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Spacecraft applications like space-based interferometry have motivated investigations
into the feasibility of spacecraft formations near the libration points of the Sun-Earth/Moon
system. The sensitivity of the dynamical regime imposes extremely precise control require-
ments for non-natural formations. Unconstrained control laws tend to require acceleration
magnitudes smaller than existing thruster technology can provide. In the present study,
a methodology is presented that identifies actuator constrained solutions in the nonlin-
ear model. The optimal solutions that ensue are attainable with existing technology and
demonstrate the feasibility of spacecraft formationkeeping in the presence of actuator con-
straints in the Circular Restricted Three-Body Problem.

Nomenclature

B body-fixed frame
c constraint vector
f , f̃ dynamics function
J cost function
G gravitational constant
I inertial frame
m mass
n number of variables in x
nc number of constraints
nd number of deputy spacecraft
ng number of gridpoints
nk number of knots
nn number of nodes
ns number of segments
nu number of controls
ny number of states
R rotating frame
r position vector
T thrust acceleration magnitude
t time
U potential function

U control space
u control vector
v velocity vector
x parameter vector
y state vector
β path constraints
∆t time interval
ψ point constraints
ω rotation rate

Subscript
c chief spacecraft
d deputy spacecraft
i, ι vector element counter
j node counter
k, κ knot or segment counter
l, λ spacecraft counter
m midpoint
s star
¯ Sun
⊕ Earth/Moon barycenter
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I. Introduction

Interest in space-based interferometry has motivated many investigations1–16 into the feasibility of space-
craft formations near the libration points of the Sun-Earth/Moon system. The work to date can be char-
acterized by the dynamic model used to describe the motion, the class of the control scheme presented,
and the optimality of the controller’s performance. Early investigations focus on impulsive unconstrained
formationkeeping strategies in the Circular Restricted Three-Body Problem (CR3BP) based on target point
and Floquet methods.1 Continuous control techniques are later explored to track arbitrary reference trajec-
tories.2–7 Both linear (quadratic control with linearized dynamics) and nonlinear (Lyapunov-based) methods
are considered in these investigations. These techniques are later extended to formations determined in the
Ephemeris dynamical model.8–14 Recent efforts employ numerical optimization techniques in the design of
optimal spacecraft formations.15,16

The sensitivity of the dynamical regime near the libration points is apparent in the precise control
requirements for non-natural formations derived in the above investigations. Some studies17–22 focus on
reducing the lower performance bounds on thruster technology. However, unconstrained control laws in this
regime often require thrust levels below the limits of the technology presently available. The associated
control accelerations, though small, cannot be neglected if precision formation keeping is desired.

Missions like TPF23,24 and MAXIM25 require precision tracking during data collection phases, often with
the expectation that this be done in the absence of simultaneous actuation. Previous studies suggest this
is an unrealistic expectation. At the same time, high precision tracking is achievable only through precise
unconstrained control. The present study seeks to establish a systematic method for determining realistic
expectations for libration point formations in the context of the sensitive dynamic environment and the
current state of propulsive technology.

Constrained finite burn solutions, achievable with currently available technology, are the focus of this
investigation. Thus, solutions are constrained to account for limitations in thruster technology. Mission
requirements are also considered. Interferometry applications are of particular interest in the development
of actuator constraints consistent with potential capabilities of member satellites, leading to significant
spacecraft orientation restrictions. The restrictive—but realistic—assumptions applied here seek to establish
reasonable expectations for tracking accuracy for libration point formations.

Direct optimization methods are employed as the basis of the current analysis. The optimal control
problem is transcribed into a parameter optimization problem, and the solution is subsequently determined
using existing Nonlinear Programming (NLP) algorithms, such as SNOPT.26 The unique nature of this
problem motivates the development of a novel approach to solving complex actuator constrained optimal
control problems. An effective switching control scheme is presented that is critical to this development.

The formulation presented is applicable to generalized nonlinear systems. The approach is validated with
examples based on the CR3BP.

CR3BP Equations of Motion and the Reference Orbit

In this study, the formation is centered around an artificial reference point, c, that evolves along a Halo
orbit in the CR3BP. This reference point is employed in the development of the relative equations of motion.
Conceptually, this point may represent a central “chief” spacecraft in the formation. Subsequently, all other
vehicles are referred to as “deputies,” and their motion is determined relative to the state of the chief in the
synodic rotating frame of the CR3BP.

1. Equations of Motion

Define an inertial frame, I ≡ {x̂I , ŷI , ẑI}, with origin at the barycenter, B, of the two primary masses (in
this case, the Sun and the Earth/Moon) such that the orthogonal unit vectors x̂I and ŷI define the plane
of motion of the primary bodies. Subsequently, the unit vector ẑI is normal to the primary plane, and the
primaries rotate about the +ẑI axis.

In the CR3BP, it is convenient to describe the motion of a spacecraft in terms of a rotating coordinate
system, R, also centered at B, whose rotation coincides with the mean motion of the primaries. Let the
orthogonal unit vectors {x̂R, ŷR, ẑR} define the rotating frame, R, where ẑR = ẑI , and x̂R is directed from
the Sun to the Earth/Moon barycenter. The remaining axis, ŷR, completes the right-handed system such
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Figure 1. CR3BP Frame

that ŷR = ẑR × x̂R. The R frame rotates about ẑR = ẑI at a rate of ω, equal to the mean motion of the
primaries. The system is shown in Figure 1.

Let the position of the chief spacecraft, in terms of the R-frame unit vectors, be defined as
rRc ≡ [xc yc zc]

T . In addition, assume that

m¯ = mass of the Sun,
m⊕ = mass of the combined Earth/Moon system,
r¯c = distance between the Sun and the chief, and
r⊕c = distance between the Earth/Moon barycenter and the chief.

Given the potential function,

U =
(x2
c + y2

c )ω
2

2
+

Gm¯
r¯c

+
Gm⊕
r⊕c

(1)

the chief dynamics are described as,
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 , (2)

where G is the gravitational constant, and uc = [uxc uyc uzc ]
T is the external control acceleration.

Let the state of the chief be described by the vector yc ≡
[
rTc ṙ

T
c

]T
= [xc yc zc ẋc ẏc żc]

T . Equation 2 is
easily transformed into first order form,

ẏc = f̃(yc,uc) = f̃(yc,0), (3)

where uc = 0 since the chief spacecraft is assumed to evolve along a natural arc.
The general form of the motion in Equation 2 applies to the states of the lth deputy, such that the state

space representation is given by
ẏdl = f̃(ydl ,ul). (4)

The motion of the lth deputy relative to the chief is determined first by identifying the relative state vector,

yl ≡ ydl − yc. (5)
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Figure 2. Reference Halo Orbit for Chief Spacecraft with Origin at L1

Subsequently, differentiating Equation 5 implies that

ẏl = f̃(ydl ,ul)− f̃(yc,0), (6)

= f̃(yc + yl,ul)− f̃(yc,0), (7)
= f(t,yl,ul). (8)

Notice that the functions f̃ and f are not the same. It is apparent from Equation 7 that the relative
dynamics of the lth deputy depend on the absolute state of the chief, the relative state of the deputy, and the
control effort exerted by the deputy. Through manipulation of the arguments in Equation 7, it is observed
that the velocity terms related to the chief, ṙc, cancel away. Since the chief satellite is assumed to follow
a natural trajectory from some epoch and the path is predetermined, f̃ reduces to f in Equation 8, which
depends on time, the relative state of the deputy, and the external control of the deputy. Equation 8 is the
dynamical model used to describe the motion of a deputy spacecraft.

