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Spacecraft formations near the libration points of the Sun-Earth/Moon system 
represent one option currently under consideration for applications to space 
based interferometry. This type of mission often requires precision tracking 
from the vehicles in the formation. However, past studies reveal that the 
dynamically sensitive nature of this region of space presents a number of unique 
challenges in this respect. For instance, the addition of thrust constraints into the 
design problem can significantly limit the level of positional accuracy that is 
achievable. The focus of this investigation is the application of discrete 
nonlinear optimal control to the constrained formation keeping problem.  

INTRODUCTION 

A formation of vehicles, here, is characterized by one primary or central vehicle defined as the chief 
spacecraft. The remaining vehicles in the formation, then, are termed deputies. Within this context, 
“formation flight” is defined as a number of deputies commanded to follow some prescribed nominal path 
relative to the chief spacecraft. Note that the chief spacecraft need not be an actual vehicle. It may also 
represent a generic reference point relative to which the dynamical characteristics of the deputy are 
measured. In this study, it is assumed that the reference chief vehicle evolves along a natural trajectory arc, 
such as a halo orbit or Lissajous trajectory, near the L1 or L2 libration point. This, in theory, implies that no 
control effort is required to maintain the path of the reference vehicle since the solution exists naturally. 
Subsequently, the deputy vehicles evolve along their paths, relative to the reference vehicle, as the chief 
spacecraft evolves along its orbit.  

The dynamical sensitivity that is characteristic of the region near the libration points associated with any 
three-body system, combined with the path constraints usually imposed on an envisioned configuration, 
makes formation keeping and deployment an interesting and challenging problem. Although some 
preliminary analyses have already been completed [1-17], a better understanding of formation keeping in 
the presence of control input constraints is still necessary. Of course, an added difficulty, inherent to this 
dynamical regime, is that no analytical solution for the reference path of a spacecraft exists. Although some 
approximations are available, any analysis involving formation flight in multi-body systems is still strongly 
dependent on numerical methods.  
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In this investigation, the design and control of spacecraft formations is accomplished through nonlinear 
optimal control methods. The theoretical foundation for this approach is based on the Euler-Lagrange 
optimality conditions [18]. These optimality conditions are, of course, derived from the calculus of 
variations. Thus, the process is not self-starting since an adequate initial guess is required. In a dynamically 
sensitive regime, the success of this approach is strongly dependent on the initial guess and how close this 
solution is to the optimal trajectory.  

The numerical determination of the optimal control solution is accomplished in one of two ways. First, the 
trajectory is divided into segments at nodes or grid points. Then, the state equations and constraints that 
describe the problem are discretized accordingly. In the first method, the determination of the optimal 
solution is based on either impulsive maneuvers at each node or constant thrust arcs between grid points. 
The second method allows for both of these options as well as the determination of optimal arcs involving 
continuous control. Some fundamental examples are selected in both cases. The results of this study 
represent the foundation of future efforts involving constrained formation keeping near the libration points. 

DYNAMICAL MODEL 

Circular Restricted Three-Body Model 

In this study, the central spacecraft is termed “chief” while all other vehicles in the formation are denoted 
as “deputies”. In the CR3BP, the motion of the chief S/C is described in terms of rotating coordinates (R) 
relative to the barycenter (B) of the system primaries (SEM system). In this frame, the rotating x-axis is 
directed from the Sun towards the Earth-Moon barycenter, as illustrated in Figure 1. The z-axis is normal to 
the plane of motion of the primaries, and the y-axis completes the right-handed triad. Alternatively, in the 
ephemeris model, the frame of reference is inertial (I) and Earth centered (P2). 

 

Figure 1 - Two S/C Formation in the Sun-Earth/Moon CR3BP 
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In either formulation, equations of motion for either the chief or the deputy vehicle, relative to a reference 
point Q (B or P2), can be expressed, in a general form, as 

 
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )

, , ,

, , , .

= − + −

= ∆ + ∆

d d c c d c

c c

r t f r t r t f r t r t u t u t

r t f r t r t r t r t u t
 (1) 

The subscript “c” indicates that the function is associated with the chief spacecraft while the subscript “d” 
implies evaluation along the path of the deputy. The position vectors cr  and dr , then, locate the chief and 
deputy vehicles relative to the reference point Q, respectively. The vector [ ], ,= − = T

d cr r r x y z  locates the 
deputy spacecraft relative to the chief vehicle. The quantity , , ∆ = ∆ ∆ ∆ 

T

x y zf f f f  represents the vector sum 
of the net forcing terms (gravity + solar radiation pressure) acting on the vehicles as well as any kinematic 
terms that may be present due to the working frame associated with the specified formulation. 

In the present investigation, the chief spacecraft is assumed to evolve along a naturally existing solution 
such that ( ) 0=cu t , hence ( ) ( )∆ = du t u t . In this study, the effects of solar radiation pressure (SRP) are 
only considered in the ephemeris model and the form of the SRP force is consistent with the definition 
stated by McInnes [19].  

Nonlinear Optimal Control for Formation Keeping 

In previous investigations, Howell and Marchand [14-17] propose a variety of impulsive targeter methods, 
including a modified Floquet controller, to establish bounded formations near an L1 or L2 halo orbit in the 
Sun-Earth/Moon system. Among these, position and radial targeters [16] are designed to enforce a non-
natural relative position between the vehicles in the formation. The Floquet method [17], on the other hand, 
is mainly employed to establish natural relative orbits for the deputy vehicles. Thus, in theory, no control 
effort is required to enforce these trajectories.  

