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The identification of feasible return trajectories that target, from the Moon, a pre-
cise location and approach vector at Earth entry is sensitive to the quality of the
startup arc provided and the associated maneuver planning.These sensitivities are
especially evident in the trans-Earth injection phase for Orion. As envisioned, a re-
turn from a lunar polar orbit employs three deterministic maneuvers. The concept
behind this return strategy is rooted in conic analysis. Thepresent study considers
precision entry targeting from the perspective of the multi-body problem. A dy-
namical systems approach considers the intersection of entry interface dispersion
manifolds with the Hill sphere of the Earth-Moon system. Thelocus of the inter-
sections serves as a guide during the design of the departuresequence and offers
a good measure of the likelihood of success in precision entry targeting based on
that arc.

INTRODUCTION

Precision targeting, in this study, refers to the identification of all maneuvers necessary to guide
the vehicle to a specific location on the rotating Earth with apre-specified approach vector at entry
interface. In the perturbed Earth-Moon system, this process is highly sensitive to the quality of the
startup solution. It is also sensitive to the maneuvers associated with the startup arc. These sensi-
tivities are evident in the trans-Earth injection phase of Orion. The startup arcs employed, in this
case, often rely on conic approximations and notions. For instance, a three-maneuver sequence is
commonly envisioned as the nominal case for the trans-Earthphase. The first trans-Earth injection
(TEI) maneuver is designed to raise apoapsis of the initial lunar orbit. The second maneuver ac-
complishes the necessary inclination change. Finally, thethird maneuver injects the spacecraft into
its final return path. The sequence and the associated maneuver schedule are illustrated in Figures
1(a)-1(b).

Of course, two-body approximations1 are not necessarily accurate for trajectory design in multi-
body regimes. This is particularly true when the path of the vehicle is expected to escape the
Hill sphere with a relatively low energy level. As the vehicle transitions through this dynamically
sensitive region, the gravitational influence of the primaries and the perturbing bodies can introduce
significant deviations from the intended path. This, in turn, affects the efficiency of algorithms that
seek to fine tune the departure parameters to achieve precision entry at Earth. It also affects the
subset of phase space explored by the algorithms in attempting to identify a feasible transfer.
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Figure 1. Orion Trans-Earth Trajectory and Maneuver Schedule

The investigation is focused, first, on developing a better understanding of the sensitivities asso-
ciated with a precision entry at Earth. This is accomplishedby propagating a representative sample
of dispersion trajectories for each of the six possible Earth Entry Interface (EEI) states considered
for Orion. The EEI state parameters are associated by an altitude of 121.912313 km, and an entry
speed of 10.992728 km/s. Then, each EEI state is uniquely determined by their geocentric latitude
and longitude, the flight path angle, and flight path azimuth as defined in Table 1.

Table 1. Entry Interface Parameters

Entry Parameter EEI-1 EEI-2 EEI-3 EEI-4 EEI-5 EEI-6

Longitude -115.5◦ -121.00◦ -134.5456◦ -151.4038◦ 173.5216◦ 175.6365◦

Latitude -46.66992◦ -8.8522◦ -19.20410◦ -7.14720◦ 15.36700◦ 15.36700◦

Flight Path Azimuth 0.0◦ 0.0◦ 13.9960◦ 34.1065◦ 62.3311◦ 49.3291◦

Flight Path Angle -5.81◦ -5.99◦ -6.03◦ -6.16◦ -6.16◦ -5.86◦

Together, the resulting set of dispersion trajectories aretreated as a segment of a “manifold”
surface associated with a particular EEI state. That is, this surface represents the subset of the
dynamical flow that converges onto the vicinity of the specified entry state in forward time.

The intersection of the dispersion manifolds with the Hill sphere is useful in more accurately
designing improved startup solutions. The Hill sphere is defined in the synodic rotating frame of
the Earth-Moon circular restricted three-body problem (CR3BP).2, 3 In this frame, it is assumed that
the primaries (i.e. the Earth and Moon) evolve along circular orbits about their common center of
mass. The rotatingx-axis is directed from the Earth to the Moon such that both primaries remain
equidistant along that line for all time. Thez-axis is normal to the plane of their orbits while the
y-axis completes the right-handed triad. The Hill sphere itself is centered at the smaller of the two
primary bodies, in this case the Moon. The radius of the sphere is approximately determined as

rs = a 3

√

µMoon

3µEarth

. (1)

