Design of the Onboard Autonomous Targeting Algorithm for the Trans-Earth Phase of Orion

M.W. Weeks ${ }^{1}$, B.G. Marchand ${ }^{2}$, C.W. Smith ${ }^{2}$, and S.K. Scarritt ${ }^{2}$

${ }^{1}$ NASA Johnson Space Center
${ }^{2}$ Department of Aerospace Engineering and Engineering Mechanics
The University of Texas at Austin
AIAA Guidance, Navigation and Control Conference and Exhibit, 18-21 Aug 2008, Honolulu, Hawaii

Three dimensional representation of the TEI sequence

Goals of Onboard Targeting Algorithm

- Turn-key autonomous onboard targeting
- Minimize computational overhead
- Accurately target entry conditions within available fuel budget
- Address all contingency entry scenarios in case of loss of COMM
- Systematically ID maneuver locations \Rightarrow dynamical sensitivities
- Automated convergence monitoring and adaptive step techniques
- Engine failure contingency \Rightarrow Targeter w/ Finite Burn Model

Targeting Techniques

- Optimization Methods
- Requires significant computational overhead
- Many locally optimal arcs exist in 3-Burn TEI scenario
- Optimization outcome unpredictable

Optimizers not suitable for autonomous onboard targeting

- Two Level Targeter
- An enhanced targeting technique for complex dynamical systems
- Initially applied to trajectory design near the libration points
- Libration Point Missions: Genesis, Triana, Map, etc.
- Future Concepts: Formation Flight, L_{4} / L_{5} based telescopes
- Seeks non-optimal arcs that meet all specified constraints
- Solution remains in the vicinity of the initial guess
- Significantly reduced computational overhead relative to NLP

Orion Entry Constraints

- Minimum Entry Constraint Set
- Altitude (ALT)
- Flight Path Angle (FPA)
- Additional Constraints for Precision Entry
- Latitude (LAT)
- Longitude (LON)
- Flight Path Azimuth (AZM)
- Fuel budget constraints
- $\sum_{T E I=1}^{3}\left\|\Delta V_{T E I}\right\|<\Delta V_{\text {available }}$

Dynamical Model

- Nonlinear Ephemeris Model $(৫, \oplus, \odot)$

$$
\begin{array}{llll}
\dot{\bar{X}}(t)=\bar{f}(\bar{X}) & \Rightarrow & \text { State Equation } & \Rightarrow \delta \bar{X}_{k}=\Phi\left(t_{k}, t_{k-1}\right) \delta \bar{X}_{k-1} \\
\bar{y}(t)=\bar{h}(\bar{X}) & \Rightarrow & \text { Output Equation } & \Rightarrow \delta \bar{y}\left(t_{k}\right)=C\left(t_{k}\right) \delta \bar{X}\left(t_{k}\right)
\end{array}
$$

- Linearized Model

$$
\underbrace{\left[\begin{array}{c}
\delta \bar{R}_{k}^{\prime}-\bar{V}_{k}^{-} \delta t_{k} \\
\delta \bar{V}_{k}^{-}-\bar{a}_{k}^{-} \delta t_{k}
\end{array}\right]}_{\delta \bar{X}_{k}}=\underbrace{\left[\begin{array}{ll}
A_{k, k-1} & B_{k, k-1} \\
C_{k, k-1} & D_{k, k-1}
\end{array}\right]}_{\Phi\left(t_{k}, t_{k-1}\right)} \underbrace{\left[\begin{array}{c}
\delta \bar{R}_{k-1}^{\prime}-\bar{V}_{k-1}^{+} \delta t_{k-1} \\
\delta \bar{V}_{k-1}^{+\prime}-\bar{a}_{k-1}^{+} \delta t_{k-1}
\end{array}\right]}_{\delta \bar{X}_{k-1}}
$$

Traditional Level I Targeting

- Terminal State Correction
- Nullify $\delta \bar{R}_{k}$ by adjusting initial velocity and TOF

$$
\delta \bar{R}_{k}=\underbrace{\left[\begin{array}{ll}
B_{k, k-1} & \bar{V}_{k}
\end{array}\right]}_{M_{p}} \underbrace{\left[\begin{array}{c}
\delta \bar{V}_{k-1}^{+} \\
\delta t_{k}
\end{array}\right]}_{\bar{b}_{p}}
$$