Presently, these methodologies are employed to assist in the construction of adequate startup trajectories for 
the optimal formation keeping problem. The ultimate goal of the optimization procedure is to minimize the 
propulsive cost, within the bounds established by the thrusters and the mission constraints, as well as the 
deviations from the specified nominal path. A suitable startup solution is crucial since the optimal control 
techniques employed are based on the calculus of variations. By definition, this approach assumes that the 
initial guess exists in the vicinity of the optimal solution. In a dynamically sensitive regime, such as the 
multi-body problem, establishing good initial approximations is crucial to the convergence of the 
optimization algorithm.  

Two solution methods are presented here. Both methodologies require the discretization of the state 
equations. In the first approach, the states and gradient matrices at each node are determined through 
numerical integration. The solution of the optimal control problem is then accomplished through a subspace 
trust region method that requires knowledge of the gradient (Jacobian) at each node along the trajectory. 
Alternatively, the second method employs an approximation of the continuous system based on a Hermite-
Simpson discretization. Then, the solution to the optimal control problem is obtained through the Sparse 
Optimal Control Software (SOCS), developed by Betts [20-24].  

SOCS is a collection of FORTRAN 77 subroutines capable of solving optimal control problems. The 
package implements a direct transcription method to convert the continuous control problem into a discrete 
approximation. The discretization yields a finite dimensional sparse nonlinear programming problem that 
can be solved using sequential quadratic programming. Numerical procedures to improve the accuracy of 
the discretization by mesh refinement are implemented in the package.  
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Examples are presented here to demonstrate the merit and feasibility of both methodologies. Of course, the 
ultimate goal of this approach is the solution of the constrained formation keeping problem; that is, 
formation keeping in the presence of control input upper and lower bounds. Later stages of this 
investigation also seek to establish the position accuracy that is physically achievable, near the libration 
points, in the presence of such hardware constraints.  

Method #1: Optimal Control by Partial Discretization 

Consider a discrete nonlinear map,  

 1 1 1
      
      − − −      

= , ,j j j jy t F y t u t t , (2) 

subject to a fixed initial state ( iy ),  

 ( )0 0= = .iy t yy  (3) 

Note that this map is directly related to the original nonlinear equations of motion through a simple 
integration over the segment defined by 1− ≤ ≤j jt t t ,  

 ( ) ( )( )
1

1 ,
−

   
   −   

= + , .∫
j

j

t

j j
t

y t y t F y t u t t dt  (4) 

Suppose the trajectory is divided into N  nodes and 1−N  segments such that 0 1= < < < =…i N ft t t t t , 
where it  and ft  represent the initial and final times, respectively. The states at each node, in this case, are 
obtained through a sequential numerical integration process. The control options include application of an 
impulsive input at the start of each segment or application of constant thrust over the length of each 
segment. Considering these alternatives, let J  denote a scalar cost function of the states and inputs at each 
node along the trajectory. The goal, then, is to identify the sequence of control inputs that will minimize  

  

 ( ) 1 1 1
1

φ      
      − − −      

=

= + , , .∑
N

N j j j
j

J y t L y t u t t  (5) 

This cost index, stated in the traditional form of Bolza, consists of two parts. The first term, ( )φ  
 
 Ny t , 

represents a nonlinear function of the state at the end of the trajectory. The remaining terms, then, are 
contributions associated with the state and control input at each node along the trajectory. In addition, the 
cost index is subject to a series of vector equality constraints that include the initial condition along the 
trajectory and the equations of motion. Although the Bolza formulation is intuitive, simplifying the cost 
index to Mayer form is most convenient from a computational perspective. To that end, the n -dimensional 
state vector y  is augmented by one variable, 

 11 1 1 11 ,   
    −+ + − −−   

 = + , jn j n j jjy t y t L ty u . (6) 

It is clear, then, that 

 ( ) 11 11
1

,−+ −−
=

 = , . ∑
N

jn N jj
j

y t L ty u  (7) 

Now, the cost function J , in Equation (5) is reduced to the form of Mayer, 

 ( )φ= ,NJ y  (8) 

where   

 ( ) ( )1φ φ += + .n NN y ty  (9) 
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Let ( ),, i iiF ty u  denote the augmented nonlinear map,  

 ( ) ( )1 11
11 1

11 1 11

,

,

− −−
−− −  

  −+ − −− 

 ,
 = , , = .
  + ,  

j jj
jjj j

jn j jj

F ty u
F ty y u

y t L ty u
 (10) 

The optimality conditions for this augmented system, as defined by Bryson [18], are subsequently 
determined as  

 
( )φ

λ
∂

= ,
∂

NT
N

N

y
y

 (11) 

  

 1
1

1
λ λ

−
−

−

∂
= ,

∂
jT T

j j
j

F
y

 (12) 

  

 1 1

1 1
λ

− −

− −

∂ ∂
= .