The relative size of the Hill sphere, in relation to the Earth, Moon, and the libration points of the
Earth-Moon CR3BP is illustrated in Figure 2.
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Figure 2. CR3BP Hill Sphere: Earth Centered Synodic Frame

The intersection of each dispersion manifold with the Hill sphere can be represented as a locus of
points. The collection of all dispersion loci for a given EEIstate are useful, for instance, in identi-
fying whether a departure strategy for one EEI state is also suitable for one or any of the remaining
five. The loci are also useful in designing alternate departure schemes, specifically those that con-
sider the use of non-conic arcs derived from multi-body analysis. The understanding gained from
the study of the dispersion loci allows the designer to determine whether or not a conic departure
strategy is likely to succeed, how it could be modified, or whether an alternate departure strategy is
necessary. Furthermore, at the very least, designing startup arcs in the synodic frame is useful by
the simple fact that the Earth and Moon are both fixed on this frame. Thus, at least one can identify
startup arcs that lead to the general vicinity of the Earth. The improved quality of the startup arcs
would lead to a more computationally effective targeting process.

In either targeting4–6 or optimization,7, 8 the startup arc affects more than just the computational
effort. It also determines the neighborhood of phase space that is explored by the algorithm. Both
targeting4–6 and trajectory optimization9–12 algorithms explore only the immediate vicinity of the
reference solution. As a result, the solutions identified often resemble the startup arc in many ways.
This excludes, however, many other types of solutions that may offer improved trajectory options.
Thus, developing a better understanding of the dynamical flow associated with the types of solutions
sought is an important initial step in any targeting or optimization process.

A dynamical systems approach has often proven essential in acquiring this understanding in
multi-body regimes.13–15 The process characterizes the phase space into stable, unstable, and center
manifold flows around a reference solution. The present study is an initial step in that direction.
The general intent is to understand and exploit the dynamical structure of the Earth-Moon system
to identify feasible and lower cost startup arcs that more closely satisfy the mission criteria a priori.
No restrictions are placed on the geometry of the solutions or the location of the maneuvers.

The analysis presented here is initially focused on the dispersion analysis. The precision entry
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problem, for Orion, targets at most five quantities: altitude, flight path angle, geocentric latitude
and longitude, and flight path azimuth.5 The altitude, latitude, and longitude determine the position
components of the EEI state. The flight path angle and azimuth, then, characterize the approach
vector for the incoming velocity. The entry speed itself is not constrained. However, for the purpose
of constructing the dispersion manifolds, a representative entry speed is selected and held fixed.
Then, one at a time, each of the remaining entry parameters isperturbed relative to their nominal
values. These perturbed entry states are defined in the EarthMean Equator and Equinox of J2000
frame. This is consistent with the reference frame employedin the JPL DE405 ephemeris.16 That
is, the inertialX-Y plane is defined as the Earth Mean Equator, the inertialX axis is aligned with
the Vernal Equinox of J2000, the inertialZ axis is normal to the plane, andY completes the triad.
Subsequently, these inertial perturbed states are numerically integrated backwards in time in the
ephemeris model. The ephemeris model, in this case, assumesthe Sun, Earth, and Moon states
are available directly from the DE 405 ephemeris.16 Thus, only the spacecraft state is numerically
integrated while the states of the primaries and perturbingbodies are assumed to be known functions
of time. The trajectories associated with one of the five entry parameters are used to construct the
dispersion manifold for that quantity.

For each EEI state, then, a total of five dispersion manifoldsare generated. The associated trajec-
tories are transformed into the synodic rotating frame of the Earth-Moon system,17 where the mean
Hill sphere is defined. The loci of intersections of the dispersion manifolds with the Hill sphere
are identified. Then, the significance of the intersection loci, and their impact on lunar departure
strategies, is addressed.

To illustrate the impact of third and fourth body effects on the return strategy, a series of exam-
ples are considered next. At first, the examples are focused on the emergency contingency case:
targeting only altitude and flight path angle. A targeting algorithm5 is applied on a reasonable yet
infeasible solution so that the entry altitude and flightpath angle are met without violating the total
cost constraints. However, as previously mentioned, the quality of that startup arc limits the neigh-
borhood that targeting and non-evolutionary optimizationalgorithms explore. Thus, continuation
schemes are applied on the resulting arcs to explore the available solution space further and lower
the transfer costs. Significant cost reductions are achieved as a result. The newly converged solu-
tions are employed in a targeting algorithm5 to assess the sensitivity of the entry parameters relative
to the startup solution.