- Terminal Constraint Correction
- Nullify $\delta \bar{y}_{k}$ by adjusting initial velocity and TOF

$$
\delta \bar{y}_{k}=C\left(t_{k}\right) \underbrace{\left[\begin{array}{cc}
B_{k, k-1} & \bar{V}_{k}^{-} \\
D_{k, k-1} & \bar{a}_{k}^{-}
\end{array}\right]}_{M_{c}} \underbrace{\left[\begin{array}{c}
\delta \bar{V}_{k-1}^{+} \\
\delta t_{k}
\end{array}\right]}_{\bar{b}_{c}}
$$

Targeting Entry from TEI-3 via Level I Corrections

Constraint	Initial Error
ALT (km)	5712.2887
FPA (deg)	-34.3866
LAT (deg)	-2.0963
LON (deg)	-75.7495

Entry Constraints	TEI-3 $\Delta V(\mathrm{~km} / \mathrm{s})$	Iterations	Comp. Time (sec)
ALT, FPA	0.8796	14	20.0938
ALT, LAT	0.8704	7	11.4063
ALT, LON	0.8796	7	10.9375
ALT, LAT, LON	0.8796	18	24.5000
ALT, FPA, LAT	0.8796	16	22.7031

Disadvantage of Level I Correction

- Can only efficiently target three constraints at a time
- Initial ΔV (TEI-3) may exceed available budget
- Inconsistent convergence over lunar cycle
- Level I process is extremely sensitive to:
- The quality of initial state
- The initial time of flight
- The Sun-Earth-Moon alignment

Level I correction inadequate for Orion entry targeting from TEI-3

Stylized Representation of Standard Level II Process

(a)

(b)

- Segment 1: Forward Propagation

$$
\left[\begin{array}{c}
\delta \bar{R}_{k}^{\prime}-\bar{V}_{k}^{-} \delta t_{k} \\
\delta \bar{V}_{k}^{-}-1 \bar{a}_{k}^{-} \delta t_{k}
\end{array}\right]=\left[\begin{array}{ll}
A_{k, k-1} & B_{k, k-1} \\
C_{k, k-1} & D_{k, k-1}
\end{array}\right]\left[\begin{array}{c}
\delta \bar{R}_{k-1}^{\prime}-\bar{V}_{k-1}^{+} \delta t_{k-1} \\
\delta \bar{V}_{k-1}^{+}-\bar{a}_{k-1}^{+} \delta t_{k-1}
\end{array}\right]
$$

- Segment 2: Backward Propagation

$$
\left[\begin{array}{c}
\delta \bar{R}_{k}^{\prime}-\bar{V}_{k}^{+} \delta t_{k} \\
\delta \bar{V}_{k}^{+\prime}-\bar{a}_{k}^{+} \delta t_{k}
\end{array}\right]=\left[\begin{array}{cc}
A_{k, k+1} & B_{k, k+1} \\
C_{k, k+1} & D_{k, k+1}
\end{array}\right]\left[\begin{array}{c}
\delta \bar{R}_{k+1}^{\prime}-\bar{V}_{k+1}^{-} \delta t_{k+1} \\
\delta \bar{V}_{k+1}^{-}-\bar{a}_{k+1} \delta t_{k+1}
\end{array}\right]
$$

Summary of Constrained Level II Process

- Velocity Continuity Constraints $(1<k<N)$

$$
\delta \Delta \bar{V}_{k}=\underbrace{\left[\begin{array}{llllll}
\frac{\partial \Delta \bar{V}_{k}}{\partial R_{k-1}} & \frac{\partial \Delta \bar{V}_{k}}{\partial t_{k-1}} & \frac{\partial \Delta \bar{V}_{k}}{\partial R_{k}} & \frac{\partial \Delta \bar{V}_{k}}{\partial t_{k}} & \frac{\partial \Delta \bar{V}_{k}}{\partial R_{k+1}} & \frac{\partial \Delta \bar{V}_{k}}{\partial t_{k+1}}
\end{array}\right]}_{M} \underbrace{\left[\begin{array}{c}
\delta \bar{R}_{k-1} \\
\delta t_{k-1} \\
\delta \bar{R}_{k} \\
\delta t_{k} \\
\delta t_{k+1} \\
\delta t_{k+1}
\end{array}\right]}_{\bar{b}}
$$