∂ ∂
j jT

j
j j

H F
u u

 (13) 

The optimal solution is identified using a subspace trust region method, based on the interior-reflective 
Newton method described by Coleman and Li  [25-26]. Each iteration involves the approximate solution of 
a large linear system using the method of preconditioned conjugate gradients. This particular method 
attempts to find a minimum of a scalar function, J , of several variables inu , based on some initial estimate 
and analytically available gradients, 

inuH , determined from Equation (13). To solve the optimal control 
problem numerically, the control vector and the associated gradient at every node, are each reshaped into a 
single vector with 3( 1)−N  components such that  

 1 1 1(3( 1) 1: 3( 1) 3) [ ( ),  ( ),  ( )]− − −− + − + =in x j y j z ju j j u t u t u t , (14) 

and 

 1 1 1(3( 1) 1: 3( 1) 3) [ ( ), ( ), ( )]− − −− + − + =
in x y zu u j u j u jH j j H t H t H t , (15) 

for 1, ,= …j N . In this case /= ∂ ∂
xu xH H u , /= ∂ ∂

yu yH H u , and /= ∂ ∂
zu zH H u .  

Note that the usefulness and success of the above procedure is predicated on two assumptions;  

• the availability of an exact discrete map, such as that in Equation (2), and 

• the availability of an exact form for the gradients in Equations (12) and (13).  

If both of these conditions are true, then this procedure essentially converts a functional optimization 
problem into a parameter optimization problem. However, neither of these assumptions hold in the 
gravitational n-body problem, where no exact closed-form solutions exist. One way of dealing with this 
issue is to employ a partial discretization approach, where the states at each node are numerically 
integrated. As demonstrated in the following sections, depending on the problem formulation, the gradients 
may also be numerically integrated along with the equations of motion by introducing an augmented 
system of equations into the numerical solution process.  

Applications to Formation Flight Near the Libration Points 

Targeter algorithms [16-17] seek to enforce some nominal state, or constraint, at the end of a trajectory 
segment. Numerically, this is accomplished by applying an impulsive maneuver at the beginning of the 
segment. The targeter identifies the maneuver required to achieve the desired end state or constraint. This 
type of formulation, however, does not offer any control over the deviations incurred between maneuvers. 
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In fact, in the formation keeping problem, it may be most desirable to minimize the total error over the 
length of the mission, or segment, rather than just the end state error. In this case, the cost index may be 
formulated as a sum of quadrature functions,  

 ( ) [ ]
1

1
1

,
−

+
=

= , .∑ ∫
j

j

tN

n N
j t

y t L y u t dt  (16) 

For this type of system, the partial derivatives are easily determined from knowledge of the linear system 
dynamics. To illustrate, let  

 ( ) ( )
( )

 , ,
= , , =  , , 

f t y u
y f t y u

L t y u
, (17) 

represent the augmented state equations to be numerically integrated. This system is subject to initial 
conditions of the form  

 ( ) 00
0

 
= . 
 

y
y  (18) 

Linearization of the system in Equation (17) yields  

 ( ) ( ) ( ) ( ) ( )δ δ δ= + ,y t A t y t B t u t  (19) 

where  

 ( )
( )

1

1

0

0
+

+

 ∂ ∂
  ∂ ∂   = = ,∂  ∂ ∂    ∂ ∂ ∂  

n

n

f f
A t

y y
A t L

L L
y

y y

 (20) 

and  

 
3

3

0

0

 
 = . 
  

B I  (21) 

The solution to the linear system in Equation (19) is known to be of the form,  

 ( ) ( ) ( )
1

1 1δ δ τ τ δ τ τ
−

− + 
 − − 

= Φ , + Φ , ,∫
j

j

t

j jj j
t

t t t B u dy y  (22) 

where 1
 
 − 

Φ ,j jt t  is the state transition matrix, for the thj  segment, in the augmented nonlinear system. 
This matrix is determined by numerically integrating the following, 

 ( )1 1
   
   − −   

Φ , = Φ , ,j jt t A t t t  (23) 

subject to 1 1 ( 1)
 
 − − + 

Φ , =j j nt t I . In Equation (22), the superscript ‘+’ denotes initial conditions at the start of 
a numerically integrated segment while the ‘ − ’ represents the numerically integrated state at the end of a 
segment. As previously discussed, there are two ways to implement a discrete control approach; impulsive 
control or constant thrust arcs.  
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The choice of control methodology determines how the control gradient in Equation (13) is computed. Of 
course, the partial derivative in Equation (12) is simply the state transition matrix,  

 1
1

1

−  
 − 

−

∂
= Φ , ,

∂
j

j j
j

F t t
y

 (24) 

regardless of the control methodology implemented.  

Impulsive Control 

If an impulsive control algorithm is sought, the integral term in Equation (22) vanishes and the resulting 
solution can be rewritten as follows,  

 ( )
1 1

1 11

1 1 11

δ δ

δ

δ

− + 
 − − 

− 
 − −− 

−   
   − − −−   

= Φ , ,

= Φ , + ∆ ,

= Φ , +Φ , ∆ .

j jj j

j j jj

j j j j jj

t ty y

t t B Vy

t t t t B Vy

 (25) 

The control input, in this case, is denoted by an impulsive maneuver ( 1−∆ jV ). Equation (25) implies that the 
end state of the previous segment, after applying an impulsive maneuver, becomes the initial state at the 
beginning of the next segment. Note, from Equation (25), that  

 1
1

1

−  
 − 

−

∂
= Φ , .

∂
j

j j
j

F
t t B

u
 (26) 

The partial derivatives in Equations (24) and (26) are employed in evaluating the optimality conditions in 
Equations (12) and (13).  