Dispersion Analysis

Earlier studies obtain startup arcs for the three maneuver return sequence by dividing the design
process into two parts.1 First, the a lunar return segment is designed, in a Moon Centered Inertial
(MCI) frame, using conic arcs. Specifically, the spacecraftin low lunar orbit performs a maneuver to
raise apoapsis, then a second maneuver to change the inclination of the plane, and a third maneuver
to raise the energy enough to escape the vicinity of the Moon in the general direction of the Earth.
These maneuvers, planned in the two-body problem, are then implemented in the ephemeris model
of the lunar segment. Of course, the resulting path – in the ephemeris model – does not resemble the
two-body solution due to the impact of third body effects on this particular type of return sequence.
The second part of the process is to take a partial state at Earth entry, make some assumptions
about the remaining states, and propagate that backwards intime until the trajectory crosses a user
specified interface region.1 The results are then used in an optimal targeting process that seeks to
bridge the gap at the interface region and also meet the remaining constraints along the path. One
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drawback of this approach is that the startup arcs obtained from this two-body approximation can
exhibit large spatial and temporal discontinuities at the interface region. This can have a negative
impact on the numerical efficiency of any targeting or optimization algorithm that only explores the
vicinity of the startup arc for feasible or optimal solutions. It is also true that even if the discontinuity
is not unreasonable at the interface region, the entry statewas not fully specified during the backward
propagation of the Earth segment. Thus, either feasible or optimal targeting algorithms would have
to both bridge the spatial and temporal gap at the interface region and potentially correct very large
errors in the entry state.

Precision entry, in this case, requires that the vehicle achieve specific altitude, flight path angle,
flight path azimuth, and geocentric latitude and longitude at Earth entry. Of these quantities, the
geocentric longitude and the flight path azimuth are both measured in coordinate frames that are
fixed on the rotating Earth. Thus, the entry time becomes a critical factor in determining whether or
not the entry state is met.

The numerical determination of the dispersion manifolds for a specific entry interface state begins
with the selection of a startup value for the entry speed, which is not itself constrained. Once
specified, the full inertial state vector is available. The inertial entry state is subsequently integrated
backwards in time through some stopping condition, typically based on radial distance or time of
flight. This first arc defines the “nominal” path to the entry site specified. To generate the dispersion
manifold, then, the “nominal” path, at the specified epoch time, is systematically perturbed. That
is, errors are introduced in one of the five entry parameters:altitude, latitude, longitude, flight
path angle, flight path azimuth. A corresponding Earth Centered Inertial (ECI) state is computed
by assuming the entry speed to be 10.992728 km/sec. While holding the speed, the entry time,
and all four remaining parameters fixed, the states associated with a specific set of perturbations
are propagated backwards in time to generate the associateddispersion manifold. Once again, the
integration process stops when a specific radial distance from the central planet or reference time of
flight is exceeded.

Once the dispersion manifolds are generated, the next step is to determine whether or not the
associated trajectories intersect the Hill sphere, selected here to define the lunar “interface” region.
This is accomplished by transforming the dispersion manifolds into the Earth-Moon synodic frame
and numerically searching for intersections with the Hill sphere. Naturally, whether or not inter-
sections exist is largely dependent on timing. Specifically, the time associated with the Earth Entry
Interface state. Initially, the entry time is adjusted manually, as needed, to guarantee the manifold
intersects the Hill sphere. However, the process lends itself to the development of a timing condition
for the Earth-Moon system.

To visualize the geometry of the intersections, the Hill sphere is divided into a standard grid of
latitude and longitude. Here, longitude is measured along the Earth-Moon orbital plane, relative to
the instantaneous Earth-Moon line. If the intersection occurs above the Earth-Moon plane, the lati-
tude of the intersection along the sphere is defined as positive. Figures 3(a)-3(b) each illustrate five
loci of points, which represent the intersections of a specific dispersion manifold with the sphere.