- Additional Constraints $(\forall k \in[1, N])$

$$
\left.\begin{array}{rc}
\delta \alpha_{k j}= & \left(\frac{\partial \alpha_{k j}}{\partial \bar{V}_{k}^{-}} \frac{\partial \bar{V}_{k}^{-}}{\partial \bar{R}_{k-1}}\right) \delta \bar{R}_{k-1}+ \\
+\left(\frac{\partial \alpha_{k j}}{\partial R_{k}}+\frac{\partial \alpha_{k j}}{\partial \bar{V}_{k}^{+}} \frac{\partial \bar{V}_{k}^{+}}{\delta \bar{R}_{k}}+\frac{\partial \alpha_{k j}}{\partial \bar{V}_{k}^{-}} \frac{\partial \bar{V}_{k}^{-}}{\delta R_{k}}\right) \delta \bar{R}_{k}+\left(\frac{\partial \alpha_{k j}}{\partial t_{k}}+\frac{\partial \alpha_{k j}}{\partial \bar{V}_{k}^{+}} \frac{\partial \bar{V}_{k}^{+}}{\partial t_{k}}+\frac{\partial \bar{V}_{k j}^{-}}{\partial t_{k-1}} \frac{\partial \bar{V}_{k}^{-}}{\partial t_{k}}\right) \delta t_{k-1} \\
& +\left(\frac{\partial \alpha_{k j}}{\partial \bar{V}_{k}^{+}} \frac{\partial \bar{V}_{k}^{+}}{\partial R_{k+1}}\right) \delta \bar{R}_{k+1}+
\end{array}\left(\frac{\partial \alpha_{k j}}{\partial \bar{V}_{k}^{+}} \frac{\partial \bar{V}_{k}^{+}}{\partial t_{k+1}}\right) \delta t_{k+1}\right)
$$

Level II Correction via Minimum Norm Solution

$$
\begin{aligned}
& {\left[\begin{array}{c}
\vdots \\
\delta \Delta \bar{V}_{k} \\
\vdots \\
\delta \alpha_{k j} \\
\vdots
\end{array}\right]}
\end{aligned} \underbrace{\tilde{M}}_{\frac{\partial \alpha}{\partial \tilde{\alpha}}}\left[\begin{array}{c}
\delta \bar{R}_{1} \\
\delta t_{1} \\
\vdots \\
\delta \bar{R}_{k-1} \\
\delta t_{k-1} \\
\delta \bar{R}_{k} \\
\delta t_{k} \\
\delta \bar{R}_{k+1} \\
\delta t_{k+1} \\
\vdots \\
\delta \bar{R}_{N} \\
\delta t_{N}
\end{array}\right] .\left[\begin{array}{rl}
{\left[\begin{array}{c}
{\left[\begin{array}{l}
0
\end{array}\right.} \\
\tilde{b}=\tilde{M}^{T}\left(\tilde{M} \tilde{M}^{T}\right)^{-1} \delta \tilde{\alpha}
\end{array}\right.}
\end{array}\right.
$$

Longitude, Flight Path Angle and Azimuth

$\alpha_{k \lambda}=\lambda_{k}-\lambda_{d e s} \quad=\tan ^{-1}\left(\frac{\bar{R}_{k}^{T} \hat{y}_{G}}{\bar{R}_{k}^{T} \hat{x}_{G}}\right)-\theta_{g 0}-\omega_{e}\left(t_{k}-t_{0}\right)-\lambda_{d e s}$
$\alpha_{k \gamma}=\sin \gamma_{k}-\sin \gamma_{d e s}=\frac{\bar{R}_{k}^{T} \bar{V}_{k}^{-}}{\left|\bar{R}_{k}\right|\left|\bar{V}_{k}^{-}\right|}-\sin \gamma_{d e s}$
$\alpha_{k \chi}=\sin \chi_{k}-\sin \chi_{d e s}=\frac{\left(V_{k}^{-}\right)^{T} \hat{e}_{k}}{\sqrt{\left(\left(V_{k}^{-}\right)^{T} \hat{n}_{k}\right)^{2}+\left(\left(V_{k}^{-}\right)^{T} \hat{e}_{k}\right)^{2}}}-\sin \chi_{d e s}$