Constant Thrust Arcs 

If, instead, constant thrusting over the length of each segment is desired, the determination of the control 
gradient, numerically, requires some additional consideration. In this case, the control input under the 
integral in Equation (22) is constant. Thus, the solution to the linear system is given by  

  

 ( ) ( )
1

11 1δ δ τ τ τ δ
−

− + 
  −− − 

 
 = Φ , + Φ , .
  
∫

j

j

t

jj jj j
t

t t t B dy y u  (27) 

Note that this expression may also be written as follows,  

  

 1 1
11

11

δ δ δ− −− +
−−

−−

 ∂ ∂ 
= + ,    ∂ ∂  

j j
jj j

jj

F Fy y u
y u

 (28) 

where   

 1
1

1

−  
 − 

−

∂
= Φ , ,

∂
j

j j
j

F t t
y

 (29) 

and   

 ( ) ( )
1

1

1

τ τ τ
−

−

−

∂
= Φ , .

∂ ∫
j

j

t
j

j t

F t B d
u

 (30) 
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The matrix ( )τΦ ,t  is not actually available directly from the numerical integration. However, it can be 
computed at each instant in time based on the properties of the state transition matrix,  

 ( )1 1τ τ   
   − −   

Φ , = Φ , Φ , .j jt t t t  (31) 

From Equation (31), it is apparent that  

 ( ) 1

1 1τ τ
−   

   − −   
Φ , = Φ , Φ , .j jt t t t  (32) 

Substitution of Equation (32) into (30) reveals that the control gradient may be determined as  

 ( )
1

11
1 1

1

τ τ τ
−

−−    
   − −   

−

∂
= Φ , Φ , .

∂ ∫
j

t
j

j j
j t

F t t t B d
u

 (33) 

Thus, solving the optimal control problem for constant thrusting requires that Equations (17) and (23) be 
numerically integrated along with  

 ( ) ( )1*
1 1,

− 
 − − 

Φ = Φ , .j jt t t t B t  (34) 

In the above expression, *Φ  is an ( 1) 3+ ×n  matrix subject to ( )*
1 1, 0− −Φ =j jt t .  

Note that both of these formulations, involving optimal impulsive and constant thrust solutions, are 
applicable in general. These formulations are particularly useful when an exact mapping for the trajectory, 
such as that in Equation (2), is not available, and the user must therefore rely on numerically integrated 
trajectories. Indeed, the above formulations work well when the dynamical behavior of the system is 
relatively simple. However, as previously mentioned, some complications may arise when dealing with 
systems as dynamically complex as the n-body problem. 

Examples 

In the following examples, the optimization problem is approached from two different perspectives. In the 
“global” approach, the control sequence is optimized across all segments simultaneously. Note that the 
term “global” is used loosely and it is NOT meant to imply that the resulting solution is itself globally 
optimal. Since the optimality conditions are based on the calculus of variations, any optimal solution that is 
identified through this approach exists in the vicinity of the initial guess and, thus, represents a local 
optimal. No further conclusions can be drawn about the overall optimality of the solution based on this 
approach.  

An alternative to this “global” methodology is the “segment-by-segment” approach. In this case, each 
segment is optimized individually and sequentially. Naturally, the segment-by-segment approach is most 
computationally efficient in terms of speed and, as numerical evidence suggests, the overall optimality is 
not greatly affected. For instance, suppose the optimizer seeks to minimize the path error over the duration 
of the mission, that is, 180 days for the examples presented here. With a suitable initial guess, a “segment-
by-segment” approach may require 20 minutes to identify the local optimal solution. The “global” 
approach, on the other hand, can take days to identify a solution that is only slightly better than the one 
identified through the “segment-by-segment” approach. Computationally, the time required to identify the 
optimal solution is significantly affected by the sensitivity of the dynamical regime near the libration 
points. That is, seemingly minuscule changes in the control inputs can lead to significant changes in the 
path of the deputy. In the “global” approach, this sensitivity is compounded since the method attempts to 
optimize all ( )3 1−N  inputs simultaneously.  
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In the global approach, where the terminal time is significantly larger, the dynamical sensitivity of the 
model forces the optimizer to seek a solution by following a sequence of extremely small steps. Since small 
changes have such a significant impact downstream, with each passing iteration, the steps become even 
smaller, further degrading the performance of the algorithm.  

Example: Minimization of State Error 

Let the path dependent term, in Equation (16), be characterized by  

 ( ) ( )1
2

= − ,−
T

L Q xx xx  (35) 

where Q  represents the state error weighting matrix and x  denotes the nominal state vector of the deputy 
with respect to the chief spacecraft. Furthermore, let the end state term of the cost function be defined as  

 ( ) ( ) ( ) ( )1
1
2

φ += − + ,−
T

N n NN NN Nt W y ty yy y  (36) 

where W  represents the end state weighting matrix and Ny  is the nominal state of the deputy at the END 
of the mission. Both Q  and W  are symmetric positive definite matrices. Given these definitions, the 
boundary condition for the co-state vector is  

 ( ) 1φ
λ

∂  = = ,−  ∂

TT N
N N N

N

Wy y
y

 (37) 

and the linear system matrix is given by  

 ( )
( )

( )
0

0

 
 = .
 − 

T

A t
A t

Qy y
 (38) 

Consider a mission that requires the deputy spacecraft to maintain a complete state, relative to the chief, 
characterized by ( ) ˆ50 m=r z  and 0=r ; that is, the line formed by the chief and deputy vehicles must 
remain perpendicular to the ecliptic plane while, at the same time, the deputy maintains a distance of 50 m 
from the chief. Let the state error weighting be defined by a diagonal matrix Q , where 

