSι| are crucial to determining p-fold coverage. First, note that

the condition

|P2,1ιSι| ≤ |S1Sι| (C.23)

always holds because |S1Sι| is the hypotenuse of the triangle SιP2,1ιS1. Obviously,

in the degenerate case when |P2,1ιSι| = |S1Sι|, there is no triangle formed — only a

line, because P2,1ι collapses onto S1. Secondly, observe that if

yP2,1ι ≥ rs (C.24)

and

|OD21,ικ| ≤ rs (C.25)

then the region above the horizon of all satellite pairs of interest overlaps with the

region above the horizon of S1, creating p-fold coverage for odd p. Thus,

Qp = S1 (C.26)

While the behavior illustrated in Figure C.2 occurs, it is not important for this

scenario because it is always true that

yD21,2n < rs (C.27)

If, instead,

rs < |OD21,ικ| (C.28)
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is satisfied, then only the region above the horizon of the (Sι, Sκ) pair is above the

horizon of all satellite pairs of interest, so Eq. (C.6) applies (Qp = D21,ικ).

Earlier in the derivation, it states that, in general, the changes in intersection

points occur along the bisector of a line segment S2Sn for odd p. This has been the

case so far, but the exception to this rule appears in the remaining few conditions.

Consider the case when

yP2,1ι < rs (C.29)

Now, it is possible for

|P2,1ιSι| < R < |S1Sι| (C.30)

to be satisfied while still achieving p-fold coverage whereas before, when rs ≤ yP2,1ι ,

p-fold coverage is only possible if

|P2,1ιSι| ≤ |S1Sι| < R (C.31)

is satisfied. The easiest way to continue is to just write the conditions required with-

out giving thought to the concept of coverage threshold, which was used previously.

It is evident from Figure C.3 that

rl < |OT2B ,1ι| (C.32)

must be satisfied so that the region of p-fold coverage is within the region AS, and

that {
|OD21,1n| < |OT2B ,1ι| if yD22,ι1 < yD21,1n

|OD22,ι1| < |OT2B ,1ι| if yD21,1n ≤ yD22,ι1

(C.33)

must also be satisfied so that the region visible to S1 is also visible to the (Sι, Sκ)

satellite pair and all other satellite pairs of interest. The conditions in Eq. (C.33)
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are derived from Figure C.2 by observing that D21,1n is analogous to D21,21 and that

D22,ι1 is analogous to D21,ικ. This occurs because of how certain D intersections

move along the left TL of S1 (symmetric intersections move in the same way along

the right TL of S1). First, realize that the point D21,1n is associated with Sκ. For

ysκ > rt, the slope of the right TL of Sκ is negative and the slope of the left TL of Sι

is positive, and, consequently, yD22,ι1 < yD21,1κ . But for ysκ < rt, the slopes of the

respective TLs have reversed signs, so that yD21,1κ ≤ yD22,ι1 . From these arguments

and Figures C.2 and C.3, it should be clear that yD21,1κ ≤ yD21,1n for all κ, so yD21,1n

need only be compared against yD22,ι1 . Eq. (C.33) will likely only be violated for

higher coverage multiplicities.

For odd p, when the satellite altitude range is ru ≤ rs < rs3 , p-fold coverage is

only possible when Eq. (C.30) (the exception to the rule) is satisfied simply because

now the region above S1 is also above the UTAS and thus outside the region AS.

It turns out that the conditions in Eqs. (C.32–C.33) are still valid, except that the

condition designed to ensure that the region of p-fold coverage is within the region

AS must be modified. These modifications only involve T intersections and their

positions relative to the LTAS and UTAS. If

ru < |OT2B ,1ι| (C.34)

is satisfied, then

|OT2A,1ι| < ru (C.35)

is also required, and Eq. (C.32) is automatically satisfied. If Eq. (C.34) is not

satisfied and instead

ru > |OT2B ,1ι| (C.36)
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holds, then Eq. (C.32) must also be satisfied. If

ru = |OT2B ,1ι| (C.37)

is satisfied, then both Eqs. (C.32) and (C.35) are automatically satisfied.

Converting Eqs. (C.29–C.37) to the coverage threshold representation is

much less challenging upon realizing that the threshold conditions are analogous in

every way — with P2,1ι replacing Mικ — to the satellite altitude range rl ≤ rs < rs3

for even p with one exception: The condition chains beginning with yL2B,1
≤ yP2,1ι <

rs for rl ≤ rs < ru and yL2B,1
≤ yP2,1ι < yU2B,1

for ru ≤ rs < rs3 cannot be sim-

plified. Previously, with reference to Eq. (C.12) for even p, the statement could be

made that D21,ικ is clearly below or equal to D21,21, since Sι and Sκ must be in the

first quadrant, so D21,ικ had no effect on the coverage threshold. But the analogous

statement for odd p would be that D22,ι1 is clearly below or equal to D21,1n, which

is false. Rather, P2,1ι must be compared against D22,ι1. Furthermore, notice that

yL2B,1
and yU2B,1

are used instead of rl cos πn and ru cos πn to compare y-coordinates

of other points against the LTAS and UTAS, respectively. This is because for even

p, the points being compared to the LTAS and UTAS vary radially with satellite

altitude, whereas for odd p, the points being compared to the LTAS and UTAS vary

along the left TL of S1 as satellite altitude varies.

