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The general objective is the development of efficient techniques for preliminary design of trajectory arcs in

nonlinear autonomous dynamic systems in which the desired solution is subject to algebraic interior and/or exterior

constraints. For application to then-body problem, trajectoriesmust satisfy specific requirements, e.g., periodicity in

terms of the states, interior or boundary constraints, and specified coverage. Thus, a strategy is formulated in a

sequence of increasingly complex steps: 1) a trajectory isfirstmodeled as a series of arcs (analytical or numerical) and

general trajectory characteristics and timing requirements are established; 2) the specific constraints and associated

partials are formulated; 3) a corrections process ensures position and velocity continuity while satisfying the

constraints; and finally, 4) the solution is transitioned to a full model employing ephemerides. Though the examples

pertain to spacecraft mission design, the methodology is generally applicable to autonomous systems subject to

algebraic constraints. For spacecraft mission design applications, an immediate advantage of this approach,

particularly for the identification of periodic orbits, is that the startup solution need not exhibit any symmetry to

achieve the objectives.

Nomenclature

Ak;k�1, Bk;k�1,
Ck;k�1, Dk;k�1

= 3 � 3 submatrices of ��tk; tk�1�

A�t� = Jacobian matrix
a�t� � � �x; �y; �z�T = column vector that denotes the

spacecraft acceleration, km=s2

f�X� = a nonlinear vector function that depends
explicitly on the spacecraft state

N = number of patch states along a startup
solution

R�t� � �x; y; z�T = column vector that denotes spacecraft
position, km

t = time, s
V�t� � � _x; _y; _z�T = column vector that denotes spacecraft

velocity, km=s
X�t� � �R�t�;V�t��T = column vector that denotes the

spacecraft state
x, y, z = spacecraft position elements associated

with current working reference frame,
km

_x, _y, _z = spacecraft velocity elements associated
with current working reference frame,
km=s

�k = vector of constraints at the kth patch
state

�kj = the jth element of �k
�Vk = velocity discontinuity at the kth patch

state, km=s
� = prefix denotes a variation measured

relative to a reference arc
��tk; tk�1� = 6 � 6 state transition matrix from an

initial time tk�1 to a terminal time tk

Subscripts

k = subscript indicates the quantity is
associated with the kth patch state

Superscripts

T = superscript denotes transpose operation
� = superscript indicates the quantity is

evaluated along the reference solution

Introduction

F ROM a dynamic perspective, the libration points have been the
focus of many investigations since the initial work of Poincaré

[1]. In the last 20 years, periodic orbits in the three-body regime have
successfully served as the basis for trajectory design in various
missions [2–8], from the International Sun-Earth Explorer 3 (ISEE-
3) [2,3] to the more recent Genesis mission [8]. As the spacecraft
applications of multibody orbital analysis continue to expand, the
goals and requirements are also becoming evermore challenging.
Thus, strategies to isolate preliminary trajectory arcs that satisfy a set
of constraints in this regime must be available.

Most optimization schemes, or other analysis tools in the full
model, require a good initial guess or startup solution. Thus, the goal
of this study is the development of a strategy to more efficiently
produce preliminary designs for trajectories, in multibody regimes,
when constraints are incorporated. Though the examples presented
are related to spacecraft mission design in the n-body problem, the
generality of the method is preserved to accommodate other
applications. Ultimately, this approach represents a feasible
numerical scheme for the determination of trajectory arcs in
nonlinear autonomous dynamic systems where the desired solution
is subject to algebraic interior and/or exterior constraints.
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The approach proposed here involves a sequence of increasingly
complex steps [9,10]. Initially, the trajectory ismodeled as a series of
arcs. The arcs may be determined from a three-body model, a
multibody numerical solution, or a conic. An arc can also incorporate
some additional force, if appropriate, such as solar radiation pressure.
This initial analysis is useful in establishing the general trajectory
characteristics such as size, orientation, excursions in the in-plane
and out-of-plane directions, proximity to specified regions of space
(perhaps the libration points), and timing requirements. In the next
step in the process, the specific constraints aremodeled, aswell as the
associated partials, if not already available. Then, a differential
corrections process is employed to ensure position and velocity
continuity along the path while satisfying the constraints. The
process can also be used to determine preliminary requirements for
maneuvers that may be necessary to satisfy the constraints. In the
final step, the trajectory solution is transitioned to a full model that
incorporates any desired gravitational bodies,with ephemerides used
for the planetary locations. It may include other forces, such as solar
radiation pressure, as modeled previously. The focus of this effort,
then, is the further development of the mathematical relationships
and partials that are necessary to successfully merge the arcs in the
three- or n-body environment such that the constraints are satisfied.

Background

In generating a preliminary solution, the capacity to develop a
trajectory arc in the three- or four-body problem, one that satisfies a
set of constraints, is considered critical for an expanded design tool.
For instance, a halo orbit [11] is periodic and symmetric across a
fundamental plane in the rotating frame of the restricted problem.
Symmetry and periodicity are both, in this case, constrained.
However, an orbit can be periodic without being symmetric [12], as
is often the case in relative spacecraft motions [13] (i.e., formation
flight) near the libration points.

In the restricted three-body problem, where the equations of
motion are traditionally formulated in a synodic coordinate system, a
typical approach to determine a periodic path is to exploit the
symmetry of themathematical model. First, a startup arc, such as that
obtained from the Richardson approximation [14,15], is necessary.
Once the startup solution is available, the symmetry properties of the
model and the solution of interest, are employed in the design of the
differential corrector [11]. However, a differential corrector
specifically developed around some geometrical features will
naturally only be applicable to trajectories that share those features.A
traditional halo corrector, for example, is only useful when searching
for trajectories that are simply symmetric about the x–z plane.

As detailed in this investigation, it is possible to specify periodicity
as a constraint, without prior knowledge of the symmetry of the
solution. Using periodicity as a constraint is particularly useful in
exploring periodic orbits near the triangular points, or establishing
periodic formations near the libration points. In general, trajectory
arcs of any kind can be subject to a wide variety of point constraints
during the mission design process. The development is generalized
and applicable to any type of point constraint. It is assumed, of
course, that the initial guess is still in the vicinity of the desired
solution.

Dynamic Model

The elements of the spacecraft state vectorX�t� � �x�t�; y�t�; z�t�;
_x�t�; _y�t�; _z�t��T represent components of the spacecraft position and
velocity, associated with a generic reference frame. Based on this
definition, the nonlinear differential equations that govern the
evolution of X�t�, in any gravitational regime, may be generally
represented as

_X�t� � f �X�t�� (1)

LetX��t� and _X��t� identify a reference state, and the associated time

derivative. Then, according to Eq. (1), _X��t� � f �X��t��. The
general nonlinear state of the spacecraft can always be represented
relative to this reference state as follows:

X �t� �X��t� 	 �X�t� (2)

From the definition in Eq. (2), the variational equation associated
with Eq. (1) is of the form

� _X�t� � A�t��X�t� (3)

where

A�t� � @f
@X

����
X��t�

(4)

represents the Jacobian matrix evaluated along the reference
solution. The solution to this variational equation is well known and
depends on the state transition matrix (STM) ��t; t0�:

�X�t� ���t; t0��X�t0� (5)

The STM is determined by numerical integration of the matrix
differential equation

_��t; t0� � A�t���t; t0� (6)

subject to the initial condition ��t0; t0� � I, where I denotes a
properly dimensioned identity matrix. The variation in Eq. (5) is
generally said to be contemporaneous. That is, the variation �X�t� is
the difference between the actual nonlinear state X�t� and the
neighboring nominal state X��t�, evaluated precisely at time t.
However, the derivation of a differential corrections process benefits
from the introduction of a noncontemporaneous variation,

�X0 � � �X�t0� � �X�t� 	 _X�t��t (7)

where �t� t0 � t and _X is evaluated along the current (i.e., the
reference) solution. The relation between the contemporaneous and
noncontemporaneous variation is illustrated graphically in Fig. 1.

Substitution of Eq. (7) into Eq. (5) yields the following expression:

��X01 � _X�t1��t1� ���t1; t0���X00 � _X�t0��t0� (8)

If the initial time for the numerical propagation is held fixed, relative
to the nominal initial time, then �t0 � 0 and Eq. (8) can be further
reduced, i.e.,

�X01 ���t1; t0��X00 	 _X1�t1 (9)

Equation (9) is the basis of a standard two-level differential corrector.

Startup Arcs and Patch States

A differential corrections process requires a startup solution. Such
a trajectory arc may be the result of a numerical integration process
[16], perhaps one such that the path does not necessarily satisfy the
specified constraints. An initial guess can also be constructed from a
series expansion [14,15] that approximates the solution.

Fig. 1 Contemporaneous vs noncontemporaneous variations.
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Other alternatives, even conics, can also serve as a startup arc in
the ephemeris model. Once available, the startup solution is
decomposed into segments and nodes, or patch points. The process
of selecting patch points is somewhat open-ended. It is important,
however, that the patch points that are selected adequately capture
the overall character and geometry of the solution to ensure
convergence. At the same time, too many patch points can
unnecessarily constrain the search process and limit the solution
space that the corrector is able to identify. For instance, a Lissajous
trajectory in the n-body problem is geometrically well behaved.
However, due to the dynamically sensitive nature of the region near
the libration points, it is best to select at least four patch points per
revolution. Although two patch points may be sufficient to converge
on a Lissajous trajectory, four will ensure that the overall dimensions
of the startup arc are preserved if at all possible. These four patch
pointsmay be placed, for instance, at each of themaximumexcursion
points along the y and z directions in the synodic rotating frame.

Level 1 Differential Corrector

Once a startup arc is identified, the associated patch points are
employed in a level 1 corrections process. The goal of the level 1
corrector is simple, that is, to achieve position continuity (in the
nonlinear model) across all trajectory segments. The development of
the level 1 corrections process [17] is presented here for notational
completeness.

Suppose a startup trajectory arc is decomposed into N � 1
segments and N nodes. Each segment is characterized by an initial
time tk�1 and a terminal time tk, where k� 1; . . . ; N. At the initial
point along a segment, the six-dimensional state vector is defined in
terms of two three-element vectors, i.e., Xk�1 � �Rk�1 Vk�1 �T ,
whereas the terminal state vector is written Xk � �Rk Vk �T . The
formulation for the level 1 corrector can summarized as follows:

fixed constraints

�R 0k�1� 0� �R k�1; �tk�1 � �tk � 0 (10)

targets

�R 0k �R�k � R k � �Rk (11)

controls

�V 0k�1 � �V k�1 (12)

free

�V0k � �Vk (13)

In essence, a simple targeting scheme (i.e., an automated multiple
shooting method) is applied to determine the minimum impulsive
maneuver �V k�1 necessary to achieve a prespecified terminal
position Rk. Such a strategy is the basis of a level 1 differential
corrector, as illustrated in Fig. 2.

For a multisegment trajectory, the level 1 corrector is sequential;
thus, for k� 1; . . . ; N, the vector �R�k�1 V�k�1 � is numerically
integrated from t�k�1 to t�k . The results of this propagation are
represented by the state vector �Rk Vk �. In general, ifR�k represents
the “nominal” position for the terminal node, as specified by the
startup arc, and Rk is the actual numerically integrated terminal

position vector, then �R 0k �R�k � Rk denotes the noncontempora-
neous position variation. Implementation of the assumptions in
Eqs. (10–13), to the illustration in Fig. 1, further implies that
�R 0k � �Rk. The control variable that drives the iterative process is
�Vk�1 � Vk�1 � V�k�1, whereVk�1 � V�k�1 	 �Vk�1; thus,�Vk�1�
�Vk�1.

Consider Eq. (8) within the context of the notation in Fig. 2 where,
as presently written, k� 1. In general, the 6 � 6 STM, ��tk; tk�1�,
can be subdivided into four 3 � 3 submatrices such that

��tk; tk�1� �
Ak;k�1 Bk;k�1
Ck;k�1 Dk;k�1

� �
(14)

The subscript pair “k, k � 1” denotes the direction of the
propagation. For example, the right subscript, k � 1, denotes the start
time (tk�1) of the propagation, whereas the subscript to the left, k,
reflects the terminal time tk. Consequently, ��tk; tk�1��1�
��tk�1; tk� may also be decomposed into submatrices:

��tk�1; tk� �
Ak�1;k Bk�1;k
Ck�1;k Dk�1;k

� �
(15)

Employing this subscript notation in Eq. (8), the variational
equations for the segment in Fig. 2 may be rewritten as

�R 0k � Vk�tk
�V0k � ak�tk

� �
� Ak;k�1 Bk;k�1

Ck;k�1 Dk;k�1

� �
�R0k�1 � Vk�1�tk�1
�V0k�1 � ak�1�tk�1

� �
(16)

In Eq. (16), Vk and ak represent the actual nonlinear velocity and
acceleration vectors, along the current solution, as highlighted in
Fig. 1, at the terminal node. Similarly,Vk�1 and ak�1 are the velocity
and acceleration associated with the initial node on the current
trajectory segment.

The vector �R 0k�1 is the difference, or noncontemporaneous
variation, in position between the initial node on the current solution
and the initial node on the nominal solution, as detailed in Fig. 1. The
vector �V 0k�1 denotes the noncontemporaneous variation in velocity
between the current and nominal solutions. Similar definitions apply
for �R 0k and �V

0
k.

Note that, in linear systems analysis, the submatrices Ak;k�1,
Bk;k�1,Ck;k�1, andDk;k�1 are typically associated with a prespecified
reference solution, one that is known as a function of time. In a
differential corrections process, however, the complete nominal
trajectory is not necessarily known a priori. Instead, design
constraints are imposed and the goal is to identify an arc that best
satisfies these constraints. In this approach, the STM is evaluated
along the startup trajectory. The STM, and by implication its
submatrices, is subsequently updated during each iteration as the
startup arc is modified by the corrections process.

A relationship between the targets and the control variables is
obtained from direct application of Eqs. (13–15) to the variational
Eq. (16), that is,

�Vk�1 � B�1k;k�1
�
R�k � Rk

�
(17)

If this change in initial velocity �Vk�1 is applied to the current initial
velocity Vk�1, the error in final position R�k � Rk should become
smaller with each successive iteration. Note that a similar
relationship can be derived by applying the constraints in Eq. (10) to
the inverse of Eq. (16). This eventually reveals that

Bk;k�1 �
�
Ck�1;k �Dk�1;kB

�1
k�1;kAk�1;k

��1
(18)

where the submatrices with subscript k, k � 1 are associated with
��tk; tk�1�, whereas those with subscript k � 1, k are the submatrices
corresponding to ��tk�1; tk� ���tk; tk�1��1.

Level 2 Differential Corrector

In a study by Wilson and Howell [10], the initial development of
the two-level constrained corrector is presented. In particular, the
two-level corrector developed by Howell and Pernicka [17] is

kRδ

kV∆

1k −

k

Fig. 2 Stylized representation of the structure for the level 1

differential corrector.
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augmented with terminal boundary constraints on radial distance,
time, inclination, apse condition, and state.

The process is applied to the initial design of the Genesis
trajectory. In the present investigation, a generalization of this
methodology is developed and implemented as an end-to-end
mission design tool.

The level 2 differential corrector is a procedure based on three or
more patch points. The goal of the level 2 corrector is to
simultaneously determine a set of adjustments, or modifications, in
the state elements for all of the nodes (or patch points) to meet some
given set of constraints. Of theN nodes available, the first and last are
termed the initial and final states. All the remaining nodes are termed
interior patch points.Hence, if there areN patch points, thenN � 2 of
these nodes are interior patch points.

An example problem with three patch points is represented in
Fig. 3, where the subscript k � 1 denotes the initial state along one
segment, k	 1 identifies the final state on the next segment, and k is
associated with the interior state that connects the two consecutive
segments. The state vector at the initiation of a numerical
propagation process is labeled with a	 superscript, whereas that at
the end of a propagation is labeledwith the� superscript. The goal of
the level 1 corrections process is to achieve position continuity across
segments R	k �R�k . Once position continuity is achieved, the next
level of the corrections process enforces any given number of
constraints on any of the N patch points available. For instance,
Howell and Pernicka [17] employ a two-level corrector to enforce
velocity continuity at each of the interior points. In this case, three
scalar constraints are imposed on each interior point, V	k � V�k for
k� 2; . . . ; N � 1.

Velocity continuity across segments is formulated as a constraint
[10,17], applied at the kth node, such that V	k � V�k ��V�k � 0,
where�V�k represents the desired value of the impulsivemaneuver at
the kth node. Then, the goal of a level 2 corrections process is to
minimize the constraint error.

The control variables available to enforce the constraints at the
nodes are the positions and times associated with the nodes
themselves. Thus, the patch points in the level 2 corrector are allowed
to “float” in a sense.

The next step in a generalized level 2 corrector is to establish a
relationship between the control variables and the constraint
equations. To that end, consider the following set of variational
equations associated with each of the segments in Fig. 3, i.e.,

��R 0k�� � V�k �t�k
��V0k�� � a�k �t�k

� �

� Ak;k�1 Bk;k�1
Ck;k�1 Dk;k�1

� �
��R 0k�1�	 � V	k�1�t	k�1
��V 0k�1�	 � a	k�1�t	k�1

� �
(19)

��R0k�	 � V	k �t	k
��V0k�	 � a	k �t	k

� �

� Ak;k	1 Bk;k	1
Ck;k	1 Dk;k	1

� �
��R0k	1�� � V�k	1�t�k	1
��V0k	1�� � a�k	1�t�k	1

� �
(20)

Note that, in Eq. (20), the flow of the second segment is reversed to
evolve from tk	1 to tk. In the present development, each trajectory
segment is treated independently with respect to the rest of the
segments along the solution. For example, the variations in the initial
state at t	k�1 do not directly affect changes on the second segment,
from t	k to t�k	1. This segment independence results directly from the
sequential nature of the level 1 corrector. Using the same
terminology employed previously, the formulation for this particular
level 2 differential corrector is as follows:

fixed constraints

�R	k � �R�k � �0; t	k � t�k � 0 (21)

targets �
�V	k � �V�k

�
�� �V�k � � �V	k � � �V�k �� �V�k (22)

controls

� �Rk�1; �tk�1; � �Rk; �tk; � �Rk	1; �tk	1 (23)

free

� �V	k�1; � �V
�
k	1 (24)

Note that, if a deterministic maneuver is allowed at the kth node, then
�V�k ≠ 0. Based on Eq. (22), there are �N � 2� � 3 targets, three for
each interior patch point. The control variables, as previously stated,
are the position and times of allN patch points. Thus, in general, there
are N � 4 control parameters. Beyond the initial investigation by
Howell and Pernicka [17], it is also possible to specify arbitrary
constraints at any of the N patch points [10]. These constraints
become additional targets in a level 2 corrections process. In the
following section, additional constraints are presented to supplement
those originally presented byWilson andHowell [10] and expand the
generality of the method. Note that, unless too many constraints are
specified, this system will naturally be underdetermined.

To solve the subproblem in Fig. 3, it is necessary to relate the target
to the control variables, �R k�1, �tk�1, �Rk, �tk, �Rk	1, and �tk	1. In
the case of the velocity continuity constraint, the following
approximations are necessary:

�V�k �
�
@V�k
@R k�1

�
�R k�1 	

�
@V�k
@tk�1

�
�tk�1 	

�
@V�k
@Rk

�
�Rk

	
�
@V�k
@tk

�
�tk (25)

�V	k �
�
@V	k
@Rk

�
�Rk 	

�
@V	k
@tk

�
�tk 	

�
@V	k
@Rk	1

�
�Rk	1

	
�
@V	k
@tk	1

�
�tk	1 (26)

In the level 2 formulation, the partial derivatives are evaluated along
the current trajectory. As a result, the variations are defined as
�V�k � �V�k �� � V�k and �V	k � �V	k �� � V	k , and the velocity
continuity constraint is

�V	k � �V�k �
�
V	k

�� � �V�k �� � �V	k � V�k ���V�k ��Vk

(27)

This function can be obtained by subtracting Eq. (26) from Eq. (25):

��Vk ��V�k ��Vk �
�
� @V�k
@R k�1

�
�Rk�1 	

�
� @V

�
k

@tk�1

�
�tk�1

	
�
@V	k
@Rk
� @V

�
k

@Rk

�
�Rk 	

�
@V	k
@tk
� @V

�
k

@tk

�
�tk

	
�
@V	k
@Rk	1

�
�Rk	1 	

�
@V	k
@tk	1

�
�tk	1 (28)

Fig. 3 Stylized representation of level 2 differential corrector.
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Equation (28) is basically a Taylor series expansion of�Vk; hence,
the definitions in Table 1 are immediately apparent.

The determination of each of the partial derivatives in Table 1 is
accomplished through a finite difference approach. For example, to
isolate the variation ofV�k with respect toR k�1, all other independent
control variables are set to zero in the variational equations for the
relevant segment

�Rk � �Rk	1 � 0 (29)

�tk�1 � �tk � �tk	1 � 0 (30)

As a result, the partial derivative can be approximated as
@V�k =@Rk�1 
 �V�k =�Rk�1. The variations necessary to construct
these partials may be obtained through algebraic manipulation of the
variational Eqs. (19) or (20). The results of this finite difference
approximation are presented in Table 2.

For the level 2 velocity continuity constraint, substitution of the
preceding partials into the expressions in Table 1 leads to the results
in Table 3. The traditional statement [17] of the level 2 corrector is

��Vk ��V�k ��Vk

� @�Vk
@Rk�1

@�Vk
@tk�1

@�Vk
@Rk

@�Vk
@tk

@�Vk
@Rk	1

@�Vk
@tk	1

h i
|������������������������������������{z������������������������������������}

M

�R k�1
�tk�1
�Rk
�tk
�Rk	1
�tk	1

2
6666664

3
7777775

|�����{z�����}
b

(31)

In Eq. (31), the matrixM, containing all of the partial derivatives in
Table 3, is termed the state relationship matrix (SRM) and b denotes
the vector of variations in position and time. The linear system in
Eq. (31) can subsequently be summarized as ��Vk �Mb.

In a well-posed problem, the system is underdetermined; that is,
there are more control variables than target quantities. Hence, an
infinite number of solutions exist. In a traditional corrections process,
the minimum Euclidean norm solution is selected. The minimum-
norm solution is well known and computed as

b �MT�MMT��1��Vk (32)

The results from Eq. (32) suggest possible changes in the positions
and times of each patch state that may minimize the constraint
equations. These changes are applied in the nonlinear system and the
level 1 iteration is repeated to achieve position continuity. Of course,
the changes suggested by Eq. (32) only lead to a minimum-norm
solution in the linear system. In reality, it is unlikely that themodified
nonlinear path will exactly satisfy the constraints after position
continuity is reestablished in the nonlinear system.

At best, the updated nonlinear path will more closely follow the
given constraints. Ultimately, if a solution exists in the nonlinear
system, the interior values of�Vk should decrease, or approach the
nominal value, with every successive iteration.

Level 2 with Constraints

It is frequently necessary to specify additional constraints along a
particular trajectory. The level 2 differential corrector described in
the preceding section can be modified to allow general constraints at
any of the patch points that describe the solution. Incorporating
constraints at any patch point is possible as long as the constraint is of
the form

�kj � �kj
�
Rk;V

	
k ;V

�
k ; tk

�
(33)

or

�kj � �kj�Rk;Vk; tk� (34)

Thus, the scalar constraint �kj must be expressed as a function of the
position, velocity, and time that correspond to the patch point. The
first subscript index, k, on the constraint denotes the patch point with
which the constraint is associated. The second index j denotes the
constraint number at that patch point. This allows for multiple
constraints at multiple patch points. Let ��kj represent the desired

value of this algebraic constraint. Recall that the control variables in a
level 2 corrector are �R k�1, �tk�1, �Rk, �tk, �Rk	1, and �tk	1. To
incorporate these constraints into the corrections process, it is
necessary to establish a relationship between the targets,
��kj � ��kj � �kj, and the control variables. By definition, �kj can
depend explicitly on Rk and tk. However, there is no explicit
dependence on the remaining control variables. Instead, the
constraint may also depend on either V	k or V�k , or both. Such a
functional form introduces an implicit dependence on the other
control variables because the velocity discontinuities at the kth patch
point are related to the position and times of the nodes neighboring
the patch point of interest; in particular,

V 	k � V	k �Rk; tk;Rk	1; tk	1� (35)

V �k � V�k �Rk�1; tk�1;Rk; tk� (36)

Thus, the constraint equation can also be approximated, to the first
order, through the following Taylor series expansion:

Table 1 Level 2 partial derivatives of velocity

discontinuity across patch states

Partials with respect to position Partials with respect to time
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Table 2 Partial derivatives of velocity relative to patch state

control variables

Partials with respect to position Partials with respect to time
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Table 3 Summary of partial derivatives for level 2: velocity constraints at interior patch

points

Partials with respect to position Partials with respect to time
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The partial derivatives in Eq. (37) are evaluated along the current
solution. This expression may be further simplified by applying the
definitions in Eqs. (33), (35), and (36), that is,

@�kj
@Rk�1

�
@�kj
@Rk	1

� 0T (38)

@�kj
@tk�1

�
@�kj
@tk	1

� 0 (39)
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� @V�k
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� 03�3 (40)
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@tk�1

� @V�k
@tk	1

� 0 (41)

In Eqs. (38–41), 0T denotes a 1 � 3 row vector of zeros and 03�3
represents the 3 � 3 zero matrix. Substitution of Eqs. (38–41) into
Eq. (37) leads to the following variational constraint equation:
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The partial derivatives of V	k and V�kwere previously identified and
are summarized in Table 3. The only partials that remain to be
evaluated are

@�kj
@Rk

;
@�kj
@tk

;
@�kj
@V	k

;
@�kj
@V�k

(43)

These partials will depend on the formulation of the constraint.
Several examples are presented in the following sections.
Functionally, the constraints are additional targets in the terminology
used to describe the differential corrector. These are incorporated
into the numerical process by augmenting the SRM matrix by one
row for each scalar constraint. For instance, let u� ��R k�1; �tk�1;
�Rk; �tk; �Rk	1; �tk	1�T represent the control vector associated with
the kth patch point; then, �k is applied at this node such that
�k � ��k1; �k2; . . . ; �kj�. The level 2 corrector can yield a minimum-
norm solution to the following linear system

��Vk
��k

� �
�

@�Vk
@u
@�
@u

� �
|��{z��}

~M

u (44)

where u 2 R12�1 and ~M 2 R�j	3��12 is the augmented SRM matrix
associated with the kth node. The following section summarizes the
partial derivatives that are formulated to enforce a sample set of the
more common constraints.

Sample Constraints: Partial Derivatives

In the following sections, the development of several sample
constraints is presented. The general process of developing a
constraint equation, and its associated partial derivatives, is
independent of the dynamic regime. As long as the nonlinear system
possesses a linear representation that can be expressed in terms of a
state transition matrix, the two-level procedure is applicable.
Basically, the fundamental algorithm seeks a solution that is
continuous, smooth, and satisfies the nonlinear differential equations
in the absence of constraints.

The periodicity constraint will, naturally, only be applicable to
regimeswhere periodicity is possible. However, in this development,
“periodicity” is not specific to the gravitational n-body problem. The
partials are applicable to any dynamic system that exhibits periodic
motion, even outside the field of astronautics. The two-level
corrector, augmented by this constraint, simply seeks a solution to
the nonlinear equations that is continuous, smooth, and periodic.

The velocity magnitude constraint allows for a nonsmooth
solution. That is, the designer is able to specify a tolerance on the
discontinuity between segments. For space applications, this type of
design allowance is typically associated with nonzero impulsive
maneuvers.

The flight-path angle, right ascension, and declination constraints,
in this study, are applied to trajectory design in the n-body problem,
which encompasses the two- and three-body problems as well.
Ultimately, these constraints are designed to allowmore control over
the final geometry of the converged arc.

The specific energy constraint is unique to the two-body problem.
Even in n-body analysis, this formulation of energy is often a
prespecified design parameter, particularly for launch and return
constraints. However, in the immediate vicinity of the planet, the
two-body specific energy is an acceptable design parameter.

The final constraint considered here pertains to constraints with
arbitrary centers. This constraint is not specific to any dynamic
regime. In fact, this formulation addresses the issue of constraints
that may be mathematically formulated in a different reference
frame, with a different origin. No specific assumption concerning the
dynamic regime is introduced.

Periodicity Constraint

In any corrections process, a startup solution is required.However,
the startup arc does not necessarily have to satisfy all the constraints
imposed on the trajectory. For instance, in the circular restricted
three-body problem (CR3BP), the Richardson [14] series expansion
offers an approximation to a three-dimensional periodic halo orbit
that exists in the vicinity of a collinear libration point. Of course, if
the results from this approximation are numerically integrated in the
nonlinear CR3BP, the resulting arc is not periodic because the startup
solution is only an initial guess.

Traditionally, a truly periodic halo orbit is identified by defining
the initial state on the x axis and employing a simple differential
corrector that targets a state on the first return to the x axis
representing a half period (T=2) such that

_x T=2 � _yT=2 � yT=2 � 0 (45)

This type of corrections approach exploits the known symmetry of
the solution across the x–z plane in the rotating frame, where the
trajectory achieves a perpendicular crossing at the point ofmaximum
and minimum out-of-plane excursions. Of course, not all periodic

MARCHAND, HOWELL, AND WILSON 889



solutions in the CR3BP are symmetric across an easily identified
plane. For example, the plane of symmetry is not necessarily obvious
for orbits near L4 and L5. Also, for spacecraft formations near the
libration points, periodic configurations are known to exist, but they
are not necessarily symmetric. A standardized process is also sought
to identify asymmetric periodic arcs, a goal achieved through the
current methodology.

In essence, an asymmetric corrector is a generalized algorithm
based on the standard two-level differential corrector originally
developed by Howell and Pernicka [17]. Aside from state
constraints, an extended corrector, developed by Wilson et al.
[9,10,18,19], also allows for the inclusion of some algebraic
constraints. The initial development of this process was successfully
applied to the design of the Genesis trajectory [18,19]. The work
presented here further extends this approach into a more general
framework.

The search for asymmetric periodic arcs is initiated by imposing
the following vector boundary constraint:

� k �X�t1�	 � X�tN�� �
R1 � RN
V	1 � V�N

� �
(46)

In this case, the startup solution is assumed to consist of N patch
states; thus,X�t1�	 is the initial state associatedwith thefirst segment
along the trajectory, whereas X�tN�� represents the terminal state
along theN � 1 segment. Though the startup solution is not periodic,
it is assumed that it is reasonably close to a periodic solution to
provide an initial guess to the corrections process that is sufficient for
convergence of the process. Note that �kj is explicitly dependent on

the position and velocity vectors associated with the initial and
terminal points along the trajectory �k � �k�R1;V

	
1 ;RN;V

�
N� and,

through the velocity vectors, implicitly dependent on the time
associated with these nodes. However, the constraint vector is also
implicitly dependent on the positions and times associated with the
node immediately after the first and the node just before the last:

V 	1 � V	1 �R1; t1;R2; t2� (47)

V �N � V�N�RN�1; tN�1;RN; tN� (48)

Thus, a Taylor series approximation of�k, truncated to thefirst order,
may be written
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where ��k represents the desired value of the constraint vector, in this
case zero, to enforce periodicity. The partials with respect toR1,V

	
1 ,

RN , and V
�
N are straightforward and summarized as
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(50)

@�k
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� 0

I

� �
�� @�k

@V�N
(51)

The partials ofV�N andV	1 , with respect toR1, t1,R2, t2,RN�1, tN�1,
RN , and tN may subsequently be deduced fromTable 1. The resulting
approximation reveals that
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Thus, given a set of N patch states that represents a nearly periodic
startup solution, a standard two-level corrector, such as that in
Eq. (32), can be augmented by Eq. (52) to identify any asymmetric
periodic arc. In this study, this type of asymmetric corrections
process is applied to identify periodic orbits near the L4 and L5

libration points, as well as asymmetric periodic arcs that are relative
to a chief vehicle for formation flight.

Velocity Magnitude Constraint

If, instead of constraining the velocity vector directly, the
magnitude of the velocity discontinuity is constrained, then the form
of the constraint is

�kj �
��V	k � V�k ���

������������������������������������������������������
V	k � V�k

�
�
�
V	k � V�k

�r
(53)

The constraint is not an explicit function of position or time. Thus, the
only nonzero partials are with respect to velocity:

@�kj
@V	k

�

�
V	k � V�k

�
T

��V	k � V�k �� (54)

@�kj
@V�k

��

�
V	k � V�k

�
T

��V	k � V�k �� (55)

Note that these are essentially unit vectors in the direction of the
current velocity discontinuity; the sign is plus or minus ensuring that
it is parallel in either a positive or negative sense.

Flight-Path Angle Constraint

A constraint that is related to the apse condition is the constraint
associated with the flight-path angle. Let the flight path angle � be
defined by the expression

sin � � Rk � Vk
jRkjjVkj

(56)

where Vk � V	k . For simplicity, and to avoid quadrant ambiguities,
the constraint equation is formulated as

�kj � sin � � sin �des (57)

Then, the only nonzero constraint partials for theflight-path angle are

@�kj
@Rk
� VTk
jRkjjVkj

� Rk � Vk
jRkj2jVkj

RTk
jRkj
� VTk
jRkjjVkj

� sin �
RTk
jRkj2

(58)

@�kj
@Vk
� RTk
jRkjjVkj

� Rk � Vk
jRkjjVkj2

VTk
jVkj
� RTk
jRkjjVkj

� sin �
VTk
jVkj2

(59)

Note that either the apse constraint or the flight-path angle constraint
can be used to indirectly target true anomaly because true anomaly is
related to both of these conditions.
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Declination and Right Ascension Constraints

At a specific patch point, the orientation of Rk can be
expressed in terms of right ascension � and declination � relative
to some frame of reference. Let the reference frame be defined by
unit vectors x̂, ŷ, and ẑ such that the declination and right
ascension are evaluated as

sin ��Rk � ẑjRkj
(60)

tan��
�
Rk � ŷ
Rk � x̂

�
(61)

The declination constraint may be stated as

�kj � sin � � sin �des (62)

In this case, the only nonzero constraint partial is

@�kj
@Rk
� 1

jRkj

�
ẑT � R

T
k

jRkj
sin �

�
(63)

Similarly, the right ascension constraint may be represented as

�kj � � � �des (64)

Clearly, the partial relative to velocity is zero, whereas the partial
relative to the position vector is

@�kj
@Rk
�
�
1	

�
Rk � ŷ
Rk � x̂

�
2
��1 @

@Rk

�
Rk � ŷ
Rk � x̂

�

� �Rk � x̂�ŷ
T � �Rk � ŷ�x̂T

�Rk � x̂�2 	 �Rk � ŷ�2
(65)

Right ascension is often evaluated relative to a frame that rotates
with respect to the inertial frame, for example, the frame fixed to
the rotating Earth. In this case, the constraint also possesses a
time dependency. If the rotation rate of the frame ! relative to the
inertial frame is assumed constant and ! is defined in the ẑ
direction, then the time derivative of the x̂ and ŷ unit vectors can
be written in the form

@x̂

@tk
� !ŷ; @ŷ

@tk
��!x̂ (66)

so that, ultimately, the constraint partial with respect to time
reduces to

@�kj
@tk
� ! (67)

Specific Energy

Consider a constraint on the conic energy relative to an attracting
body. Such a constraint can be written

�kj �
1

2
Vk � Vk �

�p
jRkj
� 1

2
Vk � Vk �

�p���������������
Rk � Rk
p (68)

where�p is the gravitational constant for the desired body. The only
nonzero constraint partials, in this case, are

@�kj
@Rk
�
�pR

T
k

jRkj3
(69)

@�kj
@Vk
� VTk (70)

Constraints with Arbitrary Centers

Some constraints may be defined relative to a specific reference
point. For example, the apse [10] constraint is relative to a desired
central body (the Earth, for instance). The patch points that define the
trajectory are also associated with a center. However, a constraint
defined at a particular patch point need not have the same center as
that patch point. A constraint �kj can be defined relative to a centerA,
that is,

�kj � �kj�tk; ARk; AVk� (71)

where ARk is the position of the kth node with respect to centerA and

AVk is the velocity (i.e., time derivative) of ARk. If the state at the kth
patch point is defined relative to some other reference center B, then
the required constraint partials are

@�kj
@tk

;
@�kj
@BRk

;
@�kj
@BVk

(72)

where the relationship between the state at the kth node relative to
centers A and B is

BRk � BRA 	 ARk (73)

BVk � BVA 	 AVk (74)

Evaluation of the necessary partials is accomplished in either of two
ways: 1) evaluate the constraint partials relative to A and then
translate the results to B, or 2) translate the constraint definition to B
and then evaluate the partials with respect to B. For example, if the
apse constraint [10] is defined relative to center A as

�kj � ARk � AVk (75)

then the constraint partials with respect to center A are

@�kj
@ARk

� AV
T
k (76)

@�kj
@AVk

� AR
T
k (77)

Expressing these constraint partials relative to center B yields

@�kj
@BRk

� �BVk � AVB�T (78)

@�kj
@BVk

� �BRk � ARB�T (79)

If, however, �kj is first expressed relative to center B, then

�kj � �BRk � ARB� � �AVk � AVB� (80)

so that

@�kj
@BRk

� �BVk � AVB�T (81)

@�kj
@BVk

� �BRk � ARB�T (82)

which is the same result that appears in Eqs. (78) and (79).
As an additional example, consider the nonlinear constraint

related to velocity magnitude, i.e.,

�kj � AVk � AVk (83)

The constraint partials relative to center A are
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@�kj
@ARk

� 0T (84)

@�kj
@AVk

� 2AV
T
k (85)

Shifting the relationships in Eqs. (85) and (86) to center, B yields

@�kj
@BRk

� 0T (86)

@�kj
@BVk

� 2
�
AV

T
k � AV

T
B

�
(87)

Modifying the center of the constraint produces

�kj � �BVk � AVB� � �BVk � AVB� � BVk � BVk � 2AVB � BVk
	 AVB � AVB (88)

The constraint partials relative to center B are once again

@�kj
@BRk

� 0T (89)

@�kj
@BVk

� 2�BVk � AVB�T (90)

the same result originally presented in Eq. (87).

Results

Example 1: Asymmetric Periodic Orbits Near L4 and L5

In the late 1970s, Markellos and Halioulias [20] briefly explored
the identification of asymmetric periodic arcs in the general CR3BP.
Later, Zagouras [21] and Papadakis [22] focus more specifically on
the identification of periodic orbits near the triangular points of the
CR3BP. In the late 1990s, Zagouras et al. [23] also identified some
asymmetric orbits near the triangular points. Although the existence
of symmetric and asymmetric periodic arcs in the CR3BP has been
extensively studied, a subset of arcs nearL4 andL5 is selected here to
illustrate the success and robustness of the asymmetric corrections
process. The advantage of this methodology, as previously stated, is
that it requires no knowledge of the symmetry, or asymmetry, of the
orbit. All that is necessary is an initial guess that is nearly periodic,
regardless of the overall geometrical features.

Near the triangular points, in the CR3BP, one possible method for
acquiring a startup periodic arc is the Floquet analysis presented by
Howell and Marchand [13]. The analysis presented in [13] is
originally intended to assist in the identification of bounded relative
motions for formation flight applications. However, this same
approach is easily adapted here to the identification of periodic orbits
near L4 and L5. In this example, bounded or periodic motions are
sought nearL4. To that end, consider the linear stability properties of
this triangular point.

In the sun–Earth/moon system, evaluation of the Jacobian matrix,
in Eq. (4), reveals that the L4 libration point has six neutrally stable
eigenvalues,

�1;2 ��j:99999; �3;4 ��j:0045353; �5;6 ��j (91)

and six linearly independent eigenvectors. These eigenvectors, or
modes, are indicative of the existence of three different types of
motion near the L4 libration point. A sample set of solutions,
obtained by excitingmodes 1–2, 3–4, or 5–6, are illustrated in Figs. 4
and 5.
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Fig. 4 Linearized short-period natural motions near L4.
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The �3;4 eigenvalues are associated with the long-period mode,
roughly 221 years, and correspond to the sample solution in
Fig. 5. The remaining eigenvalues are associated with short-
period modes of about 1 year each, and the sample orbits are
those illustrated in Fig. 4. In the present investigation, only the

short-period modes are of interest. To illustrate the effectiveness
of the asymmetric corrections process, consider the sample
rectilinear vertical orbit in Fig. 4b. A sample set of patch states
along this rectilinear path are selected as a startup solution to the
corrections process described earlier. Again, note that this
corrector makes no assumptions about the shape or symmetry
properties of the orbit. Thus, the patch point selection is
somewhat arbitrary, though selecting a set of states that is
representative of the orbit geometry can enhance the convergence
properties of the algorithm. In the nonlinear system, the
corrections process is able to numerically establish a nearly
vertical orbit, though not rectilinear, that closely resembles that in
Fig. 4b. The results of this process, using the curve in Fig. 4b as
a startup arc, appear in Fig. 6.

The two short-period modes may also be combined to generate
generally three-dimensional orbits. However, to ensure that the
geometry of the startup arc is preserved during the corrections
process, additional interior constraints may be necessary. To
better illustrate this, consider the sample startup solution in
Fig. 7.

From the solution in Fig. 7, five patch points are selected for the
differential corrections process, as depicted in Fig. 8. The initial and
terminal patch states are arbitrarily selected along the orbit and are
labeled as points one and five. To preserve the overall features of this
orbit during the corrections process, control points are strategically
introduced at the second and fourth patch states, where the orbit
achieves extremal values in the z component. For instance, let zkdes
represent the desired value of the z component at the kth patch state,
for k� 2.

In addition to the periodicity constraint, implemented at patch
states one and five, the corrector matrix is also augmented to
incorporate the following constraints [24]:

� 2 �
z2 � z2des

_z	2

� �
(92)

The nonzero constraint partials, associated with Eq. (92), are defined
as
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Fig. 5 Linearized long-period natural motion near L4.
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Fig. 6 Converged vertical orbit near L4, determined in the nonlinear CR3BP.
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� �
(93)

@�2

@V	2
� 0 0 0

0 0 1

� �
(94)

Alternatively, if the initial startup arc already exhibits the desired z2,
one may simply fix the variation on this coordinate and augment the
SRM using only the velocity constraint in Eq. (92). The preceding
results are substituted into Eq. (42) and the resulting variational
equation augments the SRM for the corrections process. Once a
solution is reestablished in the nonlinear system, the resulting
trajectory may be used as a startup arc in generating the L4 vertical
orbit family. This step is easily accomplished via a simple numerical
continuation process. For example, in Fig. 8, z2des may be increased
with every successful completion of the corrector to generate the
family in Fig. 9.

When the vertical L4 family in Fig. 9 reaches a critical amplitude,
i.e., a bifurcation, additional constraints are necessary to ensure the
continuation remains within the vertical family. Similarly, an
alternate set of constraints may be established to follow along the

axial family of orbits. Specifically, x2 is constrained to some
specified target values x2des, whereas z2 is free. The results of such
propagation are illustrated in Fig. 10.

In the nonlinear model, this methodology is successfully adapted
to the identification of periodic orbits near any of the collinear points,
or relative periodic paths in the formation flight problem [13]. Of
course, this methodology is not restricted to the identification of
periodic orbits. For example, the constraint formulations involving
the radial distance, apse condition, time, and inclination [10]
combined with the additional endpoint constraints presented here,
were successfully employed in the design of the Genesis trajectory
[18,19].

Example 2: Genesis Trajectory Design

In the initial Genesis design [18], originally scheduled for a
February 2001 launch as illustrated in Fig. 11, the corrections process
was divided into a launch phase, an orbit phase, and a return phase.
However, the methodology presented here was also successfully
applied to an end-to-end design [19], where the launch leg, the
Lissajous trajectory, and the return leg were simultaneously
corrected as a single continuous constrained trajectory in the
ephemeris model. Interior nonzero maneuvers were necessary to
meet all the mission constraints. To implement these maneuvers, the
velocity discontinuity constraint at a specific patch point is relaxed
by specifying a maximum allowable maneuver. The resulting
trajectory, for an August–September 2001 launch window, is
illustrated in Fig. 12. The surface in Fig. 12 represents a collection of
solutions, generated at one day intervals, with radial, apse, and
inclination constraints applied at the launch point, right ascension,
declination, radial, and flight-path angle constraints applied at the
terminal state, and interior constraints to restrict the magnitude of the
maneuvers, including the Lissajous orbit insertion (LOI) maneuver.

Example 3: Periodic Formations near the Collinear Points

The asymmetric corrector employed in example 1 is successfully
applied to the identification of relative periodic orbits, in the
nonlinear model, for two spacecraft flying in formation near the L1
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Fig. 7 Sample sun–Earth/moon L4 orbit obtained via Floquet analysis and asymmetric corrector.
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Fig. 8 Location of patch states along startup solution and details of

state constraints at each patch point.
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andL2 libration points. Howell andMarchand [13] identify a number
of periodic and slowly drifting relative orbits for two spacecraft
flying in formation in the vicinity of an L1=L2 halo orbit. The
identification of the startup arcs is, once again, facilitated by a
Floquet approach [13]. The process of transitioning these periodic

arcs into the nonlinear model is accomplished through the use of the
asymmetric corrector discussed here. Figure 13 illustrates an
example where the initial arc is closed through the addition of
nonzero impulsive maneuvers at two points along the trajectory.
Within one or two iterations, the asymmetric corrector quickly
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Fig. 9 Neighboring L4 family of orbits obtained by varying the terminal z value in the asymmetric corrector.
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identifies the neighboring periodic arc and drives the initial
maneuvers to zero.

Conclusions

In this investigation, an asymmetric constrained differential
corrector is presented. An immediate advantage of this approach,
particularly for the identification of periodic orbits, is that the startup
arc need not exhibit any symmetry for the methodology to achieve
the formulated objectives or satisfy the imposed interior and exterior
constraints. The versatility and generality of the two-level
constrained differential corrector is demonstrated through three
distinct examples: the identification of asymmetric periodic orbits
near the triangular points, the end-to-end constrained design of the
Genesis trajectory, and the identification of periodic relative arcs in
the formation flight problem.

For autonomous dynamic systems, the methodology is suc-
cessfully applied to the identification of trajectory arcs subject to
algebraic constraints, periodic orbits, quasi-periodic trajectories,

or combinations thereof. It is important to note that the process
is in no way exclusive to the gravitational n-body problem or
spacecraft mission design. If the dynamic system is autonomous,
the constraints can be specified algebraically, and the constraint
derivatives exist, the methodology is easily adapted to a variety
of applications. For spacecraft mission design, however, the
results of this investigation demonstrate that the asymmetric
constrained differential corrector is able to minimize velocity
discontinuities and enforce constraints in a cohesive manner, and
proves to be an efficient end-to-end design tool.
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Fig. 13 Periodic relative path near a spacecraft evolving along an L2 halo orbit.
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