12 12 12 6 6 6(1 10 1 10 1 10 1 10 1 10 1 10 )= × , × , × , × , × , ×Q diag . The time history of the radial error for various end 
state weightings is plotted in Figure 2. The dashed red curve represents the solution determined from a 
standard state corrector [17]. The blue curve is associated with the optimal control without end point 
weighting, 0=W . Note that the response in blue alternates in amplitude with respect to the standard state 
corrector. That is because the end state error is not constrained in this particular solution. Hence, the 
optimal path is allowed to overshoot the nominal as long as the overall segment error is minimized. The 
intermediate green curve is generated when some end point weighting is incorporated into the solution 
process, i.e., 21 10−= ×W Q . If the end point weighting is increased, the optimal solution, identified as the 
magenta curve in Figure 2, eventually converges on the initial guess. That is, the response computed from 
the state differential corrector. This is not surprising since, in this case, the initial guess already satisfies the 
end state constraint. The red and magenta curves may be difficult to discern from this figure since they are 
essentially equal. However, they both incur the largest deviations relative to the nominal path.  

The optimal solution curves presented in Figure 2 are associated with the segment-by-segment approach 
previously described. The segment-by-segment method is most computationally efficient when the 
trajectory is decomposed into many nodes over long periods of time. It is also possible, however, to 
determine the optimal maneuver scheme based on a “global” approach. In this case, all maneuvers are 
simultaneously optimized over the length of the mission. The efficiency of these two methods, for a 180 
day mission, is contrasted in Figure 3 and Figure 4.  
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Figure 2 - Comparison of State Corrector vs. Optimal Impulsive Control  
for a 50 m Formation Near an L2 Halo Orbit 

For a nominal path characterized by ˆ( ) 5000=t zr  km, the radial error response is presented in Figure 3. 
The results obtained via a state differential corrector (solid blue), the segment-by-segment method (dashed 
green), and the global approach (solid red) are represented as three separate curves in Figure 3. The largest 
deviations are, of course, incurred by the solution that employs the state corrector. The remaining two 
curves in Figure 3 are virtually indistinguishable, except for some small differences near the peaks. 
Although, over certain intervals, the performance of the segment-by-segment approach appears to be 
slightly better than the global method, the overall value of the cost index, over 180 days, is in fact lowest 
for the global approach. The cost index, as a function of time, appears in Figure 4. Note that the only value 
of interest on this figure is the final value, 1( )+n fy t . It is apparent, from Figure 4, that over long mission 
durations, the segment-by-segment approach is essentially just as effective as the global method. Although, 
numerically, the global approach still proves to be the true optimal solution, the differences are not 
significant. Either approach appears well suited in terms of reducing the overall error relative to the 
nominal, as deduced from Figure 3.  

The most interesting and revealing information obtained from the application of these methodologies, 
comes from the optimal maneuver schedule in Figure 5. Three plots are presented in this figure. Let ∆V  
denote the maneuver history associated with the state corrector, used as an initial guess in solving the 
optimal control problem. Figure 5 depicts the difference between the optimal maneuver history and ∆V  in 
mm/sec. The maneuver histories associated with both the global and the segment-by-segment methods are 
plotted in terms of the x -, y -, and z - components of the resulting ∆V  time history. Given the highly 
sensitive nature in this dynamical regime, a formation that requires a nominal separation of 5000  km is 
very susceptible to small changes in the control inputs. This is particularly true as the time between 
maneuvers is increased. A small input results in significant change at the end of each segment. In this case, 
these small changes – on the order of mm/sec – reduce the overall error by almost 10 km 90  days into the 
mission. This particular time interval is associated with the point along the halo orbit that is closest to the 
xy -plane.  
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Figure 3 - Radial Error Response – Global vs. Segment by Segment Approach  
Applied to a 5000 km Formation Near an L2 Halo Orbit 
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Figure 4 - Cost Function - Global vs. Segment-by-Segment Approach Applied to a 5000 km 
Formation Near an L2 Halo Orbit 
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Figure 5 - Maneuver Scheme - Global vs. Segment-by-Segment Approach  
Applied to a 5000 km Formation Near an L2 Halo Orbit 

It is also worth noting that, the global approach, in this case, is computationally intensive and requires more 
than one day of processing time to generate a solution. The segment-by-segment approach, on the other 
hand, is successful within minutes. Since the results from the two methodologies are comparable it appears 
that the segment-by-segment method represents a reasonable alternative to the global approach.   

Example: Minimize Range Error 

Missions like MAXIM and TPF require that the deputies in the formation track some pre-specified nominal 
path within a specified level of accuracy. However, for other missions, it may be sufficient to maintain the 
deputy at a constant relative distance from the chief vehicle. The radial targeter presented in this chapter 
proves to be most effective in accomplishing such a task. In contrast to the state corrector, the deviations 
from the specified nominal radial distance are minimal in comparison to the deviations incurred by the state 
targeter. The solution obtained from the radial targeter can also serve as an initial guess to the optimal 
impulsive control scheme described here. In this case, the cost function can be expressed as  

 
21

2
 
 
 

= − .L q r r  (39) 

