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In path planning and guidance applications, linear targeting through differential corrections is a classical

approach for identifying feasible solutions that meet specified mission and trajectory constraints. However, to date,

these methods relied on the assumption that the associated correction maneuvers were impulsive in nature. This

impulsive assumption is generally reasonable when the duration of the engine burn is small. However, this

approximation breaks down when lower thrust engines are employed as the duration of the burn becomes more

significant. In these cases, an impulsive linear targeting algorithm is inadequate. Often times, low-thrust problems of

this type are solved from the perspective of optimal trajectory design and depend on numerical methods like

nonlinear programming. These methods, however, are generally considered prohibitive for autonomous flight

applications, where computational resources are limited and optimality is not always as important as feasibility. The

present study focuses on the theoretical development and numerical validation of a linear targeting algorithm

capable of accommodating finite burn maneuvers. Examples are presented to contrast the performance of this new

targeting process against more classical impulsive targeting methods. The examples presented focus largely on

precision entry applications, but the finite burn targeting process itself is applicable across a broad set of scenarios

and fields.

I. Introduction

I NTHEcontext of this investigation, autonomy refers to the ability
to 1) automatically identify a suitable startup arc [1–3] and 2) use

that solution to successfully target the specified entry constraints
within the fuel budget available at the time [4]. The first step, the
identification of the startup arc, can be accomplished in one of two
ways. The simplest and most common approach is to generate a
database of optimal solutions over a time interval of interest and use
those as nominal departure scenarios at the desired time [1,2]. The
targeting process then reconverges the solution as needed to account
for discrepancies in the timing and state. More recent methods [3]
consider the use of infeasible solutions (e.g., with state and time
discontinuities) based on a series of two-body approximations. Both
methods are suitable for the generation of an initial guess, in this case.
However, from a historical perspective, the database method has
been successfully employed since the Apollo era, though more
commonly from a ground-operations perspective. In an onboard
determination scenario, the database method allows for reduced
computation time when the database includes sample optimal
solutions at an adequate rate. Problems that are time-sensitive require

an increased number of samples, where the necessary sample
frequency depends on the dynamics involved. The examples
presented here employ the database approach to extract an initial
guess for the subsequent targeting process. The initial guess supplied
to the targeting process does not meet the specified path constraints,
and sometimes, the solution may not meet the cost constraint (e.g.,
fuel available). The solutions supplied also use impulsivemaneuvers
and, therefore, assume the availability of the main engine. In a main-
engine-failure scenario, however, the duration of the burns can
increase drastically. Because of these extended burn durations, it is
no longer accurate to approximate each maneuver as impulsive.
Thus, the quality of the initial guess supplied degrades significantly.
The present study is strictly focused on the second stage of the
autonomous targeting process, retargeting the entry interface state
using only the resources available onboard at the time (i.e., fuel left
and operational engine) based on the initial guess supplied.

Significant research has been done on the subject of optimal finite
thrust guidance [5–8]. Among these methods, nonlinear program-
ming is commonly employed in solving optimal and nonlinear
targeting problems [7,8]. The process of identifying, numerically,
optimal or feasible solutions via nonlinear programming is basically
the same. Themain difference is that optimization problems require a
cost index be specified, and feasibility problems, such as constrained
nonlinear targeting, do not. Of course, the identification of feasible
solutions that meet all the specified constraints is also accomplished
through linear targeting methods [4,9]. These classical methods
employ the state transition matrix to compute the necessary
constraint gradients during the corrections process. More recent
studies [10] employ a similar approach to compute analytic
derivatives for implementation in a nonlinear programming process
for trajectory optimization. Naturally, a nonlinear process is
preferred when the computational resources are available. However,
for onboard determination, the optimality of a solution is not as
critical as the availability of a feasible solution. In this case, the
inherent simplicity of linear targeting algorithms leads to a reduced
cost in flight-software development and validation.

Earlier studies consider optimization methods for use during
onboard targeting processes. These include the use of a simplified
adaptive guidance law for targeting relative to a predetermined
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nominal trajectory [11] or implementation of an efficient sequential
gradient-restoration algorithm employing multiple subarcs [12].
These studies, though, are tested for orbital transfer and rendezvous,
which do not have the third-body effects that so greatly impact the
mission in this study. The solution process behind the algorithm
presented is partly modeled after the two-level targeter [4,9,13–16]
employed during the design of the Genesis trajectory [9,14,15].
However, unlike this earlier development, the present algorithm
allows for the incorporation of finite burn maneuvers.

A two-level targeter (or corrector) is primarily based on linear
system theory; it uses a time-varying linearized dynamicalmodel and
a minimum norm solution to compute solution updates. These linear
updates are implemented in the nonlinear system in an iterative
corrections process that repeats until a feasible solution is identified
in the vicinity of the startup arc. Specifics of the classical two-level
corrector will not be reiterated here, but a detailed description of the
process is available in previous work [4]. The two-level process
offers several advantages: because the updates are based on the
linearized model, it is numerically simple and computationally
efficient. It does not require knowledge of a nominal solution, relying
instead solely on the current path of the vehicle. The two-level
corrections process also allows for straightforward addition of path
constraints, both those at specific points (e.g., entry interface)
[4,9,15,16] and those applied over the trajectory as a whole [16].
However, it was originally designed to use impulsive maneuvers as
control variables. In this investigation, the classical impulsive two-
level corrections process [4] is modified to incorporate accurate
thruster models to allow for burns of finite duration while still
retaining the structure and simplicity of the original algorithm so that
it is suitable for onboard calculations. The theoretical elements of the
formulation are presented next, followed by a series of performance
comparisons between the impulsive and finite burn targeters.

II. Finite Burn Targeting Algorithm

The basic structure of a two-level targeter that incorporates finite
burns is generally similar to that of the impulsive two-level targeter
[4]. The two-level framework offers significant advantages in terms
of computational efficiency, flexibility, and robustness [4]. The
design of the finite burn targeting algorithm is intended to retain the
advantages of the two-level structure while extending its range of
application to include problems with continuous control actuation.
Both algorithms use a linearized dynamical model and employ a
minimum norm solution in computing the updates to the control
variables. The differences, which subsequently lead to added
complexity and computational overhead, stem from the increased
dimensionality of the state vector associated with any burn arc.
Because of the interdependency between these state variables, the
partial derivatives are also more complex in nature than those of the
impulsive targeter.

Traditionally, an impulsive two-level targeter requires a startup arc
represented by a series of patch states. These states, also termed patch
points, are selected by the user as representativewaypoints along the
trajectory. Consider a dynamical system described by

_x�t� � f�x�t�; t� (1)

where x�t� � � r�t�T v�t�T �T . The user supplies the time and state
at each patch point, tk�1 and x�k�1 � � rTk�1 v�Tk�1 �T for k�
2; � � � ; N � 1, respectively. Each state x�k�1 is then numerically
integrated forward over an interval �tk�1; tk� for k� 2; � � � ; N. The
integrated state, at time tk, is recorded as x

�
k . This is to allow for the

possibility that the user-supplied velocity at that point, v�k , may not
coincide with that identified during the propagation, v�k . Such
differences may arise due to a previously scheduled impulsive
maneuver at that point or to differences in the models used (two- vs
three-body). This is graphically illustrated in Figs. 1a and 1b. Thus, a
level I process leads to a trajectory that is continuous in position but,
potentially, discontinuous in velocity at certain points. This is
rectified by incorporating a level II correction.

The level II process adjusts the positions and times of each free
patch state to drive any of the interior velocity discontinuities to zero,
as well as to meet any additional user-specified constraints.
Figures 2a–2c show this process graphically. Figure 2a is
representative of the scenario in Fig. 1b, where the trajectory is
continuous in position but not in velocity. Figure 2b illustrates how
the patch state positions, and potentially the associated times, have
been adjusted by the level II process. Because the corrections are
linear in nature [4], propagation of the updated patch states in the
nonlinear system can lead to a trajectory that is, once again,
discontinuous in position. The level I process is subsequently applied
again to generate an updated trajectory that is continuous in position.
The combined level I and level II processes are generally repeated
until the user-specified tolerances are met for position and velocity
continuity, as well as any additional constraints specified. Additional
constraints may include velocity continuity at all patch states, except
where maneuvers are allowed, and interior or boundary constraints,
among others [4].

It is important to note that the initial guess need not be feasible.
That is, position/velocity/time continuity is not necessarily required
for the targeter to successfully converge. However, because the
overall process is based on linear systems theory, the initial
discontinuities can impact the computation time. An initial guess
with large discontinuities leads to an increased number of iterations.
Naturally, an initial guesswith absurdly large discontinuities can lead
to nonconvergence. Of course, a low-quality initial guess can have a
negative impact on both linear and nonlinear targeting algorithms.
However, linear targeters will naturally be more sensitive to large
errors. Developing a good initial guess is a problem within itself and
is highly dependent on the particular application of interest.

Provided a suitable initial guess is available, the formulation of the
impulsive two-level targeter [4] is generalized in nature. As such, it
can be applied to any problem that employs impulsive corrections.
However, problems that employ continuous control of any kind
cannot benefit from this approach, at least not in its original form. The

a) Impulsive two-level targeter: before level I 
process is applied

b) Impulsive two-level targeter: after level I 
process is applied

v
v

v

Fig. 1 Level I process.
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key to transitioning the methodology to address problems that
include segments of continuous control is to formulate the control
variables in terms of constant parameters that can be adjusted. For
example, if the thrust vector is inertially fixed and the engine only
allows fixed thrust or acceleration levels, the control variables
become the time of ignition and the direction and duration of the
burn. Under similar conditions, if linear steering is allowed, the
control variables become the time of ignition, the duration of the
burn, the initial burn direction, and the rate of change of the burn
direction.

In the classical impulsive two-level targeter, the level I process
employs �vs at the start of each segment to achieve position
continuity. These �vs and, if desired, the time at which the
maneuvers are executed are control variables in that case. In a finite
burn process, the level I control variables include the ignition time,
burn time, and thrust vector parameters. The structure of the finite
burn two-level targeter is subsequently developed and presented
here.

A. Level I Process

As previously discussed, the application of a level I process [4] to
the orbital transfer problem typically involves the identification of an
arc that spatially connects two points in space. This is the n-body
analog to a two-body Lambert targeter, except the time of flight is not
necessarily fixed or prespecified. This ultimately reduces to a form of

linear differential correction, where �vs are adjusted to meet the
specified goals. In the present study, however, impulsive maneuvers
do not adequately model the true nature of the burn implementation.
Thus, the level I process traditionally employed in the two-level
targeter [4] requires some modification to incorporate finite burn
arcs. Consider a segment defined by patch points k � 1 and k, as
shown in Fig. 3. In a level I process that employs finite burns rather
than impulsive maneuvers, the burn arc is treated as a subsegment of
the total arc between patch points k � 1 and k. Point T in Fig. 3
denotes the termination of the burn subsegment.

In the impulsive case, the time derivative _x�t� � � _r�t�T _v�t�T �T
is a function only of the state x�t� and the time t. With the addition of
finite burn subarcs, however, the contribution of the thrust
acceleration must also be taken into account:

_x�t� � ~f�x�t�; t; m�t�; ~u�t�� (2)

wherem�t� is themass of the vehicle, and ~u�t� is the full thrust vector
(direction andmagnitude). In this investigation, ~u�t� is assumed to be
constant for tj 	 t < tTj and zero for tTj < t 	 tj�1. Note that the j
subscripts indicate the point at which the jth finite burn maneuver
occurs; they do not necessarily represent sequential patch points. The
equation for ~u�t� over the entire trajectory is

~u�t� �
Xn�v

j�1
~uj�1�t� tj� � 1�t � tTj�� (3)

where ~uj is the thrust vector at maneuver point j, 1�t� is the unit step
function, and n�v represents the total number of finite burn
maneuvers along the entire trajectory from start tofinish.A plot of the
thrust magnitude for a three-burn sequence is shown in Fig. 4.

For the system to remain consistent with Eq. (1), it is necessary
to consider an augmented state vector x�k�1 � � rTk�1 v�Tk�1 mk�1
_mgk�1 uTk�1�T , where mk�1 and _mgk�1 represent the spacecraft mass
and the propellant flow rate associated with patch point k � 1,
respectively. The variable uk�1 can be defined as either the full thrust
vector ~uk�1 or as a vector describing only the direction of the thrust.
This will be discussed in more detail in the following section. In

a) Impulsive two-level targeter: before level II 
process is applied

b) Impulsive two-level targeter: corrections suggested by
 level II minimum norm solution

c) Impulsive two-level targeter: after propagating the 
level II updated patch states

v

v

v

Fig. 2 Level II process.

Fig. 3 Level I process.

Fig. 4 Burn sequence.
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determining the level I algorithm, the goal is to identify a relation
between the target, which is the terminal position vector at point k
(rk), and the control variables. The control variables are the vector
uk�1, representing either the full thrust or thrust direction, and the
cutoff time of the burn (tT). The variational equation for the burn
subsegment is

�rT � v�T �tT
�v�T � a�T �tT
�m�T � _m�gT �tT
� _m�gT � �m�gT �tT
�u�T � _u�T �tT

2
66664

3
77775���T; k � 1�

�rk�1 � v�k�1�tk�1
�v�k�1 � a�k�1�tk�1
�m�k�1 � _m�gk�1�tk�1
� _m�gk�1 � �m�gk�1�tk�1
�u�k�1 � _u�k�1�tk�1

2
66664

3
77775 (4)

where��T; k � 1� is the state transitionmatrix between patch point k
and point T. As in the impulsive formulation, the state transition
matrix is partitioned into submatrices corresponding to each state:

��T; k � 1� �

AT;k�1 BT;k�1 ET;k�1 FT;k�1 GT;k�1
CT;k�1 DT;k�1 HT;k�1 IT;k�1 JT;k�1
KT;k�1 LT;k�1 MT;k�1 NT;k�1 OT;k�1
PT;k�1 QT;k�1 RT;k�1 ST;k�1 TT;k�1
UT;k�1 VT;k�1 WT;k�1 XT;k�1 YT;k�1

2
66664

3
77775
(5)

For the subsequent coasting subsegment, the variational equation,
with partitioned state transition matrix, takes the same form as in the
impulsive formulation [4]:

�rk � v�k �tk
�v�k � a�k �tk

� �
� Ak;T Bk;T

Ck;T Dk;T

� �
�rT � v�T �tT
�v�T � a�T �tT

� �
(6)

For this formulation, both the initial and final times of the arc (tk�1
and tk, respectively) are fixed, though that is not a requirement. The
initial position rk�1, velocity v�k�1, and mass m�k�1 are also fixed, as
well as the mass flow rate, _m�gk�1 . It is important to note that v�T � v�T
(and, therefore, �v�T � �v�T ). Furthermore, �v�T � a�T �tT � �v�T�
a�T �tT � �a�T � a�T ��tT . Incorporating these substitutions, the first
two vector variational equations from Eqs. (4) and (6) can be
combined to give an expression for �rk:

�rk � � �Ak;TGT;k�1 � Bk;TJT;k�1� Bk;T�a�T � a�T � �
�u�k�1
�tT

� �
(7)

As in the impulsive level I method [4], a minimum norm solution is
selected to obtain the desired change in the control variables:

�u�k�1
�tT

� �
� ~MT� ~M ~MT��1�rk (8)

where

~M� � �Ak;TGT;k�1 � Bk;TJT;k�1� Bk;T�a�T � a�T � � (9)

A minimum norm solution identifies the smallest change in the
control parameters, in this case �u�k�1 and �tT , that lead to the desired
changes in the constraint errors. Of course, these corrections are
linear in nature, and as such, an iterative process is required to
converge on the specified constraints in the nonlinear system.

A potential issue that can occur with this formulation is that the
converged burn cutoff time tT may fall after the terminal segment
time tk. To resolve this, tk becomes a control parameter (and is thus
allowed to vary), and an additional constraint is appended to enforce
tT 	 tk. This constraint, �t � tT � tk, would only be active if tT is
greater than tk. The level I constraint equation, then, becomes

�rk
��t

� �
�

@rk
@u�

k�1

@rk
@tT

@rk
@tk

@�t
@u�

k�1

@�t
@tT

@�t
@tk

" #
�u�k�1
�tT
�tk

2
4

3
5 (10)

and the three control parameters are, again, found using theminimum
norm solution. In practice, this situation can be avoided through
proper patch-point selection; the duration of a segment containing a

burn arc should always be significantly greater than the expected
burn time.

To determine an initial guess for the finite burn parameters (i.e.,
thrust direction, uk�1, and burn cutoff time, tT), the impulsive level I
process is first used to compute an impulsive correction. The
impulsive �v direction is used as an initial guess for the thrust
direction. If uk�1 is defined as the full thrust vector, then the initial
guess for the thrust magnitude is the given thrust of the engine.
Finally, an initial guess for the burn duration is deduced using the
rocket equation:

�vk�1 ��Ispg0 ln
�
1 �

_mgk�1�tburn
mk�1

�
(11)

and rearranging to obtain

�tburn �
mk�1
_mgk�1

�1 � e
��vk�1 _mgk�1

uk�1 � � mk�1
_mgk�1

�1 � e
��vk�1
Ispg0 � (12)

From the burn duration, the cutoff time is calculated as
�tT � �tk�1 ��tburn.

The impulsive burn approximation becomes less valid as the finite
burn time increases. Therefore, the terminal error after the first
iteration can be very large when the burn duration is long. The burn
direction is assumed to be constant throughout the entire maneuver,
and so, small errors in direction can be greatly magnified by the end
of a long burn.

1. Controlling Thrust Magnitude in the Level I Process

The stateuk�1 can be defined as either the full thrust vector ~uk�1 or
as a thrust direction vector that does not affect the thrust magnitude.
Clearly, for cases inwhich variable thrust is permissible, the choice of
uk�1 as the full thrust vector ~uk�1 is appropriate.Most applications of
the two-level targeter, however, assume a constant thrust engine. In
these cases, if the full thrust vector definition is used for uk�1,
changes in the thrust magnitude resulting from �uk�1 must be
controlled to ensure that the thrust magnitude in the converged
solution is equal to the given (constant) thrust of the engine.

If one defines uk�1 as the full thrust vector ~uk�1, changes in the
thrust magnitude can be controlled using a thrust biasing technique.
This technique is similar to target position biasing commonly used in
perturbed Lambert targeting. Because uk�1 is defined as ~uk�1, the
correction �uk�1 implies the correction � ~uk�1, thus changing both the
thrust direction and magnitude in Eq. (3). (Because _mgk�1 is assumed
constant, in effect, this creates a fictitious variable Isp engine because
_mgk�1 � ~uk�1=Ispg0 but ~uk�1 is changing after each iteration. This is
only temporary, however, because the thrust biasing technique
ultimately adjusts the thrust magnitude back to the desired value;
hence, Isp ultimately returns to its assumed value as well.) When the
level I process converges, �rk � 0, but the converged thrust
magnitude will be different from the desired value. Let �~uk�1�
~uengine � ~uconverged. The level I process is then repeated with the same
initial guess for thrust direction, but the initial guess for the thrust
magnitude is biased such that ~uinitial�new� � ~uinitial�old� ��~uk�1. The
initial guess for the burn time is also updated using Eq. (12) to reflect
this change in thrust magnitude. A graphical representation of this
process is shown in Fig. 5.When the level 1 process reconverges, the
thrust magnitude will be much closer to the desired value. This
process of biasing and reconverging is repeated (typically three to
five iterations) until�~uk�1 is within tolerance. For the simulations in
Sec. III.B,uk�1 is defined as the full thrust vector ~uk�1, and the thrust
biasing technique is used to control the thrust magnitude. Note that
using the thrust biasing technique introduces an additional layer of
iteration within the level I process, which can potentially increase the
runtime of the algorithm.

If, instead, one defines uk�1 as a thrust direction vector, the thrust
magnitude will remain unaffected in the level I process and
can be fixed at the given (constant) value. Let uk�1 be a vector that
describes the thrust direction but is not required to be a unit
vector. The full thrust vector in Eq. (3) is then given by
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~uk�1 � ~uengine��uk�1�=�kuk�1k��. Although the correction �uk�1 can
change the magnitude ofuk�1, the magnitude of the full thrust vector
~uk�1 remains fixed at ~uengine. For the simulations in Sec. III.A,uk�1 is
defined as a thrust direction vector.

2. Variable Scaling

A well-known tool for aiding (and sometimes enabling) the
convergence of iterative processes, such as nonlinear targeting, is the
scaling of both the control variables and constraints so that the partial
derivatives of the constraints with respect to the control variables are
O�1�. This enables the targeter to evenly adjust control variables and
meet constraints of varying orders of magnitude.

To implement scaling in the level I process, first note that Eq. (7)
relates variations in the constraints (�rk) to variations in the controls
(�u�k�1 and �tT) through partial derivatives as

�rk �
�

@rk
@u�

k�1

@rk
@tT

�
�u�k�1
�tT

� �
(13)

Before forming the minimum norm solution, the controls,
constraints, and partial derivatives are scaled by appropriate factors
so that

u�k�1scl �
u�k�1
uscl

; tTscl �
tT
tscl
; �rkscl �

�rk
rscl

@rkscl
@u�k�1scl

� @rk
@u�k�1

� uscl
rscl

;
@rkscl
@tTscl

� @rk
@tT
� tscl
rscl

therefore,

�rkscl �
�

@rkscl
@u�

k�1scl

@rkscl
@tTscl

�
�u�k�1scl
�tTscl

� �
(14)

The scaled controls are then updated using the minimum norm
solution. To begin the next iteration, the controls are unscaled and
then used in Eq. (3) to determine the new constraint variations and
partial derivatives. As before, these are rescaled using the same scale
factors, a new minimum norm solution is found, and the process is
repeated until convergence.

Choosing appropriate scale factors is more art than science and is
typically problem-specific. For the level I process, one possible
approach is to first choose scales for the constraints, say rscl � 1.
Next, choose uscl and tscl so that the partial derivatives in Eq. (14) are
O�1�. Run the level I process. If a large number of iterations are
required to achieve convergence, it may be necessary to stop the
process after some number of iterations and reexamine the partial
derivatives. If they are far fromO�1�, adjust uscl and tscl to bring the

partial derivatives back to O�1� and resume the process using the
current values of the controls.

Finally, note that scaling can also be implemented in the level II
process. In level II, the controls are rk�1, tk�1, rk, tk, rk�1, and tk�1,
the constraints are �vk and any terminal trajectory conditions, and
the partial derivatives are given in Eq. (18). Note that, in level I, rk
was a constraint. In level II, however, rk�1, rk, and rk�1 are now
controls. Similarly, in the level I process, tT was a control and
represented a burn time. In level II, tk�1, tk, and tk�1 are also controls
but now represent patch-point epochs. A similar scaling approach is
also taken for the maneuver sum constraint.

B. Level II Process

The finite burn level II process, like the impulsive level II
correction, uses the positions and times of the patch points as control
variables. In the classical two-level corrector [4], velocity
discontinuities between coast segments arise due to the level I
process. This is also applicable to the finite burn formulation, except
at the point where a finite burn maneuver is initiated. Here, the burn
segment is always assumed to start with the same initial velocity
as the terminal velocity of the preceding arc. Thus, a velocity
discontinuity can occur, during the level I process, at the point where
the coast subarc, as defined in Fig. 3, joins with the following
trajectory segment. Although this problem, at first, seems identical to
the impulsive maneuver targeting because the velocity discontinuity
falls between two coast arcs, the partial derivatives for �v�k with
respect to the control variables �rk�1, tk�1, �rk, and tk differ due to the
thrust segment at the beginning of the arc.

Recall from the level I formulation that v�T � v�T at the terminal
point of the burn arc and, thus, that �v�T � a�T �tT � �v�T�
a�T �tT � �a�T � a�T ��tT . For the level II process, �m�k�1 � �m�gk�1 � 0
and _u�k�1 � 0. It is still assumed that _mg is a fixed constant, i.e.,
� _m�gk�1 � 0. Note also that the terminal time of the burn, tT , is directly
related to the time at patch point k � 1: tT � tk�1 ��tburn, where
�tburn is the duration of the burn and is held constant in the level II
process. Using these relationships and assumptions, along with
Eqs. (4) and (6), an expression is found for �v�k in terms of the state at
patch point k � 1 and the state transition matrix:

�v�k �Ck;T �AT;k�1��rk�1�v�k�1�tk�1��BT;k�1��v�k�1�a�k�1�tk�1�
�ET;k�1 _m�gk�1�tk�1�GT;k�1�u

�
k�1��Dk;T �CT;k�1��rk�1�v�k�1�tk�1�

�DT;k�1��v�k�1�a�k�1�tk�1��HT;k�1 _m
�
gk�1�tk�1

�JT;k�1�u�k�1��a�T �a�T ���tk�1��tburn���a�k �tk (15)

To write �v�k only in terms of the level II control variables, the first
vector equation from Eq. (4) is used to solve for �v�k�1, �u

�
k�1, and

Fig. 5 Thrust biasing in the level I process.
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�tburn in terms of those control variables. From the minimum norm
solution,

�v�k�1

�u�k�1

�tburn

2
64

3
75� ZT�ZZT��1��rk � v�k �tk

� �Ak;TAT;k�1 � Bk;TCT;k�1���rk�1 � v�k�1�tk�1�
� �Ak;TBT;k�1 � Bk;TDT;k�1�a�k�1�tk�1 � �Ak;TET;k�1
� Bk;THT;k�1� _m�gk�1�tk�1 � Bk;T�a�T � a�T ��tk�1� (16)

where Z� ��Ak;TBT;k�1 � Bk;TDT;k�1� �Ak;TGT;k�1 � Bk;TJT;k�1�
Bk;T�a�T � a�T ��. With this expression, the partial derivatives of �vk
with respect to each control variable can be found using the same
method as in the impulsive formulation. Let

~Z� ��Ck;TBT;k�1 �Dk;TDT;k�1� �Ck;TGT;k�1
�Dk;TJT;k�1� Dk;T�a�T � a�T ��ZT�ZZT��1 (17)

Then, because it is assumed that the arc from patch point k to k� 1 is
a coast arc, the partial derivatives of �vk are

@�vk
@rk�1

����Ck;TAT;k�1�Dk;TCT;k�1�

� ~Z�Ak;TAT;k�1�Bk;TCT;k�1��
@�vk
@tk�1

��f��Ck;TET;k�1�Dk;THT;k�1�

� ~Z�Ak;TET;k�1�Bk;THT;k�1�� _m�gk�1 � ��Ck;TBT;k�1�Dk;TDT;k�1�
� ~Z�Ak;TBT;k�1�Bk;TDT;k�1��a�k�1 � ��Ck;TAT;k�1�Dk;TCT;k�1�
� ~Z�Ak;TAT;k�1�Bk;TCT;k�1��v�k�1��Dk;T � ~ZBk;T��a�T � a�T �g

@�vk
@rk
��B�1k�1;kAk�1;k � ~Z

@�vk
@tk
�B�1k�1;kAk�1;kv�k �a�k � �a�k � ~Zv�k �

@�vk
@rk�1

�B�1k�1;k;
@�vk
@tk�1

��B�1k�1;kv�k�1 (18)

These partials are employed in the standard level II process [4].

C. Maneuver Sum Constraint

In addition to the velocity continuity constraint, endpoint and
interior path constraints may be imposed during the level II process
[16]. One such constraint is on the total �v sum of the maneuvers.
The finite burn formulation of this constraint is based on the
impulsive maneuver sum constraint [17]. Only the composition of
the associated partial derivatives and the error calculation changes.

To derive the burn maneuver constraint, it is necessary to
determine the partial derivatives of the magnitude of �vk, i.e., the
maneuver that results from the burn at patch point k, with respect
to the level II control variables. From the rocket equation, �vk is
given by

�vk ��Ispg0 ln
�
1 �

_mgk
�tburn
mk

�
(19)

Because Isp, g0, and _mgk
are fixed, the cost of a maneuver at patch

point k depends on the duration of the burn at k and the initial mass.
The burn duration �tburn and mass mk are, in turn, functions of the
control variables, and the chain rule is used to determine the partials
of�vk with respect to the controls. The partial derivative of�vk with
respect to �tburn at patch point k is given by

@�vk
@�tburn

� Ispg0
�

mk

mk � _mgk
�tburn

��
_mgk

mk

�
(20)

With respect to mk, the partial derivative is

@�vk
@mk

�
Ispg0
mk

�
_mgk

�tburn
mk � _mgk

�tburn

�
(21)

The partial derivatives of�tburn with respect to the control variables
are determined using the variational equations from points k � 1 to k,
k to T (the termination of the burn segment), and k� 1 to T.
Recalling that �tburn � tT � tk, the partials are found to be

@�tburn
@rk�1

�� ûTk
k�aTk

�DT;kB
�1
k�1;k� ~SBT;kB

�1
k�1;k�;

@�tburn
@tk�1

� ûTk
k�aTk

�DT;kB
�1
k�1;k� ~SBT;kB

�1
k�1;k�v�k�1;

@�tburn
@rk

�� ûTk
k�aTk

��CT;k�DT;kDk;k�1B
�1
k;k�1�

� ~S�AT;k�BT;kDk;k�1B
�1
k;k�1��;

@�tburn
@tk

� ûTk
k�aTk

f��CT;k�DT;kDk;k�1B
�1
k;k�1�

� ~S�AT;k�BT;kDk;k�1B
�1
k;k�1��v�k ��DT;k� ~SBT;k��a�k �a�k �

��HT;k� ~SET;k� _mgg;
@�tburn
@rk�1

� ûTk
k�aTk

�CT;k�1� ~SAT;k�1�;

@�tburn
@tk�1

�� ûTk
k�aTk

��CT;k�1� ~SAT;k�1�v�k�1

��DT;k�1� ~SBT;k�1�a�k�1� (22)

where S� ��GT;k BT;k�1 � and ~S� ��JT;k DT;k�1 �ST�SST��1.
It is more complicated to determine the partials ofmk with respect to
the control variables. Because _mg is a fixed, constant value, mk

depends only on the previous burn durations. Thus, the initial mass at
the beginning of a maneuver will have a dependence on the positions
and times associated with any previous maneuvers that have
occurred. Using the chain rule, the final form of the partial derivative
of the constraint � (the sum of all the burn�vs) with respect to any
control variable �k in the set of control variables associated with
patch point k is

@�

@�k
�
XN�v

n�1

@�vn
@�k

(23)

where N�v is the total number of maneuvers implemented along the
trajectory and

@�vn
@�k

� @�vn
@�tburnn

@�tburnn
@�k

� @�vn
@mn

@mn

@�k
(24)

Because themass at the time of a burn,mn, depends on the propellant
mass consumed during the previous burns,

@mn

@�k
� @mn�1

@�k
� _mgn�1

@�tburnn�1
@�k

(25)

A similar relationship exists for the remaining mass partials (mn�2 to
m1) with respect to �1. These partials are then employed during the
level II process [4].

III. Sample Applications

Over the course of the following sections, the finite burn targeting
algorithm is tested and validated through two examples. The first
focuses on a precision entry application, which involves a lunar
return trajectory and the associated trans-Earth injection (TEI)
sequence. The second example considers a Mars encounter. It is
important to note that the finite burn targeting algorithm
implementation used in both cases is identical; the only things that
vary are the user-specified trajectory and mission constraints. The
methodology already described is otherwise unchanged.
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A. Example 1: Orion Trans-Earth Injection Simulation and Results

The finite burn targeting algorithm is applied, in this section, to the
three-burn TEI phase of a lunar return trajectory. The goal is to
identify the three-maneuver sequence that meets the specified set
of lunar departure and Earth-entry interface constraints without
violating the available fuel budget. The performance of thefinite burn
algorithm is contrasted against that of the impulsive algorithm. As a
final metric, an optimal trajectory is also generated for performance
comparisons.

For each case considered, the parameters that define the initial low-
lunar-orbit departure are the same. These conditions are listed in
Table 1; engine parameters for the finite burn maneuvers are given in
Table 2. Components of the initial state in Table 1 are in the J2000
moon-centered inertial (MCI) frame. Similarly, the Earth-entry
interface conditions targeted are listed in Table 3. These terminal
constraints represent entry parameters that would allow for a safe
crewed reentry into the Earth’s atmosphere [18–21]. The epoch of the
entry interface conditions is unconstrained. Convergence is achieved
when the terminal and path constraints are met within the tolerances
listed in Table 4. Finally, for cases in which variable scaling is
implemented, the scale values used are listed in Table 5.

1. Finite Burn Example with Main Engine

The first case is representative of a nominal Earth return during
which the maneuvers are performed by the vehicle’s main engine.
The initial guess file consists of 12 patch points (position, velocity,
and time) taken from an optimized finite burn trajectory. It should be
noted that the initial guess does not contain burn duration or direction
information for themaneuvers; the algorithmmust target thesevalues
on its own. The first patch point corresponds to a state on the initial
lunar parking orbit. The interior patch points correspond to the states
and epochs at each of the maneuver locations (TEI-1, 2, 3 and TCM

1, 2, 3) and some additional waypoints along the trajectory. The final
patch point in the initial guess is the state and epoch at the desired
entry interface.

For this case, both the impulsive targeter and the finite burn
targeter are executed to find a feasible trajectory that satisfies the
specified terminal constraints, while keeping the �v sum of the
individual maneuvers within the available fuel budget. The finite
burn algorithm is run both with and without variable scaling
implemented. Table 6 compares the individual maneuvers, final �v
sum, and number of iterations required for convergence for the
impulsive solution and the scaled and unscaled finite burn (FB)
solutions. The burn parameters for each finite burn maneuver are
given in Table 7 for the unscaled algorithm and in Table 8 for the
scaled algorithm.

The individual maneuvers and total �v sum for the finite burn
targeter are fairly similar to the impulsive targeting results, which is
to be expected given that the burn durations with the main engine are
short enough for an impulsive assumption to be used. It should be
noted, though, that, for this particular case, the impulsive algorithm
requires several more iterations to converge than the finite burn
algorithm does. This suggests that the impulsive assumption, while
still valid, may be reaching its limit.

2. Finite Burn Example with Auxiliary Engines

For this example, a main engine failure is assumed to occur after
TEI-1, and the auxiliary engines are used to perform the final two
maneuvers. The trajectory is retargeted from the first patch point after
TEI-1, using theTEI-1 burn data and postburn state from the previous
example. All terminal and path constraints are the same. Burn data

Table 1 Initial conditions

Initial value

Epoch 4 Apr. 2024 15:30:00 TDT
Mass, kg 20339.9 (total fuel� 8063:65 kg)
x, km �1236:7970783385588
y, km 1268.1142350088496
z, km 468.38317094160635
_x, km=s 0.0329108058365355
_y, km=s 0.589269803607714
_z, km=s �1:528058717568413

Table 2 Engine parameters

Engine Thrust, N Isp, s

Main 33,361.6621 326
Auxiliary 4,448.0 309

Table 3 Terminal constraints

Constraint Value

Geodetic altitude, km 121.92
Longitude, deg 175.6365
Geocentric azimuth, deg 49.3291
Geocentric flight path angle, deg �5:86

Table 4 Constraint tolerance values

Constraint Tolerance

Geodetic altitude, km 1e � 4
Longitude, deg 1e � 4
Geocentric azimuth, deg 1e � 4
Geocentric flight path angle, deg 1e � 4

Table 5 Scale values

Value

Position, km 1
Time, s 3600
�v, km=s 0.001
Altitude, km 1000
Longitude, rad �
Azimuth, rad �
Flight path angle, rad 1

Table 6 Maneuver and convergence data

Impulsive�v,
km=s

Unscaled FB �v,
km=s

Scaled FB �v,
km=s

TEI-1 0.6619 0.6900 0.6827
TEI-2 0.3257 0.2598 0.2576
TEI-3 0.4115 0.4133 0.4185
Total 1.3991 1.3630 1.3589
Iterations 20 7 6

Table 7 Burn data: unscaled algorithm

Maneuver Duration, s Prop. mass consumed, kg

TEI-1 381.0984 3975.542
TEI-2 123.4850 1288.171
TEI-3 176.8428 1844.789
Total 681.4262 7108.502

Table 8 Burn data: scaled algorithm

Maneuver Duration, s Prop. mass consumed, kg

TEI-1 377.5064 3914.0619
TEI-2 122.7568 1272.7671
TEI-3 179.4875 1860.9622
Total 679.7507 7047.7912
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for each maneuver are listed in Tables 9 and 10, and the convergence
data are given in Table 11.

The finite burn algorithm is able to meet the entry and cost
constraints in the same number of iterations as in the preceding
example, where all three maneuvers are performed by the main
engine. Interestingly, the total �v for the scaled algorithm, in this
case, is still lower than the impulsive solution. Thiswill not always be
the case; numerous feasible solutions can exist for any given set of
patch points. Consider the results from the finite burn algorithmwith
and without scaling implemented: although the same algorithm is
used, simply scaling the variables causes the targeter to converge on a
different solutionwith a different total cost. In this particular case, the
finite burn level II process identified a lower cost solution than that
determined with the impulsive targeter. In both cases, the total cost
constraint is always enforced to ensure that the total cost is within the
available fuel budget.

3. Optimized Finite Burn Trajectory

As a final step in this analysis, the trajectory generated from the
finite burn targeter with auxiliary thrusters was optimized using the
Copernicus trajectory optimization system [22]. The results of this
optimized run are available in Table 12. The total�v for the optimal
run is 1:3092 km=s. This is an improvement of approximately
0:055 km=s of �v over the finite burn targeting solution. However,
the cost constraint imposed during the level II process specified the
total cost should not exceed1:40 km=s. Specifying a lower boundary
on this constraint may have identified a similar solution. It is always
important to bear in mind that a targeter does not seek optimal
solutions, only feasible solutions. If a feasible solution exists in the
vicinity of the initial guess, either the impulsive or the finite burn
targeting algorithm can typically identify it.

4. Finite Burn Example over the Lunar Cycle

To further demonstrate the capabilities of the finite burn algorithm,
return trajectories were generated over several days spanning the
lunar cycle from 1–28 February 2024, 0:00:00 Terrestrial Dynamical
Time, again using the auxiliary engines for the second and third TEI
maneuvers. In this case, however, it is assumed that the use of the
auxiliary engines is intentional and not the result of an unexpected
main-engine failure. Thus, all three burn maneuvers are targeted
simultaneously by the algorithm. Running different cases over the
entire lunar cycle allows for testing of the algorithm under varying
Earth-moon configurations. For these runs, only two entry
constraints are targeted: geodetic altitude and geocentric flight path
angle. The targeted values for these constraints are the same as those
given in Table 3.

In this simulation, the input patch points to the finite burn
algorithm come from a converged impulsive trajectory with the same
initial point and entry targets. The total�v of the impulsive trajectory
for each case is 1:50 km=s. Tables 13 and 14 list results both without
and with scaling, respectively, for days 1, 3, 6, 10, 13, 16, 19, 22, 25,
and 28 of the lunar cycle.

In the preceding two examples, the impact of variable scaling is
negligible. Here, however, several cases over the lunar cycle show a
marked disparity in convergence when scaling is applied. Most
notably, the number of iterations required to converge for day 25
jumps from five to 20 when scaling is introduced. Conversely,
applying scaling to the case with the worst convergence unscaled,
day 16, reduces the number of iterations from nine to five and
decreases the total �v noticeably. As was stated already, there are
multiple feasible solutions for any given set of patch points;
implementing variable scaling allows the algorithm to explore a
different part of the solution space than it would otherwise, resulting
in a different converged solution. Furthermore, some sets of scale
values will produce better results for a given problem than others.
The values used in these examples are chosen arbitrarily, and so,
performance of the scaled algorithm could potentially be improved if
the scale values are determined in a more optimal manner. Several
different scaling methods can be found in the literature [23];
however, such investigation is beyond the scope of the present study.
Although scaling clearly does not always provide a better solution

Table 9 Burn data using auxiliary engines:

unscaled algorithm

Maneuver Duration, s Prop. mass consumed, kg �v, km=s

TEI-1 381.0984 3975.542 0.6900
TEI-2 917.1483 1347.401 0.2602
TEI-3 1408.5339 2069.305 0.4489
Total 2706.7806 7392.248 1.3991

Table 10 Burn data using auxiliary engines:

scaled algorithm

Maneuver Duration, s Prop. mass consumed, kg �v, km=s

TEI-1 377.5064 3914.062 0.6827
TEI-2 939.5373 1380.293 0.2657
TEI-3 1344.6461 1975.446 0.4262
Total 2645.3467 7269.801 1.3746

Table 11 Constraint error data with

auxiliary engines

Unscaled Scaled

Iterations 5 5

Table 12 Optimal burn data using auxiliary engines

Maneuver Duration, s Prop. mass consumed, kg �v, km=s

TEI-1 3327.008 3501.37 0.6040
TEI-2 873.040 1504.85 0.2993
TEI-3 1312.285 1828.22 0.4059
Total 5512.333 6834.44 1.3092

Table 13 Unscaled burn data over the lunar cycle

Day TEI-1 TEI-2 TEI-3 Total cost
�v, km=s Duration, s �v, km=s Duration, s �v, km=s Duration, s Total �v, km=s Iterations

1 0.6238 348.0345 0.4743 1651.2834 0.4019 1210.4498 1.5000 3
3 0.6992 385.6885 0.4402 1505.0542 0.3606 1079.8977 1.5000 5
6 0.6041 338.0300 0.5248 1823.7242 0.3709 1111.0038 1.4998 7
10 0.6045 338.2269 0.5781 1991.5292 0.3175 942.3371 1.5000 5
13 0.6168 344.5208 0.3691 1310.0636 0.5141 1577.7328 1.5000 4
16 0.6580 365.1850 0.3286 1158.8930 0.5135 1576.9396 1.5000 9
19 0.6014 336.6757 0.5866 2020.2097 0.3116 924.1053 1.4997 6
22 0.6978 384.9900 0.3844 1326.8775 0.4072 1233.2389 1.4894 7
25 0.6041 338.0202 0.6310 2155.7213 0.2650 779.7340 1.5000 5
28 0.6174 344.7791 0.4917 1710.5830 0.3910 1175.1849 1.5000 4
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than the one found by the unscaled algorithm, it adds a measure of
flexibility to the finite burn algorithm. This is particularly useful for
cases that will not converge when the unscaled targeter is applied, as
shown in the next section.

5. Delayed Patch Point Simulations

Another test of the finite burn algorithm is whether or not it can
converge on a feasible solution given a set of patch points that are not
current. A set of patch points corresponding to a current or future
departure time may not always be available, especially when ground
communications are lost. The algorithm must, therefore, be able to
converge even when the departure time listed in the input file has
already passed. For this example, the input patch point file from the
1 February run in the preceding section is used. However, the initial
epoch is shifted so that it no longer matches that of the startup arc.
The patch-point times are updated to reflect this time shift, but the
corresponding positions and velocities are not. This results in an
initial guess trajectory with significant errors in the terminal
constraint conditions; the algorithm must retarget the direction,
duration, and ignition times of all three burns to correct these errors.
As before, the auxiliary engines perform the TEI-2 and TEI-3
maneuvers, and all three maneuvers are targeted simultaneously. To
ensure that the characteristics of the initial lunar orbit remain the
same, the patch points are converted to theMCI frame before the time
delay is introduced. The initial time of the simulation is perturbed for
3, 6, 9, and then 12 h. The initial entry constraint errors due to the time
delay are given in Table 15, and the convergence data for the scaled
and unscaled algorithm are listed in Table 16.

The benefits of variable scaling are most apparent in this example.
Without scaling, the finite burn algorithm is only able to find a
feasible solution for a 3 h delay and no more. After the scaling is
implemented, however, the targeter is able to find a feasible solution
that satisfies the entry constraints and fuel budget for even a 12 h
delay. As mentioned in the preceding example, it is possible that the
scaled algorithm performance could be even further improved with a
more optimal set of scale values. These results underscore the
adaptability of the two-level targeting structure; instead of trying to

match a previously determined nominal trajectory, the algorithm
explores the nearby solution space and is able to converge on a
trajectory despite the poor quality of the initial input.

B. Example 2: Mars Encounter Simulation and Results

In this section, the two-level targeting algorithm is applied to a
simulated Mars encounter. The simulation begins in a low-Earth
parking orbit and is followed by the trans-Mars injection (TMI) burn.
Thevehicle then coasts for the remainder of the simulation untilMars
arrival, approximately 258 days later. Patch points are placed along
the trajectory at the following locations: initial conditions, TMI,
interior patch points (one point every two months), and Mars
encounter. The constraints in this simulation are: 1) velocity
continuity at the interior patch points, 2) terminal altitude, and
3) terminal flight path angle.

The initial conditions in the low-Earth parking orbit are given in
Table 17. The state components are expressed in the J2000 Earth-
centered inertial frame. The engine parameters are given in Table 18.
The constraints and their tolerances are given in Table 19. Scale
values are given in Table 20. Finally, TMI impulsive and finite
burn data and the number of iterations required for convergence are
given in Table 21. Note that, for the Mars simulation, only scaled
solutions were computed. Although similar in nature to the preced-
ing precision entry example, this simulation demonstrates the
applicability of the finite burn two-level targeter to a broader class of
missions that are different in scope and outside of the Earth-moon
system. In general, the methodology is applicable to any path-

Table 14 Scaled burn data over the lunar cycle

Day TEI-1 TEI-2 TEI-3 Total cost
�v, km=s Duration, s �v, km=s Duration, s �v, km=s Duration, s Total �v, km=s Iterations

1 0.6320 352.1669 0.4740 1646.1692 0.3939 1185.0331 1.4999 6
3 0.7159 393.8848 0.4303 1465.9122 0.3538 1058.6550 1.5000 5
6 0.6122 342.1556 0.5329 1844.8053 0.3548 1059.8574 1.4999 11
10 0.6045 338.2353 0.5765 1986.4955 0.3190 947.2553 1.5000 11
13 0.6154 343.7799 0.3698 1312.9152 0.5148 1580.1157 1.5000 6
16 0.7064 389.2130 0.3342 1159.8967 0.3965 1219.9719 1.4371 5
19 0.6017 336.8295 0.5992 2059.0593 0.2991 885.0120 1.5000 12
22 0.7172 394.5247 0.3867 1326.0707 0.3962 1194.1109 1.5001 9
25 0.6119 342.0196 0.6402 2178.5320 0.2480 727.6002 1.5001 20
28 0.6207 346.4521 0.4884 1698.1462 0.3910 1175.4618 1.5001 7

Table 15 Initial entry constraint errors

Delay, hr Altitude error, km Flight-path-angle error, deg

3 11040.163 1.6526
6 22415.148 4.3289
9 33857.773 7.3130
12 45332.406 10.3842

Table 16 Convergencewith delays

Delay, hr Unscaled Scaled

3 10 17
6 Did not converge 23
9 Did not converge 29
12 Did not converge 35

Table 17 Mars initial conditions

Epoch 23 Nov. 1994 07:28:06.184 TDT
Mass, kg 136642.391
x, km �329:168
y, km 5758.377
z, km 3131.700
_x, km=s �7:7836
_y, km=s �0:4398
_z, km=s �0:0046

Table 18 Engine parameters

Engine Main

Thrust, N 1,309,779
Isp, s 465

Table 19 Mars constraints and tolerances

Constraint Value Tolerance

�v� ��v�, km=s 0 0.001
Terminal altitude, km 300 0.001
Terminal flight path angle, deg 0 1
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planning or guidance problem that seeks feasible arcs in the presence
of interior path, terminal, and/or cost constraints.

Given the very high main engine thrust in Table 18, the TMI finite
burn duration in Table 21 is relatively short (
4:5 min); thus, the
scaled finite burn solution is not vastly different from the impulsive
solution. In other words, the example as is does not stress the
convergence of the finite burn algorithm.

To stress the algorithm, the main engine thrust and flow rate are
now reduced (in proportion) until the impulsive solution no longer
provides a valid initial guess for the finite burn algorithm. As the
thrust and flow rate are reduced, the finite burn duration increases.
Because the thrust direction is inertially held throughout the burn,
increasing the finite burn duration also increases the radial
component of the finite burn �v vector. At some point, the finite
burn does not provide enough energy to escape fromEarth and leaves
the vehicle in a highly eccentric Earth orbit. At this thrust and flow
rate, the impulsive solution no longer provides a valid initial guess,
and an alternate approach must be used to seed the finite burn
algorithm. Investigating this alternate approach is beyond the scope
of this paper. Table 22 compares the original TMI burn data in
Table 21with the burn data for theminimum thrust andflow rate case.
Note that thrust andflow ratewere successfully reduced by 57% from
the original case to the minimum case before failure. Also note,
however, the simultaneous increase in all other burn quantities (�v,
propellant mass consumed, burn duration, etc.).

Finally, an attempt is made to reduce the thrust and flow rate even
further by increasing the density of the interior patch points from one
point every two months to one point per month. By providing a
shorter distance from TMI to the first interior patch point, the
algorithm should be able to tolerate a greater divergence of the finite
burn solution from the impulsive solution (i.e., the valid region of the
impulsive solution as an initial guess for the finite burn solution is
larger). Table 23 compares the TMI burn data for the original and
minimum thrust/flow rate cases for a one-month intermediate patch
point density. For the one-month density, thrust and flow rate were
successfully reduced by 61% from the original case to the minimum
case before failure. Note, again, however, the simultaneous increase

in all other burn quantities. As expected, the increases in the one-
month density case are greater than in the two-month density case
given the larger reduction in thrust and flow rate. Also, as expected,
the burn data for the original thrust/flow rate casewith the two-month
density are close but not identical to the data for the original casewith
one-month density. This reinforces the message that solutions to a
given problem are dependent on the number and placement of patch
points in the simulation.

IV. Conclusions

This paper presents the theoretical framework and numerical
validation of a finite burn linear targeting process suitable for
autonomous path planning and guidance applications. The numerical
solution process is as simple as that of an impulsive two-level
targeting algorithm, though incorporating finite burn capabilities
does increase the complexity of the analytical gradients employed.
To accommodate the goals of autonomous flight, the total propulsive
cost is constrained according to the fuel budget available at the time
the numerical process is initiated. The development of that constraint
is presented and demonstrated as well. An initial exploration into
performance enhancements is presented through the incorporation of
variable scaling. Each of these developments is tested on two
examples, a precision entry problem and a rendezvous problem. The
increased complexity of analytical gradients naturally translates to an
increase in computational overhead, in contrast to the impulsive
targeting process. However, unlike the impulsive algorithm, the
finite burn targeting process is capable of addressing lower-thrust
scenarios, which may arise during main-engine-failure contingen-
cies. This investigation successfully demonstrates that linear
targeting algorithms for path planning and guidance need not be
limited by impulsive assumptions. Furthermore, the algorithm
presented serves as an alternative to nonlinear optimization methods,
which may not be feasible for autonomous flight applications.
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