Entry Constraints: Coordinate Systems

- $\hat{x}_{L}=\hat{r}_{k} \Rightarrow$ radial unit vector
- $\hat{y}_{L}=\hat{e}_{k} \Rightarrow$ unit vector due east
- $\hat{z}_{L}=\hat{n}_{k} \Rightarrow$ unit vector due north

$$
\begin{gathered}
\hat{r}_{k}=\hat{r}_{k}\left(\bar{R}_{k}\right)=\frac{\bar{R}_{k}}{R_{k}} \\
\hat{e}_{k}=\hat{e}_{k}\left(\bar{R}_{k}\right)=\left(\frac{\hat{z}_{G} \times \hat{r}_{k}}{\left|\hat{z}_{G} \times \hat{r}_{k}\right|}\right)=\left(\frac{\hat{z}_{G} \times \bar{R}_{k}}{\left|\hat{z}_{G} \times \bar{R}_{k}\right|}\right) \\
\hat{n}_{k}=\hat{n}_{k}\left(\bar{R}_{k}\right)=\hat{r}_{k} \times\left(\frac{\hat{z}_{G} \times \bar{R}_{k}}{\left|\hat{z}_{G} \times \bar{R}_{k}\right|}\right)=\frac{1}{\left|\bar{R}_{k}\right|\left|\hat{z}_{G} \times \bar{R}_{k}\right|}\left(\bar{R}_{k} \times\left(\hat{z}_{G} \times \bar{R}_{k}\right)\right)
\end{gathered}
$$

Individual Maneuver Constraint

- ΔV_{k} Constraint

$$
\alpha_{k \Delta V}=\sqrt{\Delta \bar{V}_{k}^{T} \Delta \bar{V}_{k}}-\Delta V_{k_{\text {desired }}}=\sqrt{\left(\bar{V}_{k}^{+}-\bar{V}_{k}^{-}\right)^{T}\left(\bar{V}_{k}^{+}-\bar{V}_{k}^{-}\right)}-\Delta V_{k_{\text {desired }}}
$$

- Constraint Partials

$$
\begin{aligned}
& \frac{\partial \alpha_{k \Delta V}}{\partial \bar{V}_{k}^{+}}=\frac{\bar{V}_{k}^{+T}}{\left|\bar{V}_{k}^{+}\right|} \\
& \frac{\partial \alpha_{k \Delta V}}{\partial \bar{V}_{k}^{-}}=-\frac{\bar{V}_{k}^{-}}{\left|\bar{V}_{k}^{-}\right|}
\end{aligned}
$$

Total ΔV Constraint

$$
\delta \Delta V=\delta \sum_{k=1}^{n \Delta V} \Delta V_{k}=\sum_{k=1}^{n_{\Delta V}} \delta \Delta V_{k}
$$

- Individual Maneuver Constraint

$$
\begin{aligned}
\delta \Delta V_{k} & =\frac{\partial \Delta V_{k}}{\partial \bar{R}_{k-1}} \delta \bar{R}_{k-1}+\frac{\partial \Delta V_{k}}{\partial t_{k-1}} \delta t_{k-1} \\
& +\frac{\partial \Delta V_{k}}{\partial \bar{R}_{k}} \delta \bar{R}_{k}+\frac{\partial \Delta V_{k}}{\partial t_{k}} \delta t_{k} \\
& +\frac{\partial \Delta V_{k}}{\partial \bar{R}_{k+1}} \delta \bar{R}_{k+1}+\frac{\partial \Delta V_{k}}{\partial t_{k+1}} \delta t_{k+1}
\end{aligned}
$$

- Total ΔV constraint

$$
\begin{aligned}
\delta \Delta V & =\sum_{k=1}^{n_{\Delta V}} \frac{\partial \Delta V_{k}}{\partial \bar{R}_{k-1}} \delta \bar{R}_{k-1}+\frac{\partial \Delta V_{k}}{\partial t_{k-1}} \delta t_{k-1} \\
& +\frac{\partial \Delta V_{k}}{\partial \bar{R}_{k}} \delta \bar{R}_{k}+\frac{\partial \Delta V_{k}}{\partial t_{k}} \delta t_{k} \\
& +\frac{\partial \Delta V_{k}}{\partial \bar{R}_{k+1}} \delta \bar{R}_{k+1}+\frac{\partial \Delta V_{k}}{\partial t_{k+1}} \delta t_{k+1}
\end{aligned}
$$

Initial Guess

- Identifying a suitable end-to-end initial guess not trivial
- n-Body sensitivities impact success of TEI-3 for precision entry
- TEI ΔV 's relative location and timing impact targeting success
- A 3-burn TEI not always the best option
- Convergence of any iterative process is affected by
- An initial ΔV that significantly exceeds the budget
- Large position discontinuities in the startup arc
- Significant constraint violations at entry \Rightarrow constraint coupling

Initial Guess Generation

- Employ 2-Body $\mathbb{8}$-centered Approx. for first two TEI maneuvers
- Propagate results in $\odot-\oplus-৫$ model up to the TEI-3 point
- Method 1 (M1): Use level I from TEI-3 to entry
- Limited success provided no. of constraints is less than 3
- Resulting initial guess is feasible
- Resulting ΔV can significantly exceed available budget
- Convergence is not consistent enough for onboard determination
- Method 2 (M2): Use level II targeter from TEI-3 to entry
- Resulting initial guess is feasible and meets all entry constraints
- Significantly reduces the overall computational time required

Summary of the 2-level Targeter Results

- Initial Guess Information (ALT/LAT/LON)

Case	$\Delta V(\mathrm{~km} / \mathrm{s})$	Iter.	Time(s)
1	1.16	9	134.5
2	1.16	9	134.5
3	1.21	4	32.6
4	1.28	0	14.3
5	2.3	25	364

- Sample Level II Corrector Results

Active Constraints	Iter.	Time (s)	ΔV_{1}	ΔV_{2}	ΔV_{3}	ΔV_{4}	ΔV
M3: $h, \phi, \theta, \gamma, \Delta V \leq 0.9(\mathrm{~km} / \mathrm{s})$	10	$4 \mathrm{~m} \quad 4.5 \mathrm{~s}$.609	.044	.248	0	.900
M3: h, ϕ, θ, γ	4	2 m .9 .9 s	.608	.057	.460	.105	.124
M3: h, γ	3	$1 \mathrm{~m} \mathrm{31.4s}$.608	.057	.545	0	.122
M2: h, γ	13	6 m 11.2 s	.603	.106	.541	0	.125
M3: $h, \phi, \theta, \gamma, \mathrm{Az}, \Delta V \leq 1.35(\mathrm{~km} / \mathrm{s})$	15	6 m 11.0 s	.629	.071	.389	.261	.135

Level I, Level II, and Optimal Solutions Over the Lunar Cycle
 - Target: Altitude, Latitude, Longitude, Total ΔV
 - M2 (Level I) Initial Guess Only

Table: ΔV Values for Unconstrained L-II (km / s)

Cycle Day	TEI-1	TEI-2	TEI-3	Total
0	0.6078	0.0580	0.6716	1.3374
7	0.6098	0.1190	1.1396	1.8684
14.5	0.6081	0.0599	0.7091	1.3771
21	0.6080	0.0244	1.7496	2.3820
27	0.6078	0.0579	0.6887	1.3544

Table: ΔV Values for Constrained L-II (km/s)

Cycle Day	TEI-1	TEI-2	TEI-3	Total
0	0.6075	0.0594	0.5330	1.20
7	0.6055	0.1082	0.4863	1.20
14.5	0.6076	0.0730	0.5195	1.20
21	0.6076	0.1075	0.4849	1.20
27	0.6076	0.0525	0.5398	1.20

Performance Comparison:

2-level Targeter vs. NLP Algorithm

TLC Case No.	2-Level	NLP
M3: $h, \phi, \theta, \gamma, \Delta V \leq 0.9(\mathrm{~m} / \mathrm{s})$	6 min 19 sec	14 min 48 sec
M3: $h, \phi, \theta, \gamma, \mathrm{Az}, \Delta V \leq 1.35(\mathrm{~m} / \mathrm{s})$	12 min 15 sec	22 min 11 sec

Incorporating Finite Burns in a Level II Process

Process requires augmented state and variational equations

- Level I Targeter
- Fixed parameters: Initial State, TOF, Propellant Flow Rate
- Control variables: Thrust direction and Burn duration
- Level II Targeter
- Control variables: Position and time of all patch states
- Partial derivatives of \bar{V}^{+}and \bar{V}^{-}change
- Constraint Partials are unchanged relative to Impulsive Targeter
- Total Cost Constraint
- Different ΔV equation and control variables

$$
\Delta V_{k}=-I_{s p} g_{0} \ln \left(1-\frac{\dot{m}_{g_{k}} \Delta t_{\text {burn }}}{m_{k}}\right)
$$

- Associated explicit constraint partials must be reformulated
- $\sum_{T E I=1}^{3} \Delta V_{T E I}$ variational equation still applicable

Conclusions

- Constraints for LON, AZ, and ΔV developed and tested
- Traditional L1 targeting alone not suitable for Orion TEI
- 2-Level corrector \Rightarrow efficient and viable option for TEI targeting
- Superior computational performance relative to NLP process
- Computational improvements with enhanced IG algorithm
- Startup arc algorithm should account for constraint coupling
- Finite burn targeter developed and successfully tested

Backup Slides

Longitude Constraint Geometry

$$
\cos \lambda_{k}=\cos \left(\theta_{k}-\theta_{g 0}-\omega_{e} \Delta t_{k}\right)=\cos \theta_{k} \cos \left(\theta_{g 0}+\omega_{e} \Delta t\right)+\sin \theta_{k} \sin \left(\theta_{g 0}+\omega_{e} \Delta t\right)
$$

$$
\begin{aligned}
\cos \theta_{k} & =\frac{\bar{R}_{k}^{T} \hat{x}_{G}}{\sqrt{\left(\bar{R}_{k}^{T} \hat{x}_{G}\right)^{2}+\left(\bar{R}_{k}^{T} \hat{y}_{G}\right)^{2}}} \\
\sin \theta_{k} & =\frac{\bar{R}_{k}^{T} \hat{y}_{G}}{\sqrt{\left(\bar{R}_{k}^{T} \hat{x}_{G}\right)^{2}+\left(\bar{R}_{k}^{T} \hat{y}_{G}\right)^{2}}}
\end{aligned}
$$

Longitude Constraint Partials

- Longitude Partials

$$
\begin{gathered}
\frac{\partial \cos \lambda_{k}}{\partial \bar{R}_{k}}=\frac{\partial \cos \theta_{k}}{\partial \bar{R}_{k}} \cos \left(\theta_{g 0}+\omega_{e} \Delta t\right)+\frac{\partial \sin \theta_{k}}{\partial \bar{R}_{k}} \sin \left(\theta_{g 0}+\omega_{e} \Delta t\right) \\
\frac{\partial \cos \lambda_{k}}{\partial t_{k}}=\omega_{e} \sin \left(\theta_{k}-\theta_{g 0}-\omega_{e} \Delta t\right) \\
\frac{\partial \cos \lambda_{k}}{\partial t_{k}}=-\omega_{e} \cos \theta_{k} \sin \left(\theta_{g 0}+\omega_{e} \Delta t\right)+\omega_{e} \sin \theta_{k} \cos \left(\theta_{g 0}+\omega_{e} \Delta t\right)
\end{gathered}
$$

- Right Ascension Partials

$$
\begin{aligned}
& \frac{\partial \cos \theta_{k}}{\partial \bar{R}_{k}}=\frac{\hat{x}_{G}^{T} \sqrt{\left(\bar{R}_{k}^{T} \hat{x}_{G}\right)^{2}+\left(\bar{R}_{k}^{T} \hat{y}_{G}\right)^{2}}-\left(\bar{R}_{k}^{T} \hat{x}_{G}\right) \frac{\left(\left(\bar{R}_{k}^{T} \hat{x}_{G} \hat{x}_{G}^{T}+\left(\bar{R}_{k}^{T} \hat{y}_{G}\right) \hat{y}_{G}^{T}\right)\right.}{\sqrt{\left(\bar{R}_{k}^{T} \hat{x}_{G}\right)^{2}+\left(\bar{R}_{k}^{T} \hat{y}_{G}\right)^{2}}}}{\left(\bar{R}_{k}^{T} \hat{x}_{G}\right)^{2}+\left(\bar{R}_{k}^{T} \hat{y}_{G}\right)^{2}} \\
& \frac{\partial \sin \theta_{k}}{\partial \bar{R}_{k}}=\frac{\hat{y}_{G}^{T} \sqrt{\left(\bar{R}_{k}^{T} \hat{x}_{G}\right)^{2}+\left(\bar{R}_{k}^{T} \hat{y}_{G}\right)^{2}}-\left(\bar{R}_{k}^{T} \hat{y}_{G}\right) \frac{\left(\left(\bar{R}_{k}^{T} \hat{x}_{G}\right) \hat{x}_{G}^{T}+\left(\bar{R}_{k}^{T} \hat{y}_{G} \hat{y}_{G}^{T}\right)\right.}{\sqrt{\left(\bar{R}_{k}^{T} \hat{x}_{G}\right)^{2}+\left(\bar{R}_{k}^{T} \hat{y}_{G}\right)^{2}}}}{\left(\bar{x}_{G}\right)^{2}+\left(\bar{R}_{k}^{T} \hat{y}_{G}\right)^{2}}
\end{aligned}
$$

Flight Path Azimuth Constraint Partials

$$
\begin{aligned}
& \frac{\partial\left(\sin \chi_{k}\right)}{\partial \bar{V}_{k}^{-}}=\frac{\left(\hat{e}_{k}^{T}\right) \sqrt{\left(\left(V_{k}^{-}\right)^{T} \hat{n}_{k}\right)^{2}+\left(\left(V_{k}^{-}\right)^{T} \hat{e}_{k}\right)^{2}-\left[\left(V_{k}^{-}\right)^{T} \hat{e}_{k}\right]\left[\frac{\left(\left(V_{k}^{-}\right)^{T} \hat{n}_{k}\right) \hat{n}_{k}^{T}+\left(\left(V_{k}^{-}\right)^{T} \hat{e}_{k}\right)^{\hat{e}_{k}^{T}}}{\left.\sqrt{\left(\left(V_{k}^{-}\right)^{T}\right.} \hat{n}_{k}\right)^{2}+\left(\left(V_{k}^{-}\right)^{T} \hat{e}_{k}\right)^{2}}\right.}}{\left(\left(V_{k}^{-}\right)^{T} \hat{n}_{k}\right)^{2}+\left(\left(V_{k}^{-}\right)^{T} \hat{e}_{k}\right)^{2}}
\end{aligned}
$$

Coordinate Frame Partials

$$
\begin{gathered}
\frac{\partial \hat{e}_{k}}{\partial \bar{R}_{k}}=\left(I-\frac{1}{\left|Z_{\times} \bar{R}_{k}\right|^{2}}\left(Z_{\times} \bar{R}_{k}\right)\left(Z_{\times} \bar{R}_{k}\right)^{T}\right) \frac{Z_{\times}}{\left|Z_{\times} \bar{R}_{k}\right|} \\
\frac{\partial \hat{n}}{\partial \bar{R}_{k}}=\frac{1}{\left|\bar{R}_{k}\right|^{2}\left|Z_{\times} \bar{R}_{k}\right|^{2}}\left\{\begin{array}{l}
\left|\bar{R}_{k}\right|\left|Z_{\times} \bar{R}_{k}\right|\left[2 \hat{z}_{G} \bar{R}_{k}^{T}-\bar{R}_{k} \hat{z}_{G}^{T}-\left(\bar{R}_{k}^{T} \hat{z}_{G}\right) I\right. \\
-\left(\hat{z}_{G}\left(\bar{R}_{k}^{T} \bar{R}_{k}\right)-\bar{R}_{k}\left(\bar{R}_{k}^{T} \hat{z}_{G}\right)\right)\left[\left(\frac{\left|Z_{\times} \bar{R}_{k}\right|}{\left|\bar{R}_{k}\right|}\right) \bar{R}_{k}^{T}+\frac{\left|\bar{R}_{k}\right|}{\left|Z_{\times} \bar{R}_{k}\right|}\left(Z_{\times} \bar{R}_{k}\right)^{T} Z_{\times}\right]
\end{array}\right\} \\
Z_{\times}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Finite Burn Targeter: Variational Equations

- Burn subsegment
- Augment state equations: $\dot{m}=-\dot{m}_{g}, \ddot{m}_{g}=0, \dot{\bar{u}}=\overline{0}$
- Augment variational equations

$$
\left[\begin{array}{c}
\delta \bar{R}_{T}-\bar{V}_{T}^{-} \delta t_{T} \\
\delta \bar{V}_{T}^{-}-\bar{a}_{T}^{-} \delta t_{T} \\
\delta m_{T}^{-}+\dot{m}_{g_{T}}^{-} \delta t_{T} \\
\delta \dot{m}_{g_{T}}^{-}-\ddot{m}_{g_{\delta}}^{-} \delta t_{T} \\
\delta \bar{u}_{T}^{-}-\dot{u}_{T}^{-} \delta t_{T}
\end{array}\right]=
$$

$$
\left[\begin{array}{ccccc}
A_{T, k-1} & B_{T, k-1} & E_{T, k-1} & F_{T, k-1} & G_{T, k-1} \\
C_{T, k-1} & D_{T, k-1} & H_{T, k-1} & I_{T, k-1} & J_{T, k-1} \\
K_{T, k-1} & L_{T, k-1} & M_{T, k-1} & N_{T, k-1} & O_{T, k-1} \\
P_{T, k-1} & Q_{T, k-1} & R_{T, k-1} & S_{T, k-1} & T_{T, k-1} \\
U_{T, k-1} & V_{T, k-1} & W_{T, k-1} & X_{T, k-1} & Y_{T, k-1}
\end{array}\right]\left[\begin{array}{c}
\delta \bar{R}_{k-1}-\bar{V}_{k-1}^{+} \delta t_{k-1} \\
\delta \bar{V}_{k-1}^{+}-\bar{a}_{k-1}^{+} \delta t_{k-1} \\
\delta m_{k-1}^{+}+\dot{m}_{g_{k-1}}^{+} \delta t_{k-1} \\
\delta \dot{m}_{g_{k-1}}^{+}-\ddot{m}_{g_{k-1}}^{+} \delta t_{k-1} \\
\delta \bar{u}_{k-1}^{+}-\dot{\bar{u}}_{k-1}^{+} \delta t_{k-1}
\end{array}\right]
$$

- Coast subsegment

$$
\left[\begin{array}{c}
\delta \bar{R}_{k}-\bar{V}_{k}^{-} \delta t_{k} \\
\delta \bar{V}_{k}^{-}-\bar{a}_{k}^{-} \delta t_{k}
\end{array}\right]=\left[\begin{array}{ll}
A_{k, T} & B_{k, T} \\
C_{k, T} & D_{k, T}
\end{array}\right]\left[\begin{array}{c}
\delta \bar{R}_{T}-\bar{V}_{T}^{+} \delta t_{T} \\
\delta \bar{V}_{T}^{+}-\bar{a}_{T}^{+} \delta t_{T}
\end{array}\right]
$$

Level I Targeting: Finite Burn

- 1 segment $=1$ thrust sub-arc +1 coast sub-arc
- Fixed Initial parameters:
- \bar{X}_{k-1}, initial state vector
- $\dot{m}_{g_{k}}$, propellant mass flow rate over burn arc
- t_{k}, total time-of-flight
- Control variables
- \bar{u}_{k-1}, inertial thrust direction (assumed constant over burn arc)
- t_{T}, duration of burn sub-segment
- Target quantities
- \bar{R}_{k}, inertial position vector

Level I Finite Burn Correction

- Position Variational Equation

$$
\delta \bar{R}_{k}=\underbrace{\left[\begin{array}{ll}
\left(A_{k, T} G_{T, k-1}+B_{k, T} J_{T, k-1}\right) & \left(A_{k, T} \bar{V}_{T}^{+}+B_{k, T} \bar{a}_{T}^{+}\right)
\end{array}\right]}_{M_{f_{b}}}\left[\begin{array}{c}
\delta \bar{u}_{k-1}^{+} \\
\delta t_{T}
\end{array}\right]
$$

- Suggested Correction (Minimum Norm Solution)

$$
\left[\begin{array}{c}
\delta \bar{u}_{k-1}^{+} \\
\delta t_{T}
\end{array}\right]=\tilde{M}_{f_{b}}^{T}\left(\tilde{M}_{f_{b}} \tilde{M}_{f_{b}}^{T}\right)^{-1} \delta \bar{R}_{k}
$$

Level II Finite Burn Correction

- Finite burn and impulsive Level II correction process is similar
- Control variables are the position and time of each patch state
- Explicit constraint partials are unchanged
- Only velocity partials, \bar{V}^{+}and \bar{V}^{-}, are affected due to modified variational equations. Otherwise, the process of identifying these partials is exactly the same as that employed in the impulsive targeter
- Total Cost Constraint
- Different ΔV equation and control variables

$$
\begin{equation*}
\Delta V_{k}=-I_{s p} g_{0} \ln \left(1-\frac{\dot{m}_{g_{k}} \Delta t_{b u r n}}{m_{k}}\right) \tag{1}
\end{equation*}
$$

for $\Delta t_{\text {burn }}=t_{T}-t_{k}$.

- $\sum_{T E I=1}^{3} \Delta V_{T E I}$ variational equation still applicable
- Associated explicit constraint partials must be reformulated

Example: Finite Burn Level II Targeter

- Targets: ALT, LAT, LON, FPA, $\Delta V<1.2 \mathrm{~km} / \mathrm{sec}$

Figure: (a) - Initial Guess 1

Figure: (b) - Initial Guess 2

Burn	Figure (a)	Figure (b)
TEI-1	302.3305 s	324.5929 s
TEI-2	74.7421 s	27.2148 s
TEI-3	159.6147 s	118.6056 s
TEI-4	N/A	50.9205 s

- Fig (a): ΔV of $1.1108 \mathrm{~km} / \mathrm{s}, 4$ iterations, 152.1875 sec CPU Time
- Fig (b): ΔV of $1.0731 \mathrm{~km} / \mathrm{s}, 5$ iterations, 271.2344 sec CPU Time