For each dispersion manifold, the range of perturbations that lead to trajectories that intersect
the Hill sphere is summarized in Table 2. In relation to this data, the arrows listed in the legend for
Figures 3(a)-3(f) indicate the direction of motion along the loci, from the minimum to the maximum
values listed in Table 2. The direction of the flow along the loci is crucial to our understanding of
constraint coupling, discussed later in this document.
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Figure 3. Intersections of EEI Dispersion Manifolds with Hill Sphere
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The Latitude and Flight Path Angle loci in Figures 3(a)-3(f)exhibit the largest spread along the
hill sphere. However, of the angular quantities targeted, the data in Table 2 suggests that the flight
path angle dispersion manifolds exhibit the least number ofintersections with the Hill sphere. Thus,
while the dispersion curve on the sphere appears wide, it is associated with a much smaller range of
errors relative to the desired nominal value. This suggestssmall changes in flight path angle at entry
have a significant effect on the overall geometry of the transfer arc near the Moon. Furthermore,
although the altitude dispersion spread on the sphere does not appear as significant as flight path
angle, many of the altitudes selected did not lead to intersections with the sphere. Of course, since
the entry speed was fixed, this is not surprising since the only parameter targeted that affects orbital
energy is the altitude at entry.

Table 2. EEI Range of Dispersion Errors That Lead to Intersections with Hill Sphere

EEI
Altitude (km) Latitude (deg) Longitude (deg) Flight Path Angle (deg) Flight Path Azimuth (deg)
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.

1 -11.28 95.99 -2.93 10.00 -7.79 7.24 -7.34 1.43 -10.00 10.00
2 -1.25 4.76 -10.00 4.99 -3.63 10.00 -2.43 4.89 -10.00 10.00
3 -7.27 17.79 -8.85 9.95 -8.85 10.00 -4.69 3.73 -10.00 10.00
4 -30.83 4.76 -10.00 1.73 -6.29 4.34 -0.93 7.39 -10.00 10.00
5 -2.26 7.27 -9.95 8.05 -10.00 10.00 -5.69 5.34 -10.00 10.00
6 -2.26 6.27 -10.00 6.29 -10.00 10.00 -3.43 5.84 -10.00 10.00

Whether the dispersion manifolds intersect the Hill sphere, and how wide spread the dispersions
are on the sphere itself, introduce two distinct issues thatimpact the design process. If, for instance,
a two-body conic analysis is employed in selecting startup arcs, it is important that the dispersion
manifolds for the desired EEI states intersect with the sphere in a favorable orientation. A startup arc
with large state and/or temporal discontinuities at the interface region can have a detrimental effect
on the computational efficiency of any targeting process. Large discontinuities at the interface state
can also influence the subset of phase space that a targeting or optimization algorithm searches.
This, in turn, can have a negative effect on the cost of merging the Earth and Moon segments and
transitioning them into a single feasible transfer trajectory.

Of course, a wide range of dispersions on the Hill sphere is not, in itself, an undesirable feature.
In fact, a wide dispersion on the Hill sphere may be indicative of increased flexibility regarding the
quality of the startup arc. For instance, a startup arc that exhibits significant errors in that entry
parameter may still qualify as a reasonable initial guess because properly scheduled maneuvers can
identify neighboring trajectories that both (a) originatefrom the Moon and (b) are closer to the
desired EEI state. This is demonstrated in the last section of this paper with the longitude and
latitude constraints.

The flight path azimuth dispersions, in contrast, intersectthe hill sphere for all six EEI states
considered. That is, the entry flight path azimuth may be off by up to± 10◦, and the associated
entry manifolds will still intersect the Hill sphere near the same region. However, Figures 3(a)-
3(f) indicate that these intersections occur in a very narrow and confined region of the sphere,
unlike the latitude and flight path angle dispersions which span a significant spread along the sphere.
Thus, designing a lunar transfer, for precision entry, essentially requires that the lunar segment
target a very precise neighborhood of the Hill sphere. For instance, letNa denote the subset of
the dispersions on the Hill sphere that correspond to errorsin azimuth andNl the subset of the
dispersions that correspond to errors in latitude. The neighborhood defined byNa is smaller, in
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this case, than that defined byNl. In designing the lunar segment of the trajectory, one seeks
a startup arcs that exists in the region defined byNa ∩ Nl. Of course, this neighborhood only
exists ifNa ⊂ Nl. Thus, the design of the startup arc, for a precision entry problem, is not trivial.
Certainly, two-body approximations may not be suitable under such circumstances unless extremely
close attention is devoted to targeting the precise neighborhood required on the Hill sphere. If the
startup arc intersects the Hill sphere, butNa ∩Nl = ∅, a targeting process may exhibit a significant
reduction in performance, or even difficulties converging on a solution.

One last notable observation is that the dispersions for EEI#1 are all generally centered around
the−180◦ longitude line, as seen from Figure 3(a). This clearly indicates that all dispersion tra-
jectories intersect the Hill sphere between the Earth and the Moon, closest to theL1 Earth-Moon
libration point region. In contrast, the remaining sites tend to intersect the hill sphere along the−ŷ

face, on theL5 side. In fact, for EEI-2, the dispersion manifolds at the specified entry time extend
beyondL5 before bending towards the moon and intersecting the Hill sphere. The dispersion man-
ifolds for EEI-6 and EEI-5 come close toL5 but do extend beyond it for the epoch times selected.
This information can be employed, in future studies, in identifying alternate transfer arcs, based on
multi-body analysis, that better exploit the dynamical structure of the Earth-Moon system to achieve
the specified precision entry goals.

Startup Arcs and Converged Solutions

As previously mentioned, the nominal return trajectory from low lunar polar orbit is often con-
structed from conic solutions. In this case, targeting or optimization algorithms are usually required
in constructing general baseline transfer trajectories inann-body regime, forn > 2. A multiple-
shooting algorithm,18, 19 for instance, is one available method that is easily and successfully applied
when constructing baseline trajectories. An advantage of multiple-shooting is that it is not problem
specific. The same solution process is applicable in either the CR3BP or in the ephemeris model.
The CR3BP, of course, offers a simplified framework from which to search for transfer arcs that may
be better suited to address the complexities of the precision entry problem. In the end, the results
must be accurately transitioned and reacquired in the ephemeris model. The process of transitioning
solutions between models is easily accomplished with multiple shooting methods.

The first step in transitioning a solution between these two systems is to identify the appropri-
ate state transformation. In the ephemeris model, the spacecraft states are typically represented in
either Earth Centered Inertial (ECI) or Moon Centered Inertial (MCI) coordinates. In the CR3BP,
spacecraft states are traditionally expressed in terms of non-dimensional synodic rotating frame co-
ordinates.17 While the mathematical relation between the ephemeris inertial frame and the synodic
rotating frame is easily identified using the available planetary ephemerides, there is one key differ-
ence that must be noted. That is, in the CR3BP, the Earth-Moondistance is constant, but that is not
the case in the ephemeris model. Subsequently, whenever a solution is transitioned across these two
models, it is reacquired using a multiple shooting method toguarantee the resulting states lead to a
feasible trajectory.

For instance, consider a baseline 1.5 km/sec solution, suchas that labeled EPHEM (Nominal) in
Figure 4. This solution is based on the three-burn sequence previously described. Once transitioned
and numerically reacquired in the CR3BP, the resulting arc and a multiple shooting algorithm may
be employed in a continuation scheme to explore other neighboring solutions. A sample three-
burn 1.0 km/sec solution, resulting from this approach, is identified both in the CR3BP and in the
ephemeris models. These arcs are illustrated in Figure 5.
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Since the second maneuver in this improved 1.0 km/sec solution is considerably smaller, further
explorations consider a two-maneuver strategy. Eventually, a 0.96 km/sec two-burn solution is
identified. The 0.96 km/sec two-burn solution obtained in the CR3BP (∆V = 1.0 km/sec), and
the corresponding trajectory transitioned into the ephemeris model (∆V = 0.96 km/sec), are both
depicted on Figure 6. In this case, the inclination change originally implemented through the second
maneuver is now accomplished by third body effects at the expense of an increase in time of flight
of up to two days.

Trajectory design in the context of the multi-body problem offers a more diverse solution space,
lower energy transfers with correspondingly lower costs, and greater flexibility for global entry
targeting. Since lower cost solutions are usually associated with low energy transfers, an increase
in time of flight is to be expected. However, a hybrid design approach that incorporates low and
medium energy segments can be beneficial in future studies when identifying solutions that exhibit
the best of both arcs.

(a) (b)

(c) (d)

Figure 4. Three-Burn Solution: ∆V = 1.5 km/sec
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(a) (b)

(c) (d)

Figure 5. Three-Burn Solution: ∆V = 1 km/sec
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(a) (b)

(c) (d)

Figure 6. Two-Burn Solution: ∆V = 1 km/sec
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Entry Parameter Sensitivities

The numerical evidence collected during the dispersion analysis reveals some useful information
regarding the entry constraint coupling and the impact of errors in specific constraints on the tar-
geting process. As previously mentioned, the arrows illustrated in the legend of Figures 3(a)-3(f)
indicate the direction of the flow along each dispersion loci. A notable feature present in each and
every one of these figures is that the flow evolves in opposite directions for latitude and flight path
angle. The sensitivities observed from Figures 3(a)-3(f) and Table 2, along with the flow direction
along the loci, suggest a coupling between flight path angle and latitude that may lead to conflicts
during the convergence process and, as a result, an increased number of iterations. To explore this
further, the present section offers a closer look at entry constraint coupling and its impact on targeter
performance.

The next few examples are devoted to characterizing the sensitivity of the targeting process to er-
rors in longitude, latitude, and azimuth when targeting oneof these quantities simultaneously along
with altitude and flight path angle. The data in Tables 3, 4, and 5 is associated with two different
startup arcs; the three impulse 1.0 km/sec solution previously presented, and the two impulse 0.96
km/sec solution. Each of these arcs exhibit the desired altitude and flight path angle that was specif-
ically targeted by the multiple shooting process previously discussed. However, the remaining entry
parameters were unconstrained at the time. Thus, once the converged solution is identified, the entry
state is characterized by a unique unconstrained latitude,longitude, and azimuth. Using these three
solutions as startup arcs, Tables 3, 4, and 5 are compiled in an effort to identify how large the entry
error in each of these three parameters can be before the targeting process is significantly affected.
In each case, four parameters are always targeted simultaneously; the total cost (∆V < 1.5 km/sec),
the altitude (121.912 km), flight path angle (-5.86 deg) and either (a) the longitude, (b) the latitude,
or (c) the azimuth. The number listed in the first column of each table represents the error rela-
tive to the unconstrained value. Thus, for Solution 1, associated with an unconstrained longitude
of roughly 76◦, a−135◦ error suggests that the target longitude is−59◦. Since the startup arc is
currently at76◦ longitude, the targeting process has to correct a−135◦ initial error relative to the
startup arc.

Of the five entry parameters targeted, the data in Table 3 suggests that converging altitude, flight
path angle, and longitude simultaneously is a relatively simple to achieve, in contrast to Latitude,
in Table 4, where the size of the error at entry and the qualityof the initial guess can significantly
affect the convergence process. The flight path azimuth exhibits improved convergence behavior
over latitude, but errors are not as easily corrected as those in longitude.

Longitude Sensitivity: Recall that the latitude and flight path angle were previously identified to
be the most sensitive parameters according to the Hill sphere dispersion analysis. Furthermore, the
flow along the dispersion loci for these two parameters proceeded in opposite directions relative
to each other. Thus, it is possible that correcting an error in flight path angle introduces an error
in latitude. Then, attempting to correct the resulting error in latitude introduces a greater error in
flight path angle. In essence, these two constraints can be atodds with each other during a targeting
process, which would explain the large number of unconverged cases in Table 4 over a seemingly
minuscule error in latitude. For entry errors in longitude,no convergence threshold is apparent. The
results in Table 3 suggest that the targeter4, 5 is able to converge for all cases considered, despite
the fact that the entry errors spanned the circumference of the globe. However, some cases do
experience larger performance degradation, particularlycases that employed Solution 1 (i.e. the
three-burn 1.0 km/sec solution) as inputs. For example, 30 iterations are required to converge the
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Solution 1 input with an entry longitude error of 135◦, and 14 iterations are required when the entry
error is -135◦. In contrast, only 7 iterations are required to converge theSolution 2 input with entry
error 135◦, and 8 iterations for a -135◦ error. This may easily be attributed to the entry timing and
the relative location of the lunar interface state for Solution 1 vs. Solution 2 with respect to the Hill
sphere.

Table 3. Example 1: Longitude Sensitivity

Longitude Solution 1 Solution 2
Perturbation (Unconstr: 76.012189◦) (Unconstr: -138.542302◦)

Iter. Total∆V (km/s) Iter. Total∆V (km/s)

−135
◦ 14 1.50 8 1.50

−90
◦ 14 1.50 6 1.50

−45
◦ 7 1.50 5 1.50

45
◦ 8 1.50 5 1.50

90
◦ 9 1.50 6 1.50

135
◦ 30 1.50 7 1.50

180
◦ 14 1.50 9 1.50

A better understanding of the differences in convergence behavior is gained by examining the
trajectories more closely. In particular, to assess the impact of the quality of the initial guess on the
geometry of the final converged arc. Figures 7(a) through 7(f) illustrate a series of Moon centered
close-up views corresponding to the±135◦ entries in Table 3 for Solution 1. The dashed line de-
notes the initial guess trajectory, and the final trajectoryis represented by the solid line. According
to Table 3, the +135 perturbation required 30 iterations to converge while the -135 perturbation only
required 14. In this case, it is possible that the initial +135 longitude error does not lead to a trajec-
tory that intersects the Hill sphere at all, or does not intersect it in a favorable location relative to
the mutual intersection region of the remaining manifolds.Furthermore, as the number of iterations
required to converge on a solution increases, the startup arc undergoes increased reshaping to ac-
commodate the constraints. A visible difference between the x-y projection and the yz projections
(looking from the Moon towards the Earth) is notable in Figures7(a) through 7(f). Clearly, if the
geometry of the lunar departure segment requires significant changes in order to accommodate the
targeted entry parameters, as is the case in Figures 7(a) - 7(c), the performance of the algorithm de-
grades. Thus, it is important that the initial departure arcselected intersect the correct neighborhood
of the Hill sphere, one that intersects with the appropriatedispersion loci more closely.

Latitude Sensitivity: In sharp contrast to the longitude results, the performanceof the algorithm
exhibits increased sensitivity to errors in latitude. The convergence threshold for latitude errors
is less than 2◦. Results for latitude perturbations at entry, shown in Table 4, indicate that even
minor errors can have a negative impact on the efficiency of the targeting process. Using Solution 1
(i.e. the three burn 1.0 km/sec solution) as a startup arc, only half the cases considered converged.
As with the longitude results, further insight is gained upon examination of the lunar segments
of selected converged trajectories. Figures 8(a) through 8(c) illustrate closeup views of the initial
and final trajectories for the Solution 2 input with an entry latitude error of -1.0◦. Figures 8(d) -
8(f) and Figures 8(g) - 8(i) show the trajectories for the same input with errors of -0.5◦ and +0.5◦,
respectively. Again, the dashed lines represent the initial guess trajectories and the solid lines are the
final trajectories. The figures show a strong correlation between convergence and the geometrical
disparities of the arcs (initial vs. converged) near the Moon. This is consistent with the trend
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Figure 7. Solution 1: Impact of Longitude Error on Lunar Departure Geometry
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observed for the longitude example; however, for the latitude case, the Hill sphere dispersions
reveal that large trajectory changes near the Moon are required to accommodate small changes
at entry interface. Thus, latitude is a dynamically sensitive quantity to target and requires significant
changes to the departure arc at the Moon. Thus, wider dispersions at the Moon, for small errors at
entry, in any parameter, will likely require large adjustments to the departure geometry at the Moon.

Table 4. Example 2: Latitude Sensitivity

Latitude Solution 1 Solution 2
Pert. (Unconstr: 3.594905◦) (Unconstr: -1.906029◦)

Iter. Total∆V (km/s) Iter. Total∆V (km/s)

−1.5
◦ - DNC - DNC

−1.0
◦ - DNC 37 1.50

−0.5
◦ 9 1.50 11 1.50

−0.25
◦ 5 1.44 7 1.50

0.25
◦ 5 1.50 5 1.50

0.5
◦ - DNC 8 1.50

1.0
◦ - DNC 30 1.50

1.5
◦ 20 1.50 - DNC

DNC = Did Not Converge

Flight Path Azimuth Sensitivity: The results of the flight path azimuth sensitivity analysis are
given in Table 5. The flight path azimuth locus on the Hill sphere was narrower than the rest,
indicating that small changes in the departure geometry at the Moon are required to accommodate
changes in flight path azimuth at entry. That is, as long as theother quantities targeted are not in
conflict. In each of the cases presented here, and in the previous sections, the altitude and flight path
angle are always targeted as well. Thus, if the flight path azimuth targeted is in conflict with the flight
path angle specified, that too will degrade the performance of the targeting algorithm. Although the
azimuth results presented here show noticeably improved convergence over the latitude sensitivity
results, the convergence threshold for this case is still only ±36◦. The Hill sphere analysis did reveal
that the azimuth dispersions exhibit a certain degree of inertia. That is, small changes at Earth entry
don’t seem to have as significant an impact at the Hill sphere as other parameters do. However, it
is also true that the azimuth and flight path angle loci flow in directions that are almost normal to
each other. Thus, once the solution sought leaves the vicinity of the intersection of these two loci, it
may place the targeter in a neighborhood of phase space that does not include the desired solutions.
Thus, the targeting process has to work harder and longer to escape that neighborhood in search for
one that offers more auspicious transfers.

To verify this observations, consider the Moon centered close-up views presented here. Figure
9 shows the initial and final Solution 2 trajectories near theMoon for azimuth errors of -24◦, in
Figures 9(a) - 9(c). Similar images are presented for the +24◦ error in Figures 9(d) - 9(f). The−24◦

case requires a total of 38 iterations to converge, while the+24◦ case converges in only 7. In both
cases, the lunar departure geometry is not significantly affected. What is affected, however, is the
arrival geometry, best visualized from theyz-plane projections. Curiously, the case that required the
least number of iterations to converge is the one that exhibits the most significant changes in arrival
geometry. While this may seem counter-intuitive at first, itis actually not surprising. The fact that
the overall geometry of the−24◦ case did not change significantly in 38 iterations suggests agreat
degree of resistance to small changes. Since the targeting algorithm entails a linear corrections
process, one that employs a minimum norm solution, the corrections implemented are the smallest
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Figure 8. Solution 2: Impact of Latitude Error on Lunar Departure Geometry
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Table 5. Azimuth Sensitivity

Azimuth Solution 1 Solution 2
Pert. (Unconstr: 8.985265◦) (Unconstr: 4.172730◦)

Iter. Total∆V (km/s) Iter. Total∆V (km/s)

−36
◦ 30 1.50 44 1.50

−24
◦ 35 1.50 38 1.50

−12
◦ - DNC 28 1.50

−6
◦ 5 1.16 27 1.50

6
◦ 5 1.36 5 1.50

12
◦ 11 1.50 6 1.50

24
◦ - DNC 7 1.50

36
◦ - DNC 12 1.50

DNC = Did Not Converge

possible change that lead to a feasible solution. The behavior exhibited by this particular solution
can be explained in the context of relative stability.

Consider, for instance, theL1 collinear libration point vs. theL5 collinear point. The collinear
points are all unstable.17 Thus, small perturbations are promptly amplified as time flows forward. In
contrast, the equilateral pointL5 is marginally stable, at least in the linear system. In the ephemeris
model, these points do not actually exist. However, the region near the instantaneous libration points
exhibit a similar degree of relative stability. Perturbations near the collinear points are quickly am-
plified, while perturbations near the triangular point growat a slower rate. It is not surprising, then,
to find that there are regions of phase space where solutions are less susceptible to perturbations
than others. It is possible that this particular combination of constraints and azimuth perturbations
happened to place the solution in a region of phase space thatexhibits some level of inertia to small
changes.

It was previously noted that the EEI-2 dispersion manifoldsextended beyond and aroundL5

before intersecting the Hill sphere. Furthermore, the manifolds for EEI-5 and EEI-6 passed interior
but very close toL5 as well. Upon close inspection, a trend is quickly observed.For the entry
parameters selected, the azimuth loci on the Hill sphere is narrower in length, and closer to the
zero-latitude plane, than any other loci for the cases when the manifolds extended close toL5 (EEI-
2, EEI-5, and EEI-6). Although almost all the dispersion manifolds for EEI-2, EEI-5, and EEI-6
passed near or aroundL5, only the azimuth – which affects the Earth arrival plane – was significantly
affected by this. The flight path angle loci, for instance, spans a very large latitude range on the Hill
sphere for all EEI states considered. The key, it seems, is inthe fact that both flight path angle and
azimuth are targeted at the same time. One constraint, namely flight path angle, is very sensitive
to small changes while the other is not. Thus, the targeting algorithm is susceptible to the inertia
induced by the azimuth constraint, in this case. Convergence ensues, but at a much slower rate as a
result.

Conclusions

The present study considers the dynamical aspects of the precision entry problem in the Sun-
perturbed Earth-Moon system. Earth entry interface state dispersion manifolds are generated and
their intersections with the Hill sphere are identified in the synodic frame of the primaries. The
spread of the dispersions on the Hill sphere is used to develop an understanding of entry constraint
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Figure 9. Solution 2: Impact of Azimuth Error on Lunar Departure Geometry
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coupling during a targeting process. The examples presented further demonstrate how third body
effects may be harnessed to reduce the overall cost of globalprecision entry opportunities. A mea-
surable degree of coupling is identified between flight path angle and both azimuth and latitude,
though each of a different kind. When targeting multiple entry constraints it is observed that the az-
imuth constraint introduces a measurable degree of inertiato small perturbations, while the latitude
constraint contributes an increased sensitivity to small errors.
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[19] G. Gómez, J. Masdemont, and C. Simó, “Quasihalo Orbits Associated with Libration Points,”The

Journal of the Astronautical Sciences, Vol. 46, No. 2, 1998, pp. 135–176.

19