Analogous arguments used to derive Eqs. (C.8–C.11) lead to the following

conditions. If

yD22,ι1 ≤ yP2,1ι (C.38)
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is satisfied, then D21,1n must still be compared against P2,1ι to determine Qp. If

yD21,1n ≤ yP2,1ι (C.39)

then

Qp = P2,1ι (C.40)

Otherwise,

yD21,1n > yP2,1ι (C.41)

must be satisfied instead of Eq. (C.39), requiring the threshold

Qp = D21,1n (C.42)

Similarly, if Eq. (C.38) is not satisfied, then

yD22,ι1 > yP2,1ι (C.43)

must be satisfied instead, and D22,ι1 must then also be compared against D21,1n. If

yD21,1n ≤ yD22,ι1 (C.44)

then the threshold becomes

Qp = D22,ι1 (C.45)

Otherwise, Eq. (C.42) applies. Eqs. (C.38–C.45) are the result of transforming

the formulation in Eqs. (C.29–C.37) to one involving the threshold concept, which

requires defining Qp.

Lastly, for the satellite altitude range rl ≤ rs < ru, it is also helpful to

discuss one of the finer details of the first condition in each of the three chains.
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First, note that the chain beginning with Eq. (C.24) (rs ≤ yP2,1ι) does not have an

analogous counterpart for even p. Since no satellite is located on the bisector of

S1S2, satellite altitude has no direct impact on the coverage threshold for even p.

But satellite altitude does for odd p because S1 is located on the bisector of S2Sn.

Each of the three chains is concerned with how P2,1ι, L2B ,1, and rs are related to

each other, specifically the y-coordinates. It is valid to compare yP2,1ι and yL2B,1

to the radial distance rs because rs is also the y-coordinate of S1. The other two

chains are concerned with the case when Eq. (C.29) (yP2,1ι < rs) is satisfied. By

definition, yL2B,1
≤ rs, so this is not always explicitly stated in Table 2.7. This is

also why there are only three and not six permutations of these inequalities:

yP2,1ι < yL2B,1
≤ rs (C.46)

yL2B,1
≤ yP2,1ι < rs (C.47)

yL2B,1
≤ rs ≤ yP2,1ι (C.48)

where care is taken to ensure that only one of these conditions can be satisfied for

some given geometry.

In addition to all of these preceding conditions relating to the coverage

threshold, recall that Eq. (2.33) may need to be considered for even or odd p if

any TLs of interest are collinear. But even if Eq. (2.33) were satisfied for any satel-

lite altitude range, then D21,ικ and Mικ would be located on the THS — outside

the region of interest. Thus, entries in the Qp column of Tables 2.7–2.8 would be

unchanged.
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Appendix D

Relating the 22 Shape Types to Satellite Altitude

Figures D.1–D.10 correspond to Figures 3.1–3.7, respectively. It is not clear

from Figures 3.1–3.7 that all 22 shape types for A′2×,12 are validated because the

graphs only illustrate the consistency in results. Therefore, Figures D.1–D.10 are

given in this appendix to demonstrate that all 22 shape types are accounted for in

the validation process. They also show patterns in the occurrence of certain shape

types. For example, shape type 3.ii seems to always occur in the satellite altitude

range after the altitude corresponding to maximum total coverage area. Shape type

0, as indicated in Figures D.1–D.10, refers to a situation in which 2-fold coverage

does not exist. This happens when some or all of the conditions for identifying

a particular shape type in Table 2.5 are not satisfied for each shape type. The

maximum coverage area is indicated with a red circle on each of the following 10

figures. In three cases, the global maximum exists only at the start of the altitude

range considered, a consequence of the constraint on the parameter space discussed

in Section 3.1.
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142



0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

x 10
4

0

1

2

3

4

5

6
x 10

7

Satellite Altitude, hs (km)

T
o
ta
l
C
o
v
e
ra
g
e
A
re
a
,
A

1
×
(k

m
2
)

Coverage Area Varying with Satellite Altitude, n = 12
ht = 100, hl = 5500, hu = 6300, R = 7100 (km)

 

 

X: 8000; Y: 59893913.875 4.i.a
6.ii
8
4.ii
3.ii
0
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Figure D.5: Total coverage area vs. satellite altitude, one new shape: 4.i.b
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Figure D.7: Total coverage area vs. satellite altitude, two new cases: 4.iii.b, 5.i.b
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Figure D.8: Total coverage area vs. satellite altitude, two new cases: 5.i.a, 6.iii
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Figure D.9: Total coverage area vs. satellite altitude, one new shape: 7.ii
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Figure D.10: Total coverage area vs. satellite altitude, one new shape: 5.ii.a
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