Note that traditional formulations of the CR3BP equations employ nondimensional variables.27 The
formulation presented here, however, uses dimensional variables to allow increased flexibility in the scaling
of the numerical algorithm.

2. Reference Halo Orbit

As previously stated, the chief spacecraft is assumed to evolve along an L1 Halo Orbit, as determined in the
Sun-Earth/Moon CR3BP. The initial state at the reference epoch is defined in R-frame coordinates as

rc(t0) = rL1 +



−166, 783.32

0
300, 000.00


 km (9)

ṙc(t0) =




0
281.28

0


 m/s. (10)

The position vector, rL1 , is the position of L1 from the Sun-Earth/Moon barycenter, approximately 148×106

km in the x̂R-direction. Thus, the Halo orbit begins at its northern most point, 300, 000 km north of the
libration point. The Halo orbit is displayed in Figure 2. The trajectory shown takes place over one orbital
period, approximately 178 days.
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II. Transcription Formulations for the Actuator Constrained Optimal Control
Problem

For a formation near a libration point, spacecraft maneuvering exhibits the unusual limitation that ideal
control solutions require thrust acceleration magnitudes smaller than existing technology can provide.17–22

In addition, it is conceivable that spacecraft orientation may be restricted by mission requirements, which
can inhibit maneuverability depending on the number and placement of thrusters on the spacecraft body.
When these two conditions are combined, the control problem is extremely constrained, motivating the
development of unique solution methods to handle these constraints. It is clear that with limitations in
thrust magnitude and direction, precision tracking is not achievable. However, optimal control methods can
be used to determine the level of tracking accuracy achievable under the circumstances.

In this context, direct numerical optimization methods are modified to treat these unique constraints.
The foundation of this approach is a general collocation method, presented first. The method is then
altered to divide a problem into multiple segments, allowing for ideal treatment of the control discontinuities
associated with finite burn control. Finally, the formulation is expanded to account for spacecraft orientation
restrictions. This ultimately requires dynamic changes in the time dependencies of each segment, but it is
this modification that leads to feasible formation control solutions.

A. A General Direct Method for Solving Optimal Control Problems

Consider a general Optimal Control Problem presented in the form of Bolza.28 The objective is to determine
the control history, u(t), which minimizes the cost function,

J = φ(t0,y0, tf ,yf ) +
∫ tf

t0

L(t,y,u) dt, (11)

where t0 is the initial time, tf is the final time, y ∈ Rny denotes the state vector, u ∈ Rnu represents
the control vector, y0 = y(t0), and yf = y(tf ). The optimal solution must satisfy the vector dynamical
constraint,

ẏ = f(t,y,u), (12)

as well as the constraints,

0 = ψ0(t0,y0), (13)
0 = ψf (tf ,yf ), (14)
0 = β(t,y,u). (15)

Here, ψ0 ∈ Rnψ0 is a vector of initial conditions, ψf ∈ Rnψf denotes the terminal constraints, and β ∈ Rnβ
represents the path constraints imposed over all t ∈ [t0, tf ]. Note, though all the constraints presented
here are formulated as equality constraints, that is not a necessary restriction. Extensions are available to
accommodate inequality constraints as well. For example, any inequality constraint, c̃ ≤ 0, can be converted
into an equality constraint, c = 0, with the use of a slack variable:28

c = c̃ + α2 = 0. (16)

In this case, the slack variable, α, is treated as a control parameter. When c̃ is satisfied along the boundary,
α = 0.

A direct collocation method begins with discretization of the states and controls. Let the optimal control
problem be discretized in time at nn different places called nodes associated with times tj , j = 1, . . . , nn. If
the discretized times are assumed to be uniformly spaced over the interval [t0, tf ], then

tj = t0 +
j − 1

nn − 1
(tf − t0) . (17)

Consider a parameter vector containing each of the states and controls at the nodes, along with the initial
and final time.

x =
[
y1(t0) · · · yi(tj) · · · yny (tf ) u1(t0) · · · ui(tj) · · · unu(tf ) t0 tf

]T (18)
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State variables, control variables, and time are all represented in this parameterization so that cost and
constraint functions in terms of x can easily be derived to represent the optimal control problem. The
subscript i identifies the ith element of a state or control vector, while j counts the nodes. This convention
is maintained throughout the present development. The parameter vector in Equation 18 is of dimension

n = (ny + nu)nn + 2, (19)

indicating the number of parameters that are optimized by the NLP algorithm.
The next step in collocation is to define cost and constraint functions in terms of x. The vector constraint

equation, c(x) = 0, accounts for the initial, final, path, and dynamical constraints. Specifically, let c(x) be
decomposed as

c(x) =
[
cTψ0

(x) cTψf (x) cTβ (x) cTẏ (x)
]T

. (20)

Each of the elements of Equation 20 is defined over the next sections of this document.

1. Point and Path Constraints

The initial and terminal constraints are defined as

cψ0(x) = ψ0(t0,y(t0)) (21)
cψf (x) = ψf (tf ,y(tf )), (22)

where cψ0 contributes nψ0 constraints and cψf consists of nψf constraints.
The path constraint, β, is enforced continuously for all t ∈ [t0 tf ]. With a parameterized set of states,

controls, and times, a logical way of implementing a path constraint is at each node individually. The nβ
path constraints are imposed at each of the nodes, such that

cβj = β(tj ,y(tj),u(tj)), (23)

cβ =
[
cTβ1

· · · cTβnn
]T

. (24)

This leads to nβnn path constraints. Note that in this formulation, the path constraints are not necessarily
enforced between the nodes. However, this is easily resolved, for example, by selecting a representative
number of nodes in the transcription. Making nn large limits the spacing between nodes and increases the
number of path constraints. As nn →∞, the constraints of cβ approach the continuous path constraints β.

2. Dynamical Constraints

Many different explicit or implicit integration schemes are available to model the continuity constraints that
enforce the dynamics of Equation 12. The scheme selected determines the characteristics of the transcription.
In this investigation, a Hermite-Simpson integration scheme is employed. This implicit integration scheme
requires three function evaluations and delivers an accuracy on the order of O(h5), where h = tj+1 − tj .
Define

tm =
1
2

(tj + tj+1) , (25)

ym =
1
2

(
yj + yj+1

)
+

h

8
(
f j − f j+1

)
, (26)

um =
1
2

(uj + uj+1) , (27)

fm = f(tm,ym,um). (28)

Then, the estimate of the state at tj+1 is given by29

ŷj+1 = yj +
h

6
(
f j + 4fm + f j+1

)
. (29)

Note that the process is not self-starting. An initial guess for yj+1 is necessary when evaluating this equation.
Also, the new estimate, ŷj+1, does not necessarily match the known states at time tj+1. However, an equality
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constraint can be imposed in the parameter optimization problem to ensure that they do match at the final
iteration. Thus, define the constraint,

cẏj = yj+1 − ŷj+1

= yj+1 − yj −
h

6
(
f j + 4fm + f j+1

)
. (30)

The residual equation is a vector of size ny, and it can be imposed between each node for j = 1, . . . , nn − 1.
Assembling all of these constraints into a single vector leads to ny(nn − 1) continuity constraints,

cẏ =
[
cTẏ1 · · · cTẏnn−1

]T
. (31)

When cẏ = 0 to within some specified tolerance, the dynamical constraint, ẏ = f , is met.