The goal of the optimal control law, associated with the above definition, is to minimize the range error 
between the deputy and chief vehicles over the duration of the mission. Note that the weighing factor q  is 
actually necessary – for the examples considered here – because the initial guess, from the radial corrector 
[16], is very close to the optimal solution, as is apparent in Figure 6. In this figure, the radial distance 
between the chief and deputy vehicle is plotted over a period of 180 days. Three curves are depicted. The 
dash-dot red curve represents the initial guess for the optimizer. The dashed green curve is the optimal 
solution associated with the “segment-by-segment” approach. Finally, the solid blue line represents the 
optimal solution determined from the “global” approach.  
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Figure 6 - "Global" Optimal Solution for Radial Tracking 

Although there is visible improvement between the initial guess and the optimal solutions, it is not as 
significant as that determined in the previous section for state tracking example. Recall that, in the previous 
example, a 5000 km formation incurred an error of up to 40 km between maneuvers via the corrector 
scheme. In the present example, the radial corrector leads to errors under 3 km for a nominal 5000  km 
separation.  In tracking the radial distance, although the “segment-by-segment” and “global” methods lead 
to similar solutions, the “global” approach leads to the true optimal, as deduced from Figure 7. In this 
figure, the final value of the cost function represents the quantity that is actually optimized, 1( )+n Nx t .  

It is evident, from Figure 7, that the “optimal” exhibits only marginal improvement over the solution 
determined with the radial corrector.  The optimal maneuver history associated with the path in Figure 6 is 
plotted in Figure 8.  Although the difference between the maneuvers determined with the radial corrector 
and the optimal control law are visible, as further demonstrated in Figure 9, the two optimal approaches 
converged onto similar solutions. Figure 10 highlights the difference between the control inputs as 
determined from the “segment-by-segment” and “global” methods. These differences are only on the order 
of 610−  m/sec and, yet, such small inputs are enough to generate a visible difference in the optimal solution, 
as observed in Figure 6. The differences in the optimal path are most visible near the end of the mission; 
another indication of the dynamical sensitivity of the model.  

Recall that the goal of the radial corrector is to minimize the range error at the end of each segment rather 
than over the duration of the mission. Since the optimal solution is so close to the initial guess, in this case, 
if no weighting q  is present the numerical process will assume that the optimal has been achieved without 
ever actually computing an optimal control effort. The weighting depends on the nominal relative 
separation between the vehicles. For instance, for a 5000  km nominal radial distance, a weighting – in the 
non-dimensional equations – of 81 10×  is appropriate. However, for a 50  m formation a weighting on the 
order of 121 10×  is most suitable. This further validates the observation that an alternate scaling of the state 
variables may, at times, prove beneficial in reducing the time required to identify an optimal solution. Such 
re-scaling may also allow for larger tolerances during the optimization process. This observation is 
confirmed during the second approach involving nonlinear programming.  
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Figure 7 - Cost Functional (Non-Dimensional) for Radial Tracking Example 

Method #2: Optimal Control by Transcription 

As previously mentioned, the nonlinear optimality conditions employed in the present development are 
based on the calculus of variations. As such, the startup solution for the optimization process is assumed to 
exist in the vicinity of the optimal trajectory. For instance, if the goal of the optimization process is to 
establish a non-natural yet periodic relative orbit, then the initial guess must be nearly periodic. In this 
study, a Floquet approach [17] is first implemented to numerically identify a suitable startup solution. This 
trajectory arc is later transitioned into the nonlinear system via the two-level differential corrections process 
developed by Howell and Pernicka [27]. Naturally, periodic relative orbits do not exist in the general n-
body problem. However, nearly periodic or slowly drifting relative arcs do exist naturally in this regime. 
For the present example, these trajectory arcs represent excellent startup solutions for the optimization 
process. 

Problem Formulation 

An optimal control problem can be formulated as a collection of N  phases. Thus, if time is the 
independent variable for each phase, then ( ) ( )≤ ≤k k

i ft t t . Here, the subscripts i  and f  identify the initial 
and terminal states along the phase. Within a given phase, the dynamics of the system are described by a set 
of dynamic variables, 

 ( )
( ) ( )
( ) ( )

 
=  
  

k
k

k

y t
z

u t
, (40) 

made up of ( )kn  state variables and ( )k
un  control variables, respectively. In addition, the dynamics may also 

incorporate a vector of time invariant parameters, ( )kp , of dimension ( )k
pn . For notational simplicity, the 

superscript ( )k  is discontinued from this point on.  However, it is important to remember that many 
complex problems require different dynamical models and/or constraints within each phase, and the 
approach accommodates this requirement. 
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Figure 8 - Maneuver History for Radial Tracking Example 
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Figure 9 - Maneuver Comparison to Radial Corrector (∆V ) Results 
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Figure 10 - Optimal Maneuver Comparison 

In general, the optimal control problem requires the identification of an un - dimensional control vector, 
( )u t , that minimizes the performance index ( )( ),φ= f fJ y t t  evaluated at the final time ft . The 

dynamics of the system are defined by the state equations 

 ( ) ( )( ), , ,=y f y t u t p t . (41) 

Initial conditions, at time it ,  are defined by  

 ( ) ( ), ,ψ ψ ψ≤ ≤  l ui i i i i iy t u t t  (42) 

and terminal conditions at the final time ft  are defined by 

 ( ) ( ), ,ψ ψ ψ ≤ ≤ l uf f f f f fy t u t t  (43) 

In addition, the solution must satisfy algebraic path constraints of the form 

 ( ) ( ), ,≤ ≤  l ug g y t u t t g  (44) 

where g  is a vector of size gn . The optimization process is significantly aided by defining a search area. 
This is accomplished by specifying bounds on the state variables, 

 ( )≤ ≤l uy y t y , (45) 

the control variables 

 ( )≤ ≤l uu u t u , (46) 

and the time invariant parameters, 

 ≤ ≤l up p p . (47) 

Note that, for Equations (42) through (47), an equality constraint can always be imposed simply by 
equating the upper and lower limits of the specified range.  
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The basic optimal control problem is to determine the ( )k
un -dimensional control vectors, ( ) ( )ku t  and 

parameters ( )kp  to minimize the performance index,  

 

( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

( )

1 1 1 1 1

1

, , , , , , , , , ,

, , ,

φ

=

 =  

 +  ∑ ∫

…
k

f

k
i

N N NN N
i i f f i i f f

tN
k k k k

k t

J y t t y t t p y t t y t t p

q y t u t p t dt
. (48) 

Notice that, in the above formulation, the cost function may depend on quantities computed in each of the 
N  phases. 

Transcription Formulation 

The basic approach for solving the optimal control problem by transcription is discussed by Betts [20]. In a 
transcription approach, the time interval of every phase is divided into sn  segments 

 1 2 ...< < < < =
si f nt t t t t . (49) 

The associated states along the trajectory are then defined as mesh points, grid points, or nodes. Let us 
introduce the notation ( )=j jy y t  to indicate the value of the state variable at a grid point. In like fashion 
denote the control at this grid point by ( )=j ju u t . In a direct transcription method, the nonlinear system in 
Equation (41) is represented by a system of defect equality constraints that are enforced at each grid point. 
For example, in a compressed Hermite-Simpson discretization, the NLP variables for any given phase are 

 1 1 1, , , , , , , , , , ,′ ′ =  …i i i f f i fx y u u y u u y u p t t . (50) 

At each node, then, the state equations are approximately satisfied by setting the defects  

 1 14
6

ζ − − ′ = − − + + 
j

j j j j j j

h
y y f f f , (51) 

where 

 , , ,′ ′ ′ ′ =  j j jf f y u p t , (52) 
with 

 1 1
1
2 8− −′   = + + −   

j
j j j j j

h
y y y f f , (53) 

for 1, ,= … sj n . The step size is denoted by 1−= −j j jh t t , and the right hand side of the differential 
equations, evaluated at grid point j , is denoted by the vector jf  . The state and control variable bounds, in 
Equations (45) and (46),  become simple bounds on the nonlinear programming (NLP) variables. The 
defect constraints and variable bounds are imposed at all the grid points, including the midpoints ′

jy . As a 
result of the transcription process the differential-algebraic system defining the optimal control problem, 
for each phase, is replaced by the NLP constraints 

 ( )≤ ≤l uc c x c , (54) 

where 

 ( ) 1 1 2 2 1, , , , , , , , , , ,ζ ζ ζ ζ ζ ψ ψ ′ ′=
 

… …f i f i fc x g g g , (55) 

with 

 , ,0, ,0, , ,ψ ψ =  … …
l l l ll i f i fc g g , (56) 

and a corresponding definition of uc .  
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The first set of equality constraints above require that the defect vectors from each of the sn  segments be 
zero, thereby approximately satisfying the differential equations. The boundary conditions denoted by ψ i  
and ψ f  are enforced directly as equality constraints, and nonlinear path constraints denoted by g  are 
imposed at the grid points along the corresponding phase. Note that nonlinear equality path constraints are 
accommodated by setting =l ug g . Similarly, the state and control variable bounds become simple bounds 
on the NLP variables. This large, sparse, NLP can be solved efficiently using either a sequential quadratic 
programming (SQP) method or an interior point (barrier) method.  

In summary, three primary operations are performed in solving an optimal control problem  by 
transcription: 

1. Direct Transcription  Transcribe the optimal control problem into a nonlinear programming 
(NLP) problem by discretization. 

2. Sparse Nonlinear Program  Solve the sparse NLP using either sequential quadratic 
programming (SQP) or an interior point (barrier) method. 

3. Mesh refinement  Assess the accuracy of the approximation (i.e., the finite dimensional 
problem) and, if necessary, refine the discretization and repeat the optimization steps. 

Solution of the Nonlinear Program 

As previously mentioned, the Sparse Optimal Control Software (SOCS), developed by Betts, is employed 
here to solve the optimal control problem. Within SOCS, a sequential quadratic programming (SQP) 
approach is used to solve the nonlinear programming problem that results from transcription of the optimal 
control problem. In this case, the cost function may be expressed as 

 ( )=J F x , (57) 

subject to  

 ≤ ≤l uc c c , (58) 
and 
 ≤ ≤l ux x x . (59) 

The constraints in Equations (58) and (59) may then be introduced into the cost function by introducing 
Lagrange multipliers λ  and ν , 

 ( ) ( ) ( )λ ν= − −T TL x F x c x x . (60) 

In a quadratic programming (QP) approach, the Lagrangian in Equation (60) is approximated to second 
order via a Taylor series expansion, 

 ( ) ( ) ( ) ( )
**

* * *1 1
2 2

γ∂  ∂ ∂  ≈ − + − − = +  ∂ ∂ ∂  

T T TL LL x x x x x x x s s Hs
x x x

, (61) 

where *x  represents the reference solution.  
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The vector *−x x  is defined as the search direction, s , and is identified by minimizing the quadratic in 
Equation (61) subject to the linear constraints 

 
Γ 

≤ ≤ 
 

l u

s
b b

s
, (62) 

where ( )γ = ∇x f x  is the N -dimensional gradient vector, Γ  is the ×m N  Jacobian matrix of constraint 
gradients, and H  is a symmetric ×N N  positive definite approximation to the Hessian matrix. The upper 
bound vector is defined by 

 
− 

=  − 
u

u
u

c c
b

x x
, (63) 

with a similar definition for the lower bound vector lb . In SOCS, the gradient and Hessian information 
required by the optimization algorithm are computed through sparse finite differencing, as discussed by 
Betts [24]. The sparse quadratic program is then solved using a Schur-Complement Method proposed by 
Gill, Murray, Saunders, and Wright [28]. 

Example: Closed Relative Path via Impulsive Control 

Suppose that the optimal control problem is defined as the minimization of the cost index,  

 ( ) ( )0 0= ∆ ∆TJ V t V t , (64) 

where ( )0∆V t  denotes a single impulsive maneuver applied at the initial state along the trajectory. This 
maneuver is required to achieve a closed relative path in position. Subsequently, the cost index in Equation 
(64) is subject to a position vector path constraint, 

 ( ) ( )0 0− =fr t r t , (65) 

where, for any j , ( )jr t  represents the relative position vector that locates the deputy vehicle with respect 
to the chief spacecraft at time jt . Thus, 0t  and ft  denote the initial and final times, respectively. This 
constraint is in addition to the dynamical constraint defined by the equations of motion,  

 ( )( )=y f y t . (66) 

Furthermore, the trajectory arc is subject to an initial condition 

 ( ) ( )
( )

0
0 0

0
−

 
= = 
 

r t
y t y

V t
, (67) 

and an initial velocity constraint,  

 ( ) ( ) ( )0 0 0 0+ −− − ∆ =V t V t V t . (68) 

In Equation (68), ( )0
−V t  represents the pre-defined velocity at the start of the trajectory segment and 

( )0
+V t  the velocity after the corrective ∆V  is applied. Figure 11 illustrates one sample trajectory obtained 

from this optimization process.  In this particular example, the reference halo orbit is characterized by a 
maximum out-of-plane excursion of 300,000 km. The path illustrated in Figure 11, then, represents the 
trajectory of the deputy vehicle relative to the chief, located at the origin of each plot. In this particular 
example, forcing a closed path only requires a maneuver on the order of 610−  m/sec.  

Note, relative orbits ranging in size from 10 meters to 100,000 km were considered during this 
investigation. Although the methodology is unaffected by the startup solution, some of the parameters 
employed can significantly impact the success of the numerical solution process. Numerical evidence 
suggests this process benefits from reducing the order of the system of equations.  
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For example, in past investigations [13-17], the path of the chief spacecraft and deputy vehicles are 
simultaneously integrated. However, in the present study, the transcription process introduces some 
difficulties related to relative variable scaling. Some of these difficulties may be overcome if the chief 
spacecraft path is determined first and the results are subsequently represented using B-spline coefficients. 
Then, to evaluate the right hand side of the deputy equations of motion, the chief spacecraft coordinates are 
determined by evaluating these coefficients at the requested times. Thus, the optimizer is applied to 6 
equations of motion instead of 12. 

Other scaling difficulties arise if the non-dimensional form of the equations of motion is employed. For 
example, traditionally, the characteristic length and time are defined as the mean distance between the 
Earth and the Sun and the inverse of the Earth’s mean motion, respectively.  Since the nominal formations 
presently under consideration do not exceed distances over 20,000 km from the chief spacecraft, the 
resulting position, velocity, and control acceleration  variables are disproportionately scaled. Thus, it is 
often necessary to place some weighting on the position, velocity, and control accelerations to alleviate the 
convergence difficulties introduced by the scaling differences.  

Example: Periodic Relative Path via Continuous Control 

In the above example, the startup solution is sufficiently close to periodic that the resulting optimal solution 
appears, at least, to be both closed and smooth. However, nearly vertical relative trajectories, identified by 
Howell and Marchand [17], do not lend themselves to this type of solution. Although it is possible to 
identify an optimal impulsive maneuver that leads to a closed arc, the velocity discontinuity at the end of 
the segment is typically significant and leads to a non-smooth solution. To remedy this difficulty, the 
problem is posed as one of continuous optimal control instead.   
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Figure 11 – Periodic Relative Orbits via Impulsive Optimal Control 
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Once again, SOCS is used to solve the optimal control problem. In this case, the goal is to identify the 
control history, ( )u t , that minimizes 

 ( ) ( )( )

( )

1=

= ∑∫
k

f

k
i

N t T

t
k

J u t u t dt , (69) 

subject to the equations of motion in Equation (66) and the initial conditions in Equation (67). The initial 
state is associated with a fixed initial time, it , while ft  is defined as the final time required to achieve 
( ) ( )=i fy t y t . In this particular example, the startup relative orbit has a maximum z-component, as 

defined in the synodic rotating frame, of 1000 km. Given the sensitivity of the dynamical system to small 
perturbations, the solution is divided into four phases to facilitate the solution process. Thus, the following 
constraints are imposed on the cost index, 

 ( ) fixed,  for 1, , 4= = …k
it k , (70) 

 ( ) fixