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Finite Thrust Maneuvers
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I. Abstract

In earlier investigations, the adaptation and implementation of a modified two-level corrections (or tar-
geting) process as the onboard targeting algorithm for the Trans-Earth Injection phase of Orion is presented.
The objective of that targeting algorithm is to generate the times of ignition and magnitudes of the required
maneuvers such that the desired state at entry interface is achieved. In an actual onboard flight software
implementation, these times of ignition and maneuvers are relayed onto Flight Control for command and
execution. Although this process works well when the burn durations or burn arcs are small, this might not
be the case during a contingency situation when lower thrust engines are employed to perform the maneu-
vers. Therefore, a new model for the two-level corrections process is formulated here to accommodate finite
burn arcs. This paper presents the development and formulation of the finite burn two-level corrector, used
as an onboard targeting algorithm for the Trans-Earth Injection phase of Orion. A performance comparison
between the impulsive and finite burn models is also presented. The present formulation ensures all entry
constraints are met, without violating the available fuel budget, while allowing for low-thrust scenarios with
long burn durations.

II. Introduction

Under nominal operational conditions, the Crew Module’s (CM) 33,361 N main engine performs the
3-burn Trans-Earth Injection (TEI) sequence. However, the spacecraft must also have the ability to

autonomously target and execute the maneuvers to return the crew safely to Earth using the backup auxiliary
engines. Since the total thrust of these eight (8) auxiliary engines is 4,448 N, the burn durations are naturally
much longer. For instance, the baseline TEI-1 maneuver, implemented by the main engine, lasts roughly
5.5 minutes. In contrast, if TEI-1 is executed using solely the auxiliary engines, the duration increases to
55 minutes. Due to these extended burn durations, it is no longer accurate to approximate each maneuver
as impulsive. Thus, it is necessary to develop an autonomous targeting algorithm that allows maneuvers of
finite duration during a main engine failure scenario.

Autonomy, for the Orion trans-Earth phase, refers to the ability to (a) automatically identify a suitable
startup arc1–3 and (b) use that solution to successfully target the specified entry constraints within the fuel
budget available at the time.4 The first step, the identification of the startup arc, can be accomplished in one
of two ways. The simplest and most common approach is to generate a database of optimal solutions over a
time interval of interest and use those as “nominal” departure scenarios at the desired time.1, 2 The targeting
process then reconverges the solution as needed to account for discrepancices in the timing and state. More
recent methods3 consider the use of infeasible solutions (i.e. with state and time discontinuities) based on
a series of two-body approximations. Both methods are suitable for the generation of an initial guess in
this case. However, from a historical perspective, the database method has been successfully employed since
the Apollo era, though more commonly from a ground operations perspective. In an onboard determination
scenario, the database method allows for reduced computation time when the database includes sample
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optimal solutions at an adequate rate. Problems that are time sensitive, such as the Orion TEI sequence,
require an increased number of samples, roughly one every 12 hours. The examples presented here employ the
database approach to extract an initial guess for the subsequent targeting process. The initial guess supplied
to the targeting process does not meet the specified path constraints, and sometimes the solution may not
meet the cost constraint (i.e.fuel available). The solutions supplied are also based on the availability of the
main engine. As such, in a main engine failure scenario, the quality of the initial guess supplied degrades
significantly. The present study is strictly focused on the second stage of the autonomous targeting process,
re-targeting the entry interface state using only the resources available onboard at the time (i.e. fuel left
and operational engine) based on the initial guess supplied.

Significant research has been done on the subject of optimal finite thrust guidance.5–8 Among these
methods, nonlinear programming is commonly employed in solving optimal and nonlinear targeting prob-
lems.7, 8 The process of identifying, numerically, optimal or feasible solutions via nonlinear programming is
basically the same. The main difference is that optimization problems require a cost index be specified and
feasibility problems, such as constrained nonlinear targeting, do not. Of course, the identification of feasible
solutions that meet all the specified constraints is also accomplished through linear targeting methods.4, 9

These classical methods employ the state transition matrix to compute the necessary constraint gradients
during the corrections process. More recent studies10 employ a similar approach to compute “analytic”
derivatives for implementation in a nonlinear programming process for trajectory optimization. Naturally, a
nonlinear process is preferred when the computational resources are available. However, for onboard deter-
mination, the optimality of a solution is not as critical as the availability of a feasible solution. In this case,
the inherent simplicity of linear targeting algorithms leads to a reduced cost in flight software development
and validation.

Earlier studies consider optimization methods for use during onboard targeting processes. These include
the use of a simplified adaptive guidance law for targeting relative to a predetermined nominal trajectory11

or implementation of an efficient sequential gradient-restoration algorithm employing multiple subarcs.12

These studies, though, are tested for orbital transfer and rendezvous, which do not have the third body
effects that so greatly impact the mission in this study. The algorithm presented here is a modified two-
level corrector,4, 9, 13–16 employed during the design of the Genesis trajectory,9, 14, 15 that allows for the
incorporation of finite burn maneuvers.

A two-level targeter (or corrector) is primarily based on linear system theory; it uses a time-varying
linearized dynamical model and a minimum norm solution to compute solution updates. These linear
updates are implemented in the nonlinear system in an iterative corrections process that repeats until a
feasible solution is identified in the vicinity of the startup arc. The two-level process offers several advantages:
because the updates are based on the linearized model, it is numerically simple and computationally efficient.
It does not require knowledge of a nominal solution, relying instead solely on the current path of the vehicle.
The two-level correction process also allows for straightforward addition of path constraints, both those at
specific points (i.e. entry interface)4, 9, 15, 16 and those applied over the trajectory as a whole.16 However, it
was originally designed to use impulsive maneuvers as control variables. In this investigation, the classical
impulsive two-level corrections process4 is modified to incorporate accurate thruster models to allow for
burns of finite duration while still retaining the structure and simplicity of the original algorithm so that it is
suitable for onboard calculations. The theoretical elements of the formulation are presented next, followed by
a series of performance comparisons between the impulsive and finite burn targeters. For all the comparisons,
the same startup arc (based on impulsive maneuvers) and the same entry targets are used.

III. Finite Burn Targeting Algorithm

The basic structure of the Level II process in a two-level targeter that incorporates finite burns is the same
as that of the impulsive two-level targeter.4 First, both algorithms treat the position and times of each patch
point as control variables. Furthermore, both algorithms employ a minimum norm solution in computing
the updates to these control variables. The differences, which subsequently lead to added complexity and
computational overhead, stem from the increased dimensionality of the state vector associated with any burn
arc. Due to the interdependency between these state variables, the partial derivatives are also more complex
in nature than those of the impulsive targeter.

Traditionally, an impulsive two-level targeter requires a startup arc represented by a series of “patch
states.” These states, also termed “patch points,” are selected by the user as representative waypoints along
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the trajectory. The user supplies the time and state at each patch point, tk and x+
k = [ rk v+

k
] for

k = 1, · · · , N , respectively. Each state x+
k is then numerically integrated forward over an interval [tk, tk+1],

for k = 1, · · · , N − 1. The integrated state, at time tk+1, is recorded as x−
k+1. This is to allow for the

possibility that the user supplied velocity at that point, v+
k+1, may not coincide with that identified during

the propagation, v−
k+1. Such differences may arise due to a previously scheduled impulsive maneuver at

that point or to differences in the models used (two- vs. three-body). This is graphically illustrated in
Figure 1(a)-1(b). Thus, a Level I process leads to a trajectory that is continuous in position but, potentially,
discontinuous in velocity at certain points. This is rectified by incorporating a Level II correction.

The Level II process adjusts the positions and times of each free patch state to drive any of the interior
velocity discontinuities to zero, as well as meet any additional user specified constraints. This is graphically
illustrated in Figure 2(a)-2(c). Figure 2(a) is representative of the scenario in Figure 1(b). Figure 2(b)
illustrates how the patch state positions, and potentially the associated times, have been adjusted by the
Level II process. Subsequently, since the corrections are linear in nature,4 propagation of the updated patch
states in the nonlinear system can lead to a trajectory that is, once again, discontinuous in position. The Level
I process is sequentially applied once more to generate an updated trajectory that is continuous in position.
The combined Level I and Level II processes are generally repeated until the user specified tolerances are met
for position and velocity continuity, as well as any additional constraints specified. Additional constraints
may include velocity continuity at all patch states except where maneuvers are allowed, and interior or
boundary constraints, among others.4

It is important to note that the initial guess need not be feasible. That is, position/velocity/time
continuity is not necessarily required for the targeter to successfully converge. However, since the overall
process is based on linear systems theory, the initial discontinuities can impact the computation time. An
initial guess with large discontinuities leads to an increased number of iterations. Naturally, an initial guess
with absurdly large discontinuities can lead to non-convergence. Of course, a low quality initial guess can
have a negative impact on both linear and nonlinear targeting algorithms. However, linear targeters will
naturally be more sensitive to large errors. Developing a good initial guess is a problem within itself and
highly dependent on the particular application of interest.

Provided a suitable initial guess is available, the formulation of the impulsive two-level targeter4 is
generalized in nature. As such, it can be applied to any problem that employs impulsive corrections. However,
problems that employ continuous control of any kind cannot benefit from this approach, at least not in
its original form. The key to transitioning the methodology to address problems that include segments of
continuous control is to formulate the control variables in terms of constant parameters that can be adjusted.
For example, if the thrust vector is inertially fixed, and the engine only allows fixed thrust or acceleration
levels, the control variables become the time of ignition, and the direction and duration of the burn. Under
similar conditions, if linear steering is allowed, the control variables become the time of ignition, the duration
of the burn, the initial burn direction, and the rate of change of the burn direction.

In the classical impulsive two-level targeter, the Level I process employed ∆v’s at the start of each
segment to achieve position continuity. These ∆v’s, and – if desired – the time at which the maneuvers are
executed, are control variables in that case. In a Finite burn process, the Level I control variables include the
ignition time, burn time, and thrust vector parameters. The structure of the finite burn two-level targeter
is subsequently developed and presented here.

A. Level I Process

As previously discussed, the application of a Level I process4 to the orbital transfer problem typically involves
the identification of an arc that spatially connects two points in space. This is the n-body equivalent of a
two-body Lambert targeter, except the time of flight is not necessarily fixed or pre-specified. This ultimately
reduces to some form of linear differential correction where ∆v’s are adjusted to meet the specified goals.
In the present study, however, impulsive maneuvers do not adequately model the true nature of the burn
implementation. Thus, the Level I process traditionally employed in the two-level targeter4 requires some
modification to incorporate finite burn arcs.

Consider a segment defined by patch points k − 1 and k, as shown in Figure 3. In a Level I process that
employs finite burns rather than impulsive maneuvers, the burn arc is considered to be a subsegment of the
arc between patch points k−1 and k. The end of the burn occurs at point T . In identifying finite burn arcs,

it is necessary to consider an augmented state vector
[

rk vk mk ṁgk
uk

]T

, where mk, ṁgk
, and uk
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(a) Impulsive Two-Level Targeter: Before Level I Process is Applied
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(b) Impulsive Two-Level Targeter: After Level I Process is Applied

Figure 1. Level I Process
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(c) Impulsive Two-Level Targeter: After Propagating the Level II Updated Patch States

Figure 2. Level II Process

5 of 18

American Institute of Aeronautics and Astronautics Paper 2009-6104



k − 1

T

k

δrk−1

Figure 3. Level 1 Process

represent the spacecraft mass, the propellant flow rate, and the thrust direction associated with patch point
k, respectively. The goal is to identify a relation between the target, which is the terminal position vector
at point k (rk), and the control variables. The control variables are the thrust direction (uk−1 = uk) and
the time at the end of the burn (tT ). The variational equation for the burn subsegment is,















δrT − v−
T δtT

δv−
T − a−

T δtT

δm−
T + ṁ−

gT
δtT

δṁ−
gT

− m̈−
gT

δtT

δu−
T − u̇−

T δtT















= Φ(T, k − 1)

















δrk−1 − v+
k−1δtk−1

δv+
k−1 − a+

k−1δtk−1

δm+
k−1 + ṁ+

gk−1
δtk−1

δṁ+
gk−1

− m̈+
gk−1

δtk−1

δu+
k−1 − u̇+

k−1δtk−1

















(1)

for the burn subsegment, where Φ(T, k−1) is the state transition matrix between patch point k and point T .
As in the impulsive formulation, the state transition matrix is partitioned into sub-matrices corresponding
to each state:

Φ(T, k − 1) =















AT,k−1 BT,k−1 ET,k−1 FT,k−1 GT,k−1

CT,k−1 DT,k−1 HT,k−1 IT,k−1 JT,k−1

KT,k−1 LT,k−1 MT,k−1 NT,k−1 OT,k−1

PT,k−1 QT,k−1 RT,k−1 ST,k−1 TT,k−1

UT,k−1 VT,k−1 WT,k−1 XT,k−1 YT,k−1















(2)

For the subsequent coasting subsegment, the variational equation, with partitioned state transition matrix,
takes the same form as in the impulsive formulation,4

[

δrk − v−
k δtk

δv−
k − a−

k δtk

]

=

[

Ak,T Bk,T

Ck,T Dk,T

][

δrT − v+
T δtT

δv+
T − a+

T δtT

]

(3)

For this formulation, both the initial and final times of the arc (tk−1 and tk) are fixed, though that is
not a requirement. The initial position rk−1, velocity vk−1, and mass mk−1 are also fixed. The mass flow
rate, ṁgk−1

, is also fixed. It is important to note that v+
T = v−

T (and therefore δv+
T = δv−

T ). Furthermore,

δv+
T −a+

T δtT = δv−
T −a−

T δtT +(a−
T −a+

T )δtT . Incorporating these substitutions, the first two vector variational
equations from Equation (1) and Equation (3) can be combined to give an expression for δrk:

δrk =
[

(Ak,T GT,k−1 + Bk,T JT,k−1) Bk,T (a−
T − a+

T )
]

[

δu+
k−1

δtT

]

(4)

As in the impulsive Level I method,4 a minimum norm solution is selected to obtain the desired change in
the control variables,

[

δu+
k−1

δtT

]

= M̃T (M̃M̃T )−1δrk, (5)
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where
M̃ =

[

(Ak,T GT,k−1 + Bk,T JT,k−1) Bk,T (a−
T − a+

T )
]

. (6)

A minimum norm solution identifies the smallest change in the control parameters, in this case δu+
k−1 and

δtT , that lead to the desired changes in the constraint errors. Of course, these corrections are linear in
nature and, as such, an iterative process is required to converge on the specified constraints in the nonlinear
system. The first iteration of this Level I process is an impulsive correction; the resulting ∆v value is then
substituted into the rocket equation

∆vk = −Ispg0ln(1 −
ṁgk

∆tburn

mk

). (7)

The maneuver vector suggested by the impulsive corrector, combined with the burn time deduced from
Equation 7, is employed as an initial guess for the direction and duration of the burn. It is important to note
that because this initial guess is based on an impulsive maneuver, the terminal error after the first iteration
can be very large when the burn duration is long. The burn direction is assumed to be constant throughout
the entire maneuver, and so small errors in direction can be greatly magnified by the end of a long burn.

1. Level 1 Earth Entry Targeting

The following example shows a comparison of solutions obtained from a Level I process based on the impulsive
and finite burn targeters. In this simulation, the Level 1 algorithm is implemented for a trajectory segment
from a given TEI-3 position to Earth entry. In keeping with the overall structure of the two-level corrector,
only the terminal position vector is targeted for this example. TEI-3 occurs on April 6, 2024 10:07:23.8635
UTC, and the desired entry state is as follows:

• Geodetic Altitude (km) 121.92

• Longitude (deg) 175.6365

• Geocentric Azimuth (deg) 49.3291

• Geocentric Flight Path Angle (deg) -5.86

Because altitude is a function of position only, the error in meeting the desired altitude relates directly
to the ability of the Level I process to meet the desired final position. Likewise, with the final time fixed, the
final longitude error can also be judged by the final position error. Because the main engines are employed for
this scenario, the impulsive assumption is reasonably accurate and the results for the finite burn algorithm
should therefore match those of the impulsive fairly closely. Table 1 lists the convergence data for this case.

Table 1. Level I Targeting Results

Impulsive Finite Burn

Initial Position Error (km) 3.48696e5 3.91018e6

Final Position Error (km) 7.29519e-6 8.83104e-5

FPA Error (deg) 0.0112 0.0123

Azimuth Error (deg) 0.0661 0.0782

The maneuver ∆v and final constraint error values are very similar for the impulsive and finite burn
Level I processes. It is also evident, from Table 1, that there appears to be a significant discrepancy in the
initial position error provided to each targeter. The discrepancies between the startup arcs for each targeter
originate from the estimation of the finite burn maneuver previously described. That is, the direction of
the burn, which is assumed to be inertially fixed, is initially aligned with the ∆v vector computed by the
impulsive targeter. For a burn of finite duration, the direction of the burn becomes more significant as
the integration time increases. Thus, an error in the thrust direction is the source of the increased initial
position error reported in Table 1. As a result of this larger initial error, the finite burn targeter requires
added iterations to converge on a solution in this case. However, the larger error is also a good indication of
the accuracy of the impulsive assumption in this example.
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In general, both cases considered here required an increased number of iterations relative to later exam-
ples. This is attributed to the sensitivities traditionally associated with a Level I process. Specifically, the
success of a Level I process is sensitive to the integration time. Since this particular example employs a Level
I process to transfer the vehicle from the vicinity of the moon, at TEI-3, to the entry interface at Earth, the
time of flight is too long for the number of control parameters available. Here, a Level II process4 becomes
useful because it allows for an increased number of control parameters and also the ability to incorporate
an arbitrary number of constraints. The development of a Level II process that accommodates finite burn
maneuvers is discussed next.

B. Level II Process

In the classical two-level corrector,4 velocity discontinuities between coast segments arise due to the Level
I process. This is also applicable to the finite burn formulation, except at the point where a finite burn
maneuver is initiated. Here, the burn segment is always assumed to start with the same initial velocity as
the terminal velocity of the preceding arc. The duration of the burn does not exceed the time associated
with the following patch point. Thus, a velocity discontinuity can occur, during the Level I process, at the
point where the coast subarc, as defined in Figure 3, joins with the following trajectory segment. Although
this problem at first seems identical to the impulsive maneuver targeting, since the velocity discontinuity
falls between two coast arcs, the partial derivatives for δv−

k with respect to δrk−1, tk−1, δrk, and tk differ
due to the thrust segment at the beginning of the arc.

Recall from the Level I formulation that v−
T = v+

T at the terminal point of the burn arc and thus that
δv+

T − a+
T δtT = δv−

T − a−
T δtT + (a−

T − a+
T )δtT . For the Level II process, δm+

k−1 = m̈+
gk−1

= 0 and u̇+
k−1 = 0.

It is still assumed that ṁg is a fixed constant, i.e. δṁ+
gk−1 = 0. Using these relationships and assumptions,

along with Equations (1) and (3), an expression is found for δv−
k in terms of the state at patch point k − 1

and the state transition matrix,

δv−
k = Ck,T [AT,k−1(δrk−1 − v+

k−1δtk−1)

+ BT,k−1(δv
+
k−1 − a+

k−1δtk−1) + ET,k−1ṁ
+
gk−1

δtk−1 + GT,k−1δu
+
k−1]

+ Dk,T [CT,k−1(δrk−1 − v+
k−1δtk−1) + DT,k−1(δv

+
k−1 − a+

k−1δtk−1)

+ HT,k−1ṁ
+
gk−1

δtk−1 + JT,k−1δu
+
k−1 + (a−

T − a+
T )δtT ] + a−

k δtk.

(8)

In order to write δv−
k only in terms of the Level II control variables, the first vector equation from Equation

(1) is used to solve for δv+
k−1, δu+

k−1, and δtT in terms of those control variables. From the minimum norm
solution,







δv+
k−1

δu+
k−1

δtT






= ZT (ZZT )−1[δrk − v−

k δtk

− (Ak,T AT,k−1 + Bk,T CT,k−1)(δrk−1 − v+
k−1δtk−1)

+ (Ak,T BT,k−1 + Bk,T DT,k−1)a
+
k−1δtk−1

− (Ak,T ET,k−1 + Bk,T HT,k−1)ṁ
+
gk−1

δtk−1].

(9)

where Z =
[

(Ak,T BT,k−1 + Bk,T DT,k−1) (Ak,T GT,k−1 + Bk,T JT,k−1) Bk,T (a−
T − a+

T )
]

. With this ex-

pression, the partial derivatives of ∆vk with respect to each control variable can be found using the same
method as in the impulsive formulation. Let

Z̃ =
[

(Ck,T BT,k−1 + Dk,T DT,k−1) (Ck,T GT,k−1 + Dk,T JT,k−1) Dk,T (a−
T − a+

T )
]

ZT (ZZT )−1. (10)

Then, because it is assumed that the arc from patch points k to k + 1 is a coast arc, the partial derivatives
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of ∆vk are

∂∆vk

∂rk−1

= −(Ck,T AT,k−1 + Dk,T CT,k−1) − Z̃(Ak,T AT,k−1 + Bk,T CT,k−1),

∂∆vk

∂tk−1

= −([(Ck,T ET,k−1 + Dk,T HT,k−1) − Z̃(Ak,T ET,k−1 + Bk,T HT,k−1)]ṁ
+
gk−1

− [(Ck,T BT,k−1 + Dk,T DT,k−1) − Z̃(Ak,T BT,k−1 + Bk,T DT,k−1)]a
+
k−1

− [(Ck,T AT,k−1 + Dk,T CT,k−1) − Z̃(Ak,T AT,k−1 + Bk,T CT,k−1)]v
+
k−1),

∂∆vk

∂rk

= −B−1
k+1,kAk+1,k − Z̃,

∂∆vk

∂tk
= B−1

k+1,kAk+1,kv
+
k + a+

k − (a−
k − Z̃v−

k ),

∂∆vk

∂rk+1

= B−1
k+1,k,

∂∆vk

∂tk+1

= −B−1
k+1,kv

−
k+1.

(11)

The above partials are employed in the standard level II process.4

C. Maneuver Sum Constraint

In addition to the velocity continuity constraint, endpoint and interior path constraints may be imposed
during the Level II process.16 One such constraint is on the total ∆v sum of the maneuvers. The finite burn
formulation of this constraint is based on the impulsive maneuver sum constraint.17 Only the composition
of the associated partial derivatives and the error calculation changes.

To derive the burn maneuver constraint, it is necessary to determine the partial derivatives of the mag-
nitude of ∆vk, i.e. the maneuver that results from the burn at patch point k, with respect to the Level II
control variables. From the rocket equation, ∆vk is given by

∆vk = −Ispg0ln(1 −
ṁgk

∆tburn

mk

), (12)

where ∆tburn = tT − tk. The partial derivative of ∆vk with respect to ∆tburn at patch point k is given by

∂∆vk

∂∆tburn

= Ispg0(
mk

mk − ṁgk
∆tburn

)(
ṁgk

mk

). (13)

Next, the partial derivatives of ∆tburn with respect to the control variables are necessary. This is determined
using the variational equations from points k − 1 to k, k to T (the termination of the burn segment), and
k + 1 to T . Recalling that ∆tburn = tT − tk, the partials are found to be

∂∆tburn

∂rk−1

= −
ûT

k

||∆aT ||
(DT,kB−1

k−1,k − S̃BT,kB−1
k−1,k),

∂∆tburn

∂tk−1

=
ûT

k

||∆aT ||
(DT,kB−1

k−1,k − S̃BT,kB−1
k−1,k)v+

k−1,

∂∆tburn

∂rk

= −
ûT

k

||∆aT ||
[(CT,k + DT,kDk,k−1B

−1
k,k−1) − S̃(AT,k + BT,kDk,k−1B

−1
k,k−1)],

∂∆tburn

∂tk
=

ûT
k

||∆aT ||
([(CT,k + DT,kDk,k−1B

−1
k,k−1) − S̃(AT,k + BT,kDk,k−1B

−1
k,k−1)]v

−
k

− (DT,k − S̃BT,k)(a−
k − a+

k ) − (HT,k − S̃ET,k)ṁg),

∂∆tburn

∂rk+1

=
ûT

k

||∆aT ||
(CT,k+1 − S̃AT,k+1),

∂∆tburn

∂tk+1

= −
ûT

k

||∆aT ||
[(CT,k+1 − S̃AT,k+1)v

−
k+1 + (DT,k+1 − S̃BT,k+1)a

−
k+1],

(14)
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where S =
[

−GT,k BT,k+1

]

and S̃ =
[

−JT,k DT,k+1

]

ST (SST )−1. These partials leave one term,

containing δmk, unaccounted for. The cost of a maneuver at patch point k depends on the duration of the
burn at k and the initial mass mk. Since ṁg is a fixed, constant value, δmk depends only on the previous burn
durations. Thus, the initial mass at the beginning of a maneuver will have a dependence on the positions
and times associated with any previous maneuvers that have occurred, as shown above. Using the chain
rule, the final form of the partial derivative of the constraint α (the sum of all the burn ∆vs) with respect
to any control variable βk in the set of control variables associated with patch point k is

∂α

∂βk

=

N∆v
∑

n=1

∂∆vn

∂βk

(15)

where N∆v is the total number of maneuvers implemented along the trajectory and

∂∆vn

∂βk

=
∂∆vn

∂∆tburnn

∂∆tburnn

∂βk

+
∂∆vn

∂mn

∂mn

∂βk

. (16)

Because the mass at the time of a burn, mn, depends on the propellant mass consumed during the previous
burns,

∂mn

∂βk

=
∂mn−1

∂βk

− ṁgn−1

∂∆tburnn−1

∂βk

. (17)

A similar relationship exists for the remaining mass partials (mn−2 to m1) with respect to β1. These partials
are then employed during the Level II process.4

IV. Simulation and Results

The two level targeting algorithm is applied in the following section in both the impulsive and finite burn
configurations. This is done in order to demonstrate its performance under both configurations and to gain
insight as to applications of each. Then, as a final metric, an optimal trajectory is generated to use for
performance comparisons.

For each case, the same initial conditions of the lunar orbit will be used as follows:

• Epoch: 4-Apr-2024 15:30:00 TDT

• Initial mass: 20339.9 kg (total fuel = 8063.65 kg)

• Main Engine Thrust: 33,361.6621 N

• Main Engine Isp: 326 sec

• Auxiliary Engine Thrust: 4,448.0 N

• Auxiliary Engine Isp: 309 sec

• State (J2000 Moon-centered inertial frame):

– X: -1236.7970783385588 km

– Y: 1268.1142350088496 km

– Z: 468.38317094160635 km

– Vx: 0.0329108058365355 km/sec

– Vy: 0.589269803607714 km/sec

– Vz -1.528058717568413 km/sec

Likewise, the same terminal target conditions will be used for each case as shown below:

• Geodetic Altitude (km) 121.92

• Longitude (deg) 175.6365

• Geocentric Azimuth (deg) 49.3291

• Geocentric Flight Path Angle (deg) -5.86
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A. Finite Burn Example with Main Engines

The first case is representative of a nominal Earth return during which the maneuvers are performed by
the CM main engine. The initial guess file consists of 12 ”patch points” or states taken from an optimized
trajectory. The first patch point corresponds to a state on the initial lunar parking orbit. The interior patch
points correspond to the states and epochs at each of maneuver locations (TEI-1, 2, 3 and TCM 1, 2, 3) and
some additional waypoints along the trajectory. The final patch point in the initial guess is the state and
epoch at the desired entry interface (EI).

For this case, both the impulsive targeter and the finite burn targeter are executed in order to find a
feasible trajectory that satisfies the specified terminal constraints, while keeping the ∆v sum of the individual
maneuvers within the available fuel budget. Table 2 compares the individual maneuvers and final ∆v sum
for the impulsive solution and the finite burn solution. The burn parameters for each finite burn maneuver
are given in Table 3, and final constraint errors are listed in Table 4.
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Figure 4. Initial Guess and Impulsive Solution

Table 2. Maneuver Data

Maneuver Impulsive ∆v (km/s) Finite Burn ∆v (km/s)

TEI-1 0.6619 0.7348

TEI-2 0.3257 0.2561

TEI-3 0.4115 0.4087

Total 1.3991 1.3996

Table 3. Burn Data

Maneuver Duration (s) Prop. Mass Consumed (kg)

TEI-1 400.2308 4175.128

TEI-2 119.2402 1243.890

TEI-3 171.6074 1790.174

Total 691.0784 7209.192
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Table 4. Constraint Error Data

Impulsive Algorithm Finite Burn Algorithm

Iterations 20 6

Altitude (km) -1.0e-8 -5.2e-8

Flight Path Angle (deg) 2.8e-10 -3.3e-10

Longitude (deg) 4.0e-8 -5.0e-7

Flight Path Azimuth (deg) -2.0e-7 1.6e-7

The individual maneuvers and total ∆v sum for the finite burn targeter are fairly similar to the impulsive
targeting results, which is to be expected given that the burn durations with the main engines are short
enough for an impulsive assumption to be used. It should be noted, though, that for this particular case, the
impulsive algorithm requires several more iterations to converge than the finite burn algorithm does. This
suggests that the impulsive assumption, while still valid, may be reaching its limit.

B. Finite Burn Example with Auxiliary Engines

For this example, a main engine failure is assumed to occur after TEI-1 and the auxiliary engines are used to
perform the final two maneuvers. Figures 5 through 7 show the closeup views of TEI-1, TEI-2, and TEI-3,
and the solid red portions of these closeups indicate the segments of the trajectory in which the engines are
thrusting. Burn data for each maneuver is listed in Table 5, and the final constraint errors are given in Table
6.
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Figure 5. Finite Burn Solution with Auxiliary Engines, TEI-1 Closeup

The finite burn algorithm is able to meet the entry and cost constraints in only a few more iterations
than the impulsive targeter required. Interestingly, the total ∆v for this case is about 0.065 km/s lower

than the impulsive solution. This will not always be the case; numerous feasible solutions can exist for any
given set of patch points. For this particular example, the finite burn Level II process identified a lower cost
solution than that determined with the impulsive targeter. In both cases, the total cost constraint is always
enforced to ensure that the total cost is within the available fuel budget.

12 of 18

American Institute of Aeronautics and Astronautics Paper 2009-6104



−4200 −4000 −3800 −3600 −3400 −3200 −3000 −2800 −2600

−5000

−4800

−4600

−4400

−4200

−4000

−3800

km

km

Figure 6. Finite Burn Solution with Auxiliary Engines, TEI-2 Closeup
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Figure 7. Finite Burn Solution with Auxiliary Engines, TEI-3 Closeup

Table 5. Burn Data Using Auxiliary Engines

Maneuver Duration (s) Prop. Mass Consumed (kg) ∆v (km/s)

TEI-1 363.5548 3792.531 0.6255

TEI-2 949.2614 1392.946 0.2666

TEI-3 1400.5756 2055.205 0.4418

Total 2713.3918 7240.682 1.3339
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Table 6. Constraint Error Data with Auxiliary Engines

Iterations 23

Altitude (km) 4.1e-7

Flight Path Angle (deg) 4.5e-10

Longitude (deg) 2.1e-6

Flight Path Azimuth (deg) -2.6e-7

C. Optimized Finite Burn Trajectory

As a final step in this analysis, the trajectory generated from the finite burn targeter with auxiliary thrusters
was optimized using Copernicus. The results of this optimized run are available in Table 7. The total ∆v
for the optimal run is 1.2413 km/s. This is an improvement of approximately 0.09 km/s of ∆v over the
finite burn targeting solution. However, the cost constraint imposed during the Level II process specified the
total cost should not exceed 1.40 km/s. Specifying a lower boundary on this constraint may have identified
a similar solution. It is always important to bear in mind that a targeter does not seek optimal solutions,
only feasible solutions. If a feasible solution exists in the vicinity of the initial guess, either the impulsive or
the finite burn targeting algorithm, can typically identify it.

Table 7. Optimal Burn Data Using Auxiliary Engines

Maneuver Duration (s) Prop. Mass Consumed (kg) ∆v (km/s)

TEI-1 3327.008 3501.37 0.6040

TEI-2 873.040 1504.85 0.2993

TEI-3 1312.285 1828.22 0.4059

D. Finite Burn Example Over The Lunar Cycle

To further test the finite burn algorithm, return trajectories were generated over several days spanning the
lunar cycle from February 1-28, 2024, 0:00:00 TDT, again using the auxiliary engines for the second and
third TEI maneuvers. For these runs, only two entry constraints are targeted:

• Geodetic Altitude (km) 121.92

• Geocentric Flight Path Angle (deg) -5.86

In this simulation, the input patch points to the finite burn algorithm come from a converged impulsive
trajectory with the same initial point and entry targets. The total ∆v of the impulsive trajectory for each
case is 1.50 km/s. Table 8 lists results for days 1, 3, 6, 10, 13, 16, 19, 22, 25, and 28 of the lunar cycle.
Figures 8(a)-8(c) show some examples of these trajectories.

With the exception of the simulations for February 6 and February 16, the targeter converges to valid
solution within the entry and cost constraints for each day tested over the lunar cycle. The solutions for
February 6 and 16 satisfy the entry constraints, but would not converge when the total cost constraint of
1.50 km/s was imposed. The values listed in Table 8 are the total cost of the converged solution without the
maneuver sum constraint active. The precise effect of the quality of initial guess on a given date will be the
subject of future investigations.

E. Delayed Patch Point Simulations

Another test of the finite burn algorithm is whether or not it can converge on a feasible solution given a set
of patch points that are not current. A set of patch points corresponding to a current or future departure
time may not always be available, especially when ground communications are lost. The algorithm must
therefore be able to converge even when the departure time listed in the input file has already passed. For
this example, the input patch point file from the February 1 run in the previous section is used. As before,
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Figure 8. Return Trajectories (MCI) at Day 1 (a), Day 13 (b), and Day 28 (c) of the Lunar Cycle
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Table 8. Burn Data over the Lunar Cycle

Day TEI-1 TEI-2 TEI-3 Total Cost

∆V (km/s) Duration (s) ∆V Duration ∆V Duration Total ∆V Iterations

1 0.5963 348.1673 0.4741 1648.5129 0.3995 1202.2754 1.4698 4

3 0.6837 393.6876 0.4393 1492.3184 0.3585 1067.4428 1.4814 4

6 0.5901 344.8973 0.5271 1820.9042 0.3929 1165.7458 1.5101 15

10 0.5849 342.1671 0.5808 1992.6327 0.3259 961.9933 1.4916 4

13 0.5869 343.1966 0.3661 1299.5151 0.5079 1561.4187 1.4609 4

16 0.6806 392.0921 0.3205 1111.0622 0.6251 1856.5447 1.6262 39

19 0.5778 338.3921 0.5925 2033.8077 0.3189 940.8576 1.4892 4

22 0.7004 402.2770 0.3915 1332.7907 0.4080 1217.7097 1.4999 11

25 0.5862 342.8320 0.6318 2149.2973 0.2740 801.4648 1.4919 4

28 0.5861 342.7945 0.4912 1709.0768 0.3882 1167.9040 1.4656 4

the auxiliary engines perform the TEI-2 and TEI-3 maneuvers. To ensure that the characteristics of the
initial lunar orbit remain the same, the patch points are converted to the MCI frame before the time delay
is introduced. The initial time of the simulation is perturbed first for only 3 hours, then for a full 12 hours.
Figures 9(a)-9(b) show the difference in the initial and final converged trajectories for time delays of 3 hours
(9(a)) and 12 hours (9(b)). The initial trajectory appears as a dashed line in Figures 9(a)-9(b). The initial
entry constraint errors due to the time delay are given in Table 9, and the final constraint errors for the
converged trajectories are listed in Table 10.

Table 9. Initial Entry Constraint Errors

Delay (hr) Altitude Error (km) FPA Error (deg)

3 1.1040e4 1.6464

12 4.5332e4 10.4268
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Figure 9. Initial and Final Trajectories (MCI) at 3 Hours (a) and 12 Hours (b) Delay

Even with a 12 hour delay, the finite burn algorithm is able to find a feasible solution that satisfies the
entry constraints and fuel budget. The 12 hour delay trajectory even shows a surprisingly marked decrease
in the total ∆v cost for this case. As with the low-cost auxiliary engine solution discussed previously, it is
the sensitive dynamics of the system that accounts for this result rather than any special property of the
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Table 10. Convergence with Delays

Delay (hr) Total ∆V (km/s) Altitude Error (km) FPA Error (deg) Iterations

3 1.4655 -2.8218e-5 -9.4476e-8 10

12 1.2961 6.0979e-6 1.2184e-8 12

finite burn targeter. These results do, however, underscore the flexibility of the two-level targeting structure;
instead of trying to match a previously determined nominal trajectory, the algorithm explores the nearby
solution space and is able to converge on a trajectory that is more desirable than the one suggested by the
initial input.

V. Conclusions

This paper presents a two-level targeting algorithm for finite burn maneuvers. The algorithm is adapted
from a classical impulsive two-level targeting algorithm. The development of the finite burn versions of both
the Level I and Level II process are discussed, and a total mission cost constraint, originally developed for
the impulsive algorithm, is modified and adapted to the finite burn problem. The algorithm keeps the same
structure and much of the simplicity of the impulsive two-level corrector even though the partial derivatives
required for the calculations are far more complex. For testing, the algorithm is applied to the trans-Earth
injection phase of the Orion mission. Results are compared for three different cases: using the impulsive
algorithm, using the finite burn algorithm with main engines for all three maneuvers, and using the finite
burn algorithm with only the auxiliary engines for the final two maneuvers. These results show that the finite
burn algorithm is able to converge on a feasible solution even in the case of a main engine failure following
TEI-1. Due to the additional complexity of the finite burn model, the algorithm does exhibit increased
computational overhead in contrast to the impulsive targeter. However, the present formulation addresses
the need for a targeting algorithm that accommodates the main engine failure scenario while meeting all the
specified constraints.

VI. Acknowledgements

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Aeronautics and Space Administration. This
research was carried out at The University of Texas at Austin and funded under NASA Award Number
NNX07AR46G.

References

1Hyde, C. T., Foggat, C. E., and Weber, B. D., “Apollo Experience Report - Abort Planning,” Tech. Rep. NASA-TN-D-
6847, National Aeronautics and Space Administration, Houston, TX, June 1972.

2Yencharis, J. D., Wiley, R. F., Davis, R. S., Holmes, Q. A., and Zeiler, K. T., “Apollo Experience Report - Development
of Guidance and Targeting Techniques for the Command Module and Launch Vehicle,” Tech. Rep. NASA-TN-D-6848, National
Aeronautics and Space Administration, Houston, TX, June 1972.

3Ocampo, C. A. and Saudemont, R. R., “Initial Trajectory Model for a Multi-Maneuver Moon to Earth Abort Sequence,”
AAS/AIAA Space Flight Mechanics Meeting, Savannah, GA, Feb. 2009, Paper No. AAS 09-195.

4Marchand, B. G., Howell, K. C., and Wilson, R. S., “Improved Corrections Process for Constrained Trajectory Design
in the n-Body Problem,” Journal of Spacecraft and Rockets, Vol. 44, No. 4, 2007, pp. 884–897.

5Jezewski, D. J., “Primer Vector Theory and Applications,” NASA Technical Report R-454, NASA Johnson Spaceflight
Center, 1975.

6Enright, P. J. and Conway, B. A., “Optimal Finite-Thrust Spacecraft Trajectories Using Collocation and Nonlinear
Programming,” Journal of Guidance, Control, and Dynamics, Vol. 14, No. 5, 1991, pp. 981–985.

7Ocampo, C., “Finite Burn Maneuver Modeling for a Generalized Spacecraft Trajectory Design and Optimization System,”
Annals of the New York Academy of Sciences, Vol. 1017, 2004, pp. 210–233.

8Ranieri, C. L. and Ocampo, C. A., “Optimization of Roundtrip, Time-Constrained, Finite Burn Trajectories via an
Indirect Method,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 2, 2005, pp. 306–314.

9Wilson, R. S. and Howell, K. C., “Trajectory Design in the Sun-Earth-Moon System Using Lunar Gravity Assists,”
Journal of Spacecraft and Rockets, Vol. 35, No. 2, 1998, pp. 191–198.

17 of 18

American Institute of Aeronautics and Astronautics Paper 2009-6104



10Zimmer, S. and Ocampo, C., “Use of Analytical Gradients to Calculate Optimal Gravity-Assist Trajectories,” Journal
of Guidance, Control, and Dynamics, Vol. 28, No. 2, 2005, pp. 324–332.

11Teofilatto, P. and Pasquale, E. D., “A fast guidance algorithm for an autonomous navigation system,” Planetary and
Space Science, Vol. 46, No. 11/12, 1998, pp. 1627–1632.

12Miele, A., Ciarcia, M., and Weeks, M. W., “Guidance Trajectories for Spacecraft Rendezvous,” Journal of Optimization
Theory and Applications, Vol. 132, 2007, pp. 377–400.

13Howell, K. C. and Pernicka, H. J., “Numerical Determination of Lissajous Trajectories in the Restriced Three-Body
Problem,” Celestial Mechanics, Vol. 41, 1988, pp. 107–124.

14Howell, K. C., Barden, B. T., Wilson, R. S., and Lo, M. W., “Trajectory design using a dynamical systems approach with
application to GENESIS,” Proceedings of the AAS/AIAA Astrodynamics Conference, Sun Valley, Idaho, 1997, pp. 1665–1684.

15Wilson, R. S., Barden, B. T., Howell, K. C., and Marchand, B. G., “Summer Launch Options for the Genesis Mission,”
Advances in the Astronautical Sciences, Vol. 109, 2002, pp. 77–94.

16Weeks, M. W., Marchand, B. G., Smith, C. W., and Scarritt, S. K., “Design of the Onboard Autonomous Targeting
Algorithm for the Trans-Earth Phase of Orion,” AIAA Guidance, Navigation, and Control Conference and Exhibit , Honolulu,
HI, Aug. 2008, AIAA-2008-7262.

17Smith, C. W., An Onboard Targeting Algorithm with Earth-Return Applications, Master’s thesis, University of Texas at
Austin, August 2008.

18 of 18

American Institute of Aeronautics and Astronautics Paper 2009-6104