B. Multiple Segments and Knots

Consider the parameterization defined by Equation 18. A byproduct of this formulation is that the nodes
along the solution are evenly spaced between [t0, tf ]. The time associated with a given node is assigned
based on Equation 17. Of course, a constraint can be imposed anywhere along the path, not necessarily at
a point that coincides with a node. Consider, for example, a constraint associated with t = 4.2. If nn = 10,
t0 = 1 and tf = 10, then tj = j, and the time at each node is an integer value. Clearly, the parameterization
considered thus far is not equipped to handle this constraint. The ability to incorporate constraints at any
point along a trajectory is necessary in many applications.

For example, state discontinuities require intermediate constraints. An orbital transfer that employs
impulsive maneuvers requires some condition v+−v− = ∆v. A staged rocket experiences mass discontinuities
between stages. In each of these cases, the dynamics are impacted by these discontinuities.

Control discontinuities, on the other hand, do not necessarily require intermediate constraints. It is
conceivable for an optimal control history to exhibit “bang-bang” or “bang-off-bang” behavior, and optimality
conditions exist under these circumstances.30 However, there are no dynamic relations for the control effort
between nodes. Thus, a parameterized solution may exhibit u(tj) at one extreme and u(tj+1) at the other
extreme, and this may sufficiently represent the discontinuity. If the optimal solution includes control
discontinuities, though, an alternate parameterization is sought that is capable of implementing perfect
(instantaneous) control switching.

The discontinuity divides the trajectory into separate subarcs, or segments. In addition to discontinuities,
dividing a trajectory into different segments may be desirable to accomodate changes in the dynamic model
along the path. The path constraints on the states and/or controls may also change based on various
conditions. Thus, it is advantageous to parameterize the problem into multiple segments.

In the event a solution includes multiple subarcs, knots represent one alternative to devise a modified
transcription that accounts for any discontinuities introduced in the solution. A knot is a point that divides
two segments and may be either fixed or free in time. Knots represent an effective means of incorporating
constraints that vary by segment or discontinuities in either the state or control variables. Jump disconti-
nuities occur at a knot. For example, with finite burn control, the control may take on only a discrete set
of values, such as zero and a specified thrust magnitude, i.e. u ∈ {0, T ∗}. Thus, a knot is placed at every
point where the control switches value.

Figure 3 illustrates the conceptual relation between knots, nodes, and segments at two consecutive iter-
ations. Consider a formulation with ns segments. Each segment starts at either t0 or a knot and ends at
either another knot or tf . Thus, the formulation consists of nk = ns − 1 knots.

Let every segment consist of nn nodes. Although, conceptually, each segment may consist of a different
number of nodes, the transcription is simplified by assuming an equal number of nodes per segment. Fur-
thermore, while the nodes are uniformly spaced within a segment, they are not necessarily uniformly spaced
along the course of the trajectory. That is, each segment may span a different length of time. In most cases,
it is desirable for the segment duration (or the location of the knots) to be optimized as well. In Figure 3,
the knot times change between iteration p and iteration p + 1 as they are optimized by the NLP algorithm.
Consequently, assigned times for nodes change respectively to maintain uniform spacing per segment.

The easiest implementation of a multiple-segment formulation includes the terminal times of each segment
(that is, t0, the interior knots, and tf ) in the parameter vector. The interior knots contribute nk parameters,

7 of 23

American Institute of Aeronautics and Astronautics Paper 2008-6436



Time

S
ta

te
o
r

C
o
n

tr
o
l

Iteration p

 

 

↓
t0

↓
Knot 1

↑

↓
Knot 2

tf

↑

ns = 3 segments

nk = 2 interior knots

nn = 5 nodes/segment

Segment 1
Segment 2
Segment 3

Time

S
ta

te
o
r

C
o
n

tr
o
l

Iteration p + 1

 

 

↓
t0

↓
Knot 1

↑

↓
Knot 2

tf

↑

Segment 1
Segment 2
Segment 3

Figure 3. An Example of Segments and Knots at Two Consecutive Iterations

while t0 and tf are included in x as before. The parameterization described has ns segments, each with nn
nodes. Each node is associated with ny states and nu controls. The parameter vector is defined as,

x =
[· · · yTj,k · · · · · · uTj,k · · · · · · tk · · · t0 tf

]T
. (32)

In Eq. 32, yj,k = y (tj,k) and uj,k = u (tj,k) represent the state and control vectors (respectively) at the jth

node of the kth segment,

tj,k = tk−1 +
j − 1

nn − 1
(tk − tk−1) j = 1, . . . , nn, k = 1, . . . , ns, (33)

and tns = tf . The parameters tk, k = 1, . . . , nk, are the times at which each interior knot occurs. Thus, i
identifies members of a vector, j denotes the respective nodes, and k represents the relevant knot or segment.
The parameters can also be listed as

x = [· · · yi,j,k · · ·︸ ︷︷ ︸ · · · ui,j,k · · ·︸ ︷︷ ︸ · · · tk · · ·︸ ︷︷ ︸ t0 tf︸︷︷︸]
T . (34)

nynnns nunnns nk 2

and the dimension of the parameter vector is n = (ny + nu)nnns + nk + 2. The number of variables for
multiple segments is approximately ns times the number of variables for a single segment. However, multiple
segments also introduce additional constraints.

c(x) =
[
cTψ0

(x) cTψf (x) cTβ (x) cTẏ (x) cTs (x) c̃Tt (x)
]T

(35)

The initial conditions and final conditions remain unchanged. The path constraints, cβ(x), still impose
the nβ conditions of β at each of the nodes. That is, within a segment, there are nβnn elements in cβ .
Since there may be path constraints along each segment, cβ becomes a vector of dimension nβnnns. Con-
tinuity constraints within a segment are similarly addressed using the Hermite-Simpson implicit integration
scheme to impose the dynamical conditions. However, since there are ns segments, ny(nn − 1)ns continuity
constraints are included in cẏ.

The next set of constraints, cs, establishes conditions between segments (at the knots). These may
include intermediate point constraints or continuity conditions. Generally, the vector cs is used to address
continuity between segments. At the knots, time continuity is assumed so that the last node of the kth

segment occurs at the same time as the first node of the (k + 1)th segment. Additionally, state continuity
is required across segments. Thus, position and velocity states are subject to equality constraints. The
behavior illustrated at Knot 2 in Figure 3 is representative of a state continuity constraint at a knot. Thus,

csk = y1,k+1 − ynn,k, k = 1, . . . , ns − 1, (36)

cs =
[
cTs1 · · · cTsns−1

]T
, (37)
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and cs is a vector of dimension ny(ns − 1).
The last set of constraints are time inequality constraints of the form c̃t(x) ≤ 0. Although knots are

allowed to float freely in time, their order must be chronological. If the kth knot lags behind the (k − 1)th

knot, for example, the duration of the associated segment is negative, a nonsensical result. To prevent this
behavior, let

c̃tk = tk−1 − tk, k = 1, . . . , ns, (38)

c̃t =
[
c̃t1 · · · c̃tns

]T
, (39)

where, again tns = tf . The variable segment durations produce ns time conditions.
The total number of constraints, including initial conditions, final conditions, path constraints, dynamical

constraints, knot continuity constraints, and time inequality constraints becomes

nc = nψ0 + nψf + nβnnns + ny(nn − 1)ns + ny(ns − 1) + ns. (40)

The vector c(x) now includes both equality and inequality constraints. In setting up the NLP problem, the
user must exercise care to properly differentiate between the two types of constraints.

A more convenient parameterization includes the duration of the segments, ∆tk, in the parameter vector
x, instead of the knot times. Consider the parameter vector,

x = [· · · yi,j,k · · ·︸ ︷︷ ︸ · · · ui,j,k · · ·︸ ︷︷ ︸ · · · ∆tk · · ·︸ ︷︷ ︸ t0 tf︸︷︷︸]
T . (41)

nynnns nunnns ns 2

The dimension of x is now n = (ny + nu)nnns + ns + 2, adding one dimension to the previously identified
parameterization (ns durations are needed instead of nk times). This offers the advantage of converting the
inequality constraints of c̃t(x) into a single equality constraint. Let the knot times be defined as

tk = t0 +
k∑
κ=1

|∆tκ| . (42)

Then the inequality, tk−1 − tk ≤ 0, is guaranteed, and need not be included in the constraint vector, c(x).
Instead c̃t(x) is replaced by the single time equality constraint,

ct(x) = (tf − t0)−
ns∑

k=1

|∆tk| . (43)

Now, the total constraint vector is simply

c(x) =
[
cTψ0

(x) cTψf (x) cTβ (x) cTẏ (x) cTs (x) ct(x)
]T

, (44)

which includes
nc = nψ0 + nψf + nβnnns + ny(nn − 1)ns + ny(ns − 1) + 1 (45)

equality constraints. An appealing aspect of this alternate formulation is that it is not necessary to track,
during the solution process, which constraints are active. In this formulation, all constraints are active at
all times. This formulation also enhances the convergence properties of the algorithm.

For instance, constraints may not necessarily be satisfied at a given iteration leading to convergence.
The inequality constraints previously mentioned are applied to avoid the occurrence of segments of negative
duration. However, in the intermediate step leading to a solution, some segments may violate this constraint.
Depending upon the specific nature of the problem, this may prevent the optimizer from converging on a
solution. The formulation employing segment durations ensures this situation does not arise.

Furthermore, |∆tk| can be replaced by ∆tk if a simple bound is placed on the variable to limit it to
nonnegative values. In other words, the numerical algorithm can be instructed not to search for a solution
where ∆tk is negative. This has the same effect as the absolute values formulation.
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U1 U2

Figure 4. Control Spaces (a) U1 (Orientation Free), and (b) U2 (Orientation Fixed)

C. Switching Segments and Time for Spacecraft Orientation Restrictions

The multiple-segment formulation presented facilitates the realization of finite control acceleration solutions
for spacecraft problems. For example, a segment can be pre-designated to be either a thrusting arc or
a coasting arc, and the optimizer can determine the durations for each segment and the dynamic thrust
direction (i.e. spacecraft orientation profile) during each thrusting arc. In this case, the parameters, ∆tk,
indicate thrust durations, while uj,k represents the thrust direction at each node. This formulation is relevant
when the control pointing direction is unconstrained.

Additional modifications are necessary to handle restrictions on the orientation of a spacecraft. This
investigation considers the case when mission requirements dictate the orientation of a spacecraft for arbi-
trarily long time durations, imposing significant limitations on spacecraft control. An alternative formulation
to the transcribed optimal control problem is now considered to address this highly specific restriction. The
orientation of the vehicles is assumed to be completely pre-specified and independently controlled. Position
control is still possible, however, as long as the spacecraft is able to generate thrust along each axis.

Assume that the orientation of the lth deputy spacecraft is described by a body-fixed coordinate frame
Bl ≡ {x̂Bl , ŷBl , ẑBl}, the thrusters are aligned with the Bl frame, and they are either off or producing
accelerations of magnitude T ∗ along the principal directions. Thus,

ui,l (ui,l − T ∗) (ui,l + T ∗) = 0, i = x̂Bl , . . . , ẑBl , l = 1, . . . , nd. (46)

The control histories for all trajectories must meet this constraint. If the control effort is limited to the set
U = {−T ∗, 0, T ∗} along a principal direction, then the optimal solution determines both the time at which a
burn is initiated and the duration. The action commanded for each thruster is independent of the commands
issued to all other thrusters. This problem creates several additional difficulties in determining feasible, and
certainly optimal, solutions.

The first difficulty arises from the fact that there are only a finite number of potential thrust configu-
rations. This is easily demonstrated by comparing the solution space for orientation free versus orientation
fixed spacecraft. In Figure 4, the control spaces, U1 and U2, are compared, where U1 and U2 are the sets of all
possible control values in the orientation free and orientation fixed scenarios, respectively. Clearly, in both
scenarios, the spacecraft is free to coast (zero thrust). If the attitude of the spacecraft is free to change, for
a given thrust magnitude, the thrust vector may be aligned with any vector originating from the center and
terminating on the surface of the U1 sphere of radius T ∗. In contrast, the orientation fixed scenario has only
a discrete set of possible control values. In addition, when thrusting in a combination of two or three axes
directions, the net thrust magnitude is larger than T ∗. The variable T ∗ represents the lower limit for feasible
thruster performance, which is likely greater than an ideal (unconstrained) control acceleration. When the
net magnitude in a non-principal direction is even larger than T ∗, spacecraft maneuverability becomes even
more constrained.

An additional difficulty arises during the transcription of the optimal control problem. At any time, there
are a finite number of thrust options. With nu = 3 thrusting directions (in this case x̂Bl , ŷBl , and ẑBl), and
three possible control values in each direction (−T ∗, 0, T ∗), there are 33 acceleration options for the control.
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In general there are 3nu possible control combinations for a spacecraft, since nu may be greater than three
if there were thrusters in non-principal directions. The goal of this study is to devise a method that allows
the optimizer to choose the optimal switching sequence for each thruster.

One way to accomplish this is to use the constraint in Equation 46. Unfortunately, gradient methods
move a point towards the closest root of the constraint, independent of whether it is the right root to choose.
Once the constraint is met, it is difficult, if not impossible, for an NLP algorithm to seek another root.
Essentially, the NLP algorithm is asked to optimize over a finite set of values. However, gradients cannot be
defined between “on” and “off” for a thruster. Although the constraint is valid, it cannot be implemented
with traditional transcription.

To circumvent this problem, consider the multiple-segment formulation of Section B. Instead of optimiz-
ing the control values, assume the control values and optimize the switching times. In one implementation,
a formulation is devised that assigns each segment one of the 3nu options, and then requires the optimizer
to determine the duration of each segment. With this formulation, the predetermined control values are
removed from the parameter vector.

For example, a segment k is designated with control u(tj,k) = [T ∗ − T ∗ 0]T for all nodes j = 1, . . . , nn
along that segment. If this control combination is not desirable in the optimal solution, the optimizer
determines that the duration of that segment, ∆tk, is zero. With ns = 3nu segments, it is conceivable that
the durations of several, if not a significant number of segments are reduced to zero. Recall that any segment
includes parameters for the nn nodes with ny states assigned to each node. Since no time elapses over a
zero duration segment, no changes are applied to any of the states over that segment. Thus a zero duration
segment implies that some to many of the variables in the NLP problem are essentially wasted, taking up
space and computational time, but contributing nothing to the solution.

In addition, without having insight into the optimal solution, no information is available regarding the
order of the segments. Consider the optimal solution that requires thrusting in the ẑ-direction followed by
thrusting in the x̂-direction. If the segments are not prearranged in that order, there is no way to achieve
this solution under the formulation with only 3nu segments. Instead, one might include multiple sets of 3nu
segments. This also allows for multiple firings in any direction. With m sets, there are now ns = (3nu) m
segments. The resulting NLP problem is naturally large, with many wasted variables to slow down the
algorithm.

The formulation ultimately selected for this investigation minimizes the number of variables while offering
the greatest flexibility in the solution process. Knots and segments are employed, but their definitions
are slightly altered. This formulation is considerably more complex and non-intuitive in contrast to the
traditional multiple-segment formulation. However, these inconveniences are outweighed by the formulation’s
ability to consistently determine feasible and optimal solutions.

The salient feature of this formulation is that each of the control axes is treated independently, in contrast
to earlier formulations that consider all control combinations and subsequently increase ns. Let a knot be
defined as any interior point where one member of the control vector switches from one value to another.
The fundamental distinction here is that each knot is associated with a control axis. Before, the knot times
could be described by tk, an array with nk values. Likewise, the segment durations were ∆tk, and there
were ns = nk +1 segments. Now, the knot times are described as ti,k, a two-dimensional array with nu×nk
values. In other words, there are knots for each control axis. The axis durations are also two-dimensional,
as ∆ti,k, with nu × (nk + 1) values. These are the time durations between two switches in a given axis. It
is important to note that this is not necessarily the duration of the segments. A segment is now defined as
the time elapsed between switches in any of the controls. For example, the first segment is bounded both by
t0 and the first switch in the control, regardless of the axis in which the switch occurs. With nunk interior
knots to separate the segments, the total number of segments becomes ns = nunk + 1.

Consider the concept demonstrated, as an example, with nk = 3 interior knots per each of nu = 3 control
axes. Figure 5 demonstrates the concept at two consecutive iterations of the optimization process. The
control values are pre-designated in a logical pattern. In each control axis, the control value begins at T ∗

(a positive thrusting arc), and a coasting arc follows the first knot. At the second knot, the control value
switches to −T ∗ (a negative thrusting arc) until the third knot, where another coasting arc begins. With
additional knots, this pattern continues. The control values in each of the nu control axes is designated
similarly. In this example, observe that the total number of segments is ns = (3)(3) + 1 = 10.

Let the time elements of the parameter vector, x, be identified as xt. The time elements include all of
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Figure 5. Conceptual Control Profile with Segment Divisions at Two Consecutive Iterations

the axis durations, ∆ti,k, along with the initial and final time. Here, xt is defined as

xt = [ ∆t1,1 ∆t1,2 ∆t1,3 ∆t2,1 ∆t2,2 ∆t2,3 ∆t3,1 ∆t3,2 ∆t3,3 t0 tf ]T . (47)

The knot times, ti,k, are defined according to elements in xt.

ti,k = t0 +
k∑
κ=1

|∆ti,κ| . (48)

Thus, ∆ti,k, represents the time duration between the knots located at ti,k−1 and ti,k. The definition in
Equation 48 guarantees that the knot times remain in chronological order for a given control axis. That is,

ti,k−1 − ti,k ≤ 0, k = 1, . . . , nk + 1 (49)

where ti,0 = t0 and ti,nk+1 = tf . For example, in Figure 5, t2,1 preceeds t2,2, which is followed by t2,3.
However, there is no relation between knot times in different control axes. Therefore, t2,1 need not be after
t1,1. In general,

ι < i 6⇒ tι,κ ≤ ti,k ∀ i, ι = 1, . . . , nu, ∀ k, κ = 1, . . . , nk. (50)

Compare the arrangement of knot times for iteration p and iteration p + 1 in the figure. Both illustrations
represent valid arrangements for the knots. However, it is clear that the chronological ordering of all the
knots may change during the optimization process.

This algorithm defines segment boundaries by the chronological ordering of knot times, including t0 and
tf at the end points. Let the unordered segment boundaries be defined as

[
t′0 · · · t′κ · · · t′ns

]
= [t0 t1,1 · · · ti,k · · · tnu,nk tf ] . (51)

Because knots are completely free to move on [t0 tf ] and are independent between control axes, the segment
boundaries, t′κ, are not necessarily in ascending order. Thus, a sorting algorithm converts t′κ into the
sequential listing, tk, of the segment boundaries. Now, tk−1 and tk bound the kth segment.

Observe, for example, that Segment 5 is bounded at the pth iteration by knots located at t2,2 and t3,2.
Between iterations, though, the axis durations ∆ti,k change values, thereby changing the positions of the
knots at the next iteration. At iteration p + 1, Segment 5 is bounded by t3,1 and t2,3. Completely different
sets of variables now define the segment boundaries! Expressing the segment boundaries for Segment 5 in
terms of xt, on the pth iteration,

t4(xt) = t2,2(xt) = t0 + |∆t2,1|+ |∆t2,2| , (52)
t5(xt) = t3,2(xt) = t0 + |∆t3,1|+ |∆t3,2| , (53)
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while on the (p + 1)th iteration,

t4(xt) = t3,1(xt) = t0 + |∆t3,1| , (54)
t5(xt) = t2,3(xt) = t0 + |∆t2,1|+ |∆t2,2|+ |∆t2,3| . (55)

Thus, the dependencies of segment boundaries continuously change throughout the optimization process.
The term segment-time switching is used to refer not only to the switching aspect of the control, but more
importantly, to the switching dependencies of a segment’s time elements demonstrated here. Segment-time
switching is the fundamental characteristic of the parameterization presented in this investigation.

1. Implementation Considerations

Significant complexities arise in the implementation of the segment-time switching algorithm. The NLP code
relies on using gradients to determine a search direction to improve the current set of parameters. However,
gradients become considerably difficult to calculate, either analytically or numerically, due to the switching
dependencies.

For example, consider the dynamical constraints of Equations 30 and 31, which necessarily rely on the
values of segment boundaries, as

h =
tk − tk−1

nn − 1
. (56)

However, since their dependencies on parameters in x change upon each iteration, the evaluation of the

constraint gradients,
∂c(x)
∂x

, becomes nontrivial. If gradients are calculated analytically, the algorithm
must identify the current dependencies for segment boundaries. This begins when boundaries are placed in
chronological order. The sorting algorithm updates and identifies which value of ti,k corresponds to each
value of tk. The extent of the actual dependencies on parameters in x cascades from there.

Alternatively, gradiently may be calculated numerically using finite differences. Depending on the NLP
algorithm employed, this may be an automated process. However, a user must exercise care to ensure that
the finite differences are evaluated for all possible dependencies on each iteration. With many parameters,
this process consumes a significant amount of time on each iteration, thus slowing the solution process
dramatically. A solution derived in five minutes using analytical derivatives may require up to twenty-four
hours with numerical derivatives.

2. Transcriptions with Multiple Spacecraft

The above results are now extended for applications to spacecraft formations. Let nd designate the number
of deputy spacecraft in the formation. In this case, there are ny states per spacecraft (6, in the case of 3-
dimensional dynamics), nu controls per spacecraft (≥ 3, in the case of 3-axis control), nn nodes per segment,
nk interior knots per control axis (control switches), ns = nunk + 1 segments over which the dynamics must
be satisfied, and nd deputy spacecraft. The resulting parameter optimization problem has n variables and
nc constraints.

For each spacecraft, and for each node in each segment, a variable that represents each state is re-
quired, thus contributing nynnnsnd variables. Similarly, a variable representing the duration between con-
trol switches in each axis is necessary, contributing nu(nk + 1)nd variables to the parameter vector. The
initial and final times contribute two additional variables. Thus, the number of variables required for this
formulation is, n = nynnnsnd + nu(nk + 1)nd + 2. The parameter vector is subsequently defined as,

x = [· · · yi,j,k,l · · · · · · ∆ti,k,l · · · t0 tf ]
T

, (57)

where the state indices are i = 1, . . . , ny, j = 1, . . . , nn, k = 1, . . . , ns, and l = 1, . . . , nd, and the time indices
are i = 1, . . . , nu, k = 1, . . . , nk+1, and l = 1, . . . , nd. Again in this formulation, the control accelerations are
not considered variables in the parameter vector. Instead, the control values are pre-designated within the
set U = {−T ∗, 0, T ∗} and are assigned specific values between switching times. The optimization variables
associated with the control vector, are simply the axis durations, ∆ti,k,l, which imply the times (knots) when
the control switches occur.
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The constraint vector for this formulation is the same as that listed in Equation 44, except there are
multiple time constraints, ct. The time restriction must hold for each axis and for each spacecraft, so
nt = nund. The total number of constraints in c(x) = 0 is

nc = nψ0 + nψf + nβnnnsnd + ny(nn − 1)nsnd + ny(ns − 1)nd + nund. (58)

The sizes for the initial and final conditions, cψ0 and cψf , are nψ0 and nψf , respectively. These dimensions are
likely increased relative to the previous formulation since there are now nd spacecraft. The path constraints,
cβ , are imposed at every node, along each segment, and for each spacecraft. The vector is sized accordingly.
The dynamic constraints, cẏ, are now of size ny(nn − 1)nsnd to enforce continuity between the nodes for
every state of every spacecraft along each segment. Continuity is enforced at the knots in cs by ny(ns−1)nd
constraints for every state of every spacecraft. Notice that the number of transitions between segments
equals the number of total knots, ns− 1 = nunk. Finally, there are nund time constraints contained in ct to
ensure that all axis durations sum to tf − t0.

III. Applications

The switching segment formulation is tailored to determine feasible and locally optimal spacecraft tra-
jectories for highly constrained formations. Considering deep-space imaging formations as the application,
it is reasonable to assume that constraints may be imposed on

• the size, shape, and orientation of the formation,

• the orientation of each member of the formation (deputy spacecraft),

• the thruster capability and thruster location on each spacecraft body.

Formationkeeping in the presense of all these constraints is naturally a difficult task. For example, although
a specified thrust magnitude can be limiting by itself, when the thrust direction is also restricted by require-
ments on spacecraft orientation, precision control is nearly impossible. Certainly, not all of these constraints
can be met simultaneously. Thus, the optimal control problem seeks to minimize deviations when constraints
cannot feasibly be enforced.

A. Formation Constraints

Define the scalar value r∗cdl to be the required radial distance between the chief spacecraft (reference origin)
and the lth deputy spacecraft. In addition, the scalar value r∗dλdl is defined as the generalized required
distance between deputy λ and deputy l. Recall the notation of relative states for the lth deputy as

yl =

[
rl

vl

]
=

[
rdl − rc
vdl − vc

]
. (59)

Let rλl = rdl − rdλ such that the formation constraints are of the form

rTl rl −
(
r∗cdl

)2 = 0, l = 1, ..., nd (60)

rTλlrλl −
(
r∗dλdl

)2 = 0, l = 1, ..., nd − 1, λ = l + 1, ..., nd (61)

Furthermore, let r∗cs define a vector pointing from the chief to a specified target point in space. If the target
is sufficiently distant from the spacecraft, r∗cs essentially points along an inertially fixed direction such that
r∗Ics = constant. This is not a necessary restriction, however. In general, r∗cs is written in the rotating frame
as a function of time: r∗Rcs = r∗Rcs (t). For imaging a distant point, the plane of the formation is assumed
perpendicular to r∗cs, that is,

rTλlr
∗
cs = 0, l = 1, ..., nd − 1, λ = l + 1, ..., nd. (62)

In Figure 6, both the formation size and orientation requirements are illustrated. Here, nd = 3, and specified
formation distances the same for each deputy force the formation to appear as an equilateral triangle. The
formation may take on many planar shapes with enough deputy spacecraft and through proper definition of
the formation distances.
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B. Control Constraints with Specified Spacecraft Orientation

1. Spacecraft Orientation

Let the orientation of the lth deputy spacecraft be defined by the body-fixed coordinate frame,

Bl ≡ {x̂Bl , ŷBl , ẑBl} (63)

where the unit vectors, x̂Bl , ŷBl , and ẑBl can be written in terms of any coordinate system. Most likely,
they are expressed in the frame in which the states are integrated, i.e. the CR3BP rotating frame, R.

For the subset of interferometry missions considered here, each deputy spacecraft points along a specified
direction for the duration of the mission or phase of interest. Therefore, define the first axis of the body-fixed
frame in the direction of the imaged point.

x̂Bl ≡
rcs
rcs

(64)

Note that the scalar rcs = |rcs| normalizes the unit vector. This axis is normal to the face of the spacecraft
containing an imaging payload. Now define the other coordinate axes as,

ŷBl ≡
rl × x̂Bl
|rl × x̂Bl |

, (65)

ẑBl ≡ x̂Bl × ŷBl . (66)

The vector ŷBl is roughly parallel to the direction of motion, and ẑBl is approximately aligned with the
radial distance from the chief. This statement is based on the assumption of equal spacing among deputies.
Note, however, that this coordinate system definition is valid even if the requirements specified by r∗cd and
r∗dd are not met.

2. Spacecraft Design

For simplicity, assume that each deputy has a cube-shaped structure and is equipped with a thruster on each
side, where the body frame, Bl, is aligned with the principal axes of the spacecraft. The attitude of each
spacecraft is independently controlled to maintain the proper alignment with the target.

It is not the intent of this work to suggest requirements on the structural design of a spacecraft. The
assumptions made here are generalized for the problem under consideration. As a result, it is assumed
the vehicles are capable of thrusting in all three body-fixed directions (although not necessarily at the
same magnitudes). This configuration represents a simple way of implementing the thrusting requirements
for the selected example. It is also one of the most limiting implementations. The method used in this
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work is generalized to consider other structural characteristics, but this implementation is a logical way
of demonstrating the methods and the effects that highly constrained spacecraft orientations may have on
performance.

3. Control Constraints

Consider the vector ul that defines the control acceleration for the lth spacecraft. In the body-frame,

uBl ≡




ux̂Bl
uŷBl
uẑBl


 , (67)

and the components of the vector are constrained to the values in the set U ≡ {−T ∗, 0, T ∗} as in Equation
46. This constraint must be imposed at all times, as this represents the true thrusting capability of the
spacecraft.

C. The Objectives

In this investigation, the control constraints of Section B are imposed by the problem formulation. That is,
thrusting solutions only include finite burns at the specified magnitude and in the specified directions. Thus,
the formation constraints listed in Section A cannot be perfectly met. However, the objective function is
selected to penalize deviations along the trajectory arc over t ∈ [t0 tf ]. In addition, a cost is assigned to the
duration of all burn segments to minimize the effort (thrusting) over the course of the trajectory. In general
the cost function weighs three separate sets of costs.

J = w1J1 + w2J2 + w3J3 (68)

The weights, wi, are selected to balance the costs of fuel and formation deviations. The cost indices are
formulated as integrals of the following form:

J1 =
nd∑

l=1

∫ tf

t0

uTl ul dt (69)

J2 =
nd∑

l=1

∫ tf

t0

(
rTl rl −

(
r∗cdl

)2
)2

dt +
nd−1∑

l=1

nd∑

λ=l+1

∫ tf

t0

(
rTλlrλl −

(
r∗dλdl

)2
)2

dt (70)

J3 =
nd−1∑

l=1

nd∑

λ=l+1

∫ tf

t0

(
rTλlrcs

)2
dt (71)

(72)

The cost, J1, is a quadratic cost on the thrust; J2 minimizes deviations in formation size and shape; and
J3 minimizes deviations in the formation plane. When input as a function of the parameters x, the cost
function takes the form,

F (x) = w1F1(x) + w2F2(x) + w3F3(x). (73)

The implementation of the parameterized subcosts follow.

1. Thrust

The control in each axis of each spacecraft is broken into nk + 1 axis segments, whose durations are ∆ti,k,l.
In addition the controls are already known for each axis segment: they can be expressed conveniently as

ui,k,l = T ∗ cos
(π

2
(k − 1)

)
, (74)

where i = 1, . . . , nu, k = 1, . . . , nk + 1, and l = 1, . . . , nd. Thus the control cost is simply,

F1(x) =
nd∑

l=1

nk+1∑

k=1

nu∑

i=1

∆ti,k,lu
2
i,k,l. (75)
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2. Formation Size and Shape Deviation

For the formation costs, added complexities stem from the node distribution from t0 to tf . Specifically, the
node distribution varies for each spacecraft, yet the deviation in the shape of the formation depends on the
position of each spacecraft at a given time. A simple solution is to perform an interpolation of the nodes for
each spacecraft. Using interpolated values, a representative number of points over the trajectory is selected
to approximate the integrals of Equation 70. Define the interpolated set of states as yj,l where j = 1, ..., ng,
and ng is sufficiently large to generate a uniformly spaced grid of points that describe the trajectories of the
l = 1, ..., nd spacecraft. The interpolated states are distinguished from those in Equation 57 by not having
a k subscript, as they are uniformly distributed between t0 and tf independent of knot locations. Then

F2(x) =
nd∑

l=1

ng−1∑

j=1

tj+1 − tj
2





([
3∑

i=1

y2
i,j,l

]
− (

r∗cdl
)2

)2

+

([
3∑

i=1

y2
i,j+1,l

]
− (

r∗cdl
)2

)2




+
nd−1∑

l=1

nd∑

λ=l+1

ng−1∑

j=1

tj+1 − tj
2





([
3∑

i=1

(yi,j,l − yi,j,λ)
2

]
− (

r∗dλdl
)2

)2

+

([
3∑

i=1

(yi,j+1,l − yi,j+1,λ)
2

]
− (

r∗dλdl
)2

)2


 (76)

computes deviations from specified distances between chief-deputy and deputy-deputy pairs.

3. Formation Plane Deviation

The cost associated with deviations in the formation plane exhibits the same complexities as the formation
shape cost. Once again, this difficulty is overcome through the use of interpolated points, yj,l. The resulting
cost index is

F3(x) =
nd−1∑

l=1

nd∑

λ=l+1

ng−1∑

j=1

tj+1 − tj
2





([
3∑

i=1

(yi,j,l − yi,j,λ) r∗(cs)i(tj)

])2

+

([
3∑

i=1

(yi,j+1,l − yi,j+1,λ) r∗(cs)i(tj+1)

])2


 . (77)

This cost function uses a trapezoidal approximation of the integral of Equation 71 to accumulate penalties
in plane deviation.

D. Sample Solutions

A candidate formation consists of nd = 3 deputy spacecraft, equally spaced as in Figure 6 with distance
r∗cd = 1 km between the chief and each deputy and r∗dd = 1.73 km between two deputies. The formation
seeks to collect data on a distant star located along the inertial pointing direction, r∗Ics = [1 0 0]T . Solutions
are found with several sets of parameters. A baseline solution is found with nn = 4 nodes per segment
and nk = 10 interior switch times per control axis, allotting for six thrusting segments per control axis per
satellite (three positive, three negative). A trajectory is devised with fixed initial states, and final conditions
dictate the formation size and plane constraints be met at the final time. Since the CR3BP is time invariant,
the initial time is set as t0 = 0. The formation nominally rotates about the reference with the same period
as the Halo orbit. By fixing the final time, tf , at a third of the reference Halo orbit period (approximately
5.1183× 106 seconds), the three deputies each complete a third of a rotation about the chief.

1. The Initial Guess

In numerical optimization problems, the initial guess, x0, is often a determining factor in whether an optimal
solution is successfully identified. A gradient-based numerical algorithm can only be trusted to find locally
optimal solutions, most likely in the vicinity of the starting point. Thus, identical problems can easily
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Figure 7. Baseline Initial Guess

converge on different solutions if starting from distant points. One way to manage this characteristic is to
use several different values of x0 to find solutions, choosing the minimum of the locally optimal solutions
as the globally optimal solution. For this effort, the successful identification of any feasible and locally
optimal solution to the highly constrained formation problem demonstrates the capability of the formulation
presented in Section II.

Collocation methods, where discretized states are included as parameters in the optimization, allow
the user to select an initial set of parameters that guides the optimization process towards a particular
trajectory. Although x0 does not satisfy the dynamical constraints, its states may represent the vicinity
of the desired solution. Through iteration, the optimizer modifies the current point until feasibility and
optimality tolerances are achieved. In this mindset, a baseline initial guess for this candidate formation
appears in Figure 7, depicting the trajectories of three spacecraft in the inertial and rotating frames, along
with a nominal control profile of the three spacecraft in their respective body frames. As seen in the
inertial frame, the trajectories satisfy the formation requirements (size and plane orientation) as presented
above, maintaining a plane perpendicular to the inertial pointing direction, r∗Ics . This set of states represent
a perfectly circular planar formation. Ideally, an unconstrained control profile is capable of delivering the
associated accelerations. The constrained controls shown here, however, do not produce these states. Instead,
the burn durations chosen for the initial guess simply distribute the time of each of the nunk+1 = 31 segments
equally. This choice, while somewhat arbitrary, frees the optimizer to search the solution space for the proper
durations of burning and coasting segments, while keeping the states fairly close to their ideal placement.
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Figure 8. Feasible Initial Guess

As an alternative, an initial guess can be generated that is feasible by propagating a guessed control
profile, say, that of the baseline guess. In this case, the initial guess satisfies the dynamical constraints
immediately, but the formation constraints are clearly not satisfied. In addition, deviations from the desired
formation characteristics are large. Thus, the cost is also large at the first iteration of the optimization
procedure. In Figure 8, a set of states is shown that is the true propagation of the arbitrary control profile
used in the baseline guess. It is apparent that the trajectories of three spacecraft driven by this control
profile are far from meeting any formation requirements.

Although this is a dramatic example, the difference between the baseline and feasible initial guess com-
municates an advantage to using a collocation method over an indirect or direct shooting method. Shooting
methods essentially “shoot” a guess for the control to the terminal time, making corrections on each iteration
to meet constraints. However, because of the extreme sensitivities of this dynamic regime, the quality of a
shooting guess is critical to the success of the process. A collocation method is far more flexible in the initial
guess.

2. Baseline Solution

The baseline initial guess is optimized via the fomulation presented in this work to yield the solution depicted
in Figure 9. The trajectories of the three spacecraft are shown in the inertial and rotating reference frames,
along with the control profile for each of the spacecraft.

First, it is observed that the optimization has modified the guessed segment durations to specify proper
burn times and burn durations. Burn segments are shortened and coast segments are lengthened according
to feasibility constraints (driving dynamic constraint residuals to zero) and optimality considerations (mini-
mizing fuel expenditure). Notice also that several burn segments have zero duration, depicted as a single line
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Figure 9. Baseline Solution

separating two coasting arcs. Recall that the formulation pre-specifies thrusting arcs. However, if a solution
does not require that thrusting arc, its duration is reduced to zero in the optimization. The structure of the
solution does not change, and a segment still exists in that place (occurring over zero time). Additionally,
nn nodes exist at a single point in time. Since the solution implies the given burn segment is superfluous,
many of the optimization variables have no effect (these are the states along the zero segment). However,
since no feasible control profile was known a priori, it is helpful to include more segments than ultimately
necessary until some insight into a feasible trajectory is extracted.

Next, it is apparent that the paths of each of the deputy spacecraft resemble the initial guess to a
significant extent. Certainly, deviations away from the “perfect” trajectory are visible, but the solution
implies that those deviations are necessary in order to identify a feasible trajectory given the specified
control restrictions. More importantly, the trajectory now coincides with the control history. For example,
the control discontinuities between segments result in corners in the velocity states for each spacecraft (not
shown).

One can also extract from the baseline solution an optimal rotation rate for the formation. By comparing
the inertial trajectories of the baseline guess and solution, it is apparent in the optimal solution that the
spacecraft traverse less distance over the time interval. This suggests that for a 1 km (radius) formation,
the optimal rotation rate is slightly less than the baseline guess of 2π/period.

The baseline solution demonstates the effectiveness of the solution technique on a highly constrained
optimal control problem. The sample mission requires fixed spacecraft orientation, fixed thruster locations,
and a specified thrust acceleration magnitude. Under these constraints, trajectories are sought to maintain
formation size, shape, and orientation restrictions. An unconstrained control solution that maintains the
formation configuration requires acceleration levels below those deliverable by existing technology. In the
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Table 1. Comparison of Solutions with Various Parameters

Baseline tf nk, tf Feasible Guess Thrust
nn 4 4 6 4 4
nk 10 10 20 10 10
tf (106 sec) 5.1183 10.2366 10.2366 5.1183 5.1183
Guess Baseline Baseline Baseline Feasible Baseline
wThrust

1
400

1
400

1
400

1
400

1
1600

wDistance 0.1 0.1 0.1 0.1 0.1
wPlane 1 1 1 1 1
Thrust (km/s2) 2.0e-12 2.0e-12 2.0e-12 2.0e-12 4.0e-12
n 2333 2333 6779 2333 2333
# Iterations 45 157 194 95 272
Computational Time (sec) 253.91 956.41 3000.35 575.88 1570.04
Weighted Thrust Cost 1.6233 5.8133 6.6838 10.9247 1.1324
Weighted Formation Cost 16.1818 634.3255 67.7092 35.5675 6.9286
Weighted Plane Cost 0.8591 84.6949 4.6852 4.9035 1.0632
Total Cost 18.6643 724.8338 79.0782 51.3956 9.1242

actuator constrained case, the proposed methodology determines reasonable performance expectations in
the presense of these system constraints.

3. Varying Parameters to Obtain Different Solutions

The methodology presented in this formulation serves to establish reasonable expectations for libration
point missions under the constraints imposed by the current state of technology. The generalized method
can be applied to any number of potential scenarios during the mission planning process. To demonstrate
the flexibility of the method, some formulation parameters are changed here to observe their effect on the
solution. The final time, the number of nodes and knots, the initial guess, and the thrust magnitude are
varied to determine four other solutions to be compared with the baseline in Table 1. The results vary in
size, solution convergence, and cost performance.

By doubling the fixed final time (now two thirds of an orbital period, or 10.2366× 106 seconds) without
any other changes, it is evident that the cost is significantly increased from the baseline. Of course, it would
be reasonable to expect the integral costs to be proportional to the final time. However, the solution is over
an order of magnitude greater in cost. That is because for a longer trajectory, a good solution necessarily
requires more maneuvers, and, subseqently, more knots (switching opportunities) in the problem formulation.

The next example maintains the longer final time, now including twice as many knots as the baseline. In
addition the number of nodes is increased to improve the fidelity of the solution. As a result, the dimension
of the parameter optimization problem increases significantly (from 2333 to 6779 variables). This requires
additional computational time for each iteration and an overall longer convergence time. However, including
more knots does lead to an improved solution relative to the previous example.

The feasible initial guess is also compared in performance to the baseline initial guess (using the original
final time and numbers of nodes and knots). In contrast to the baseline, the feasible guess does not lead to
an improved solution. Clearly, the baseline guess is in the vicinity of a smaller locally optimal point than
the feasible guess. This is expected since the feasible initial guess does not produce trajectories that meet
the formation requirements.

Finally, a solution is identified using a larger thrust magnitude than the baseline. Although the total
cost is less than the baseline, this takes into account a different weight on the thrust portion of the cost
index. The weight is selected to normalize the cost, dividing away the square of the thrust magnitude (in
scaled distance and time units). Each of the thrust acceleration magnitudes and cost function weights in
this investigation are selected arbitrarily. However, it is clear that these parameters can be tailored to values
that effectively represent a realistic mission scenario.
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IV. Conclusions

In this investigation, a method is presented for determining locally optimal control solutions for libration
point formations restricted to highly constrained actuation requirements. The process employs a collocation
(direct optimization) method with some unique modifications that guarantee solutions attained are physically
realizable with existing thruster technology. Modifications are based upon a segmented formulation with
switching sets of time dependencies. In this formulation, the optimizer determines precise switching times
for thrusters independently, resulting in an optimal actuation schedule.

Typically, collocation solutions are only approximations to continuous solutions. Generally, the numerical
solution consists of control values at nodes only, and values in between nodes are interpolated. However, the
control solutions presented in this investigation require no interpolation! The value of the control is already
known, and the optimizer determines the exact time to switch control values to the accuracy specified by
the user. Thus, numerical control solutions are immediately implementable with a continuous system.

The solutions presented demonstrate the method’s capability to minimize selected costs when determining
a feasible trajectory. A number of optimization parameters are selected to indicate the level of accuracy
required in the solution. In addition, a user specifies many relevant inputs, including

• formation configuration, size, orientation, and rotation rate,

• thruster capability and placement,

• dynamic model and reference trajectory, and

• initial and terminal conditions.

The generalized formulation allows this method to be relevant for many future applications. This methodol-
ogy is an effective mission planning tool for establishing requirements and capabilities for highly constrained
formations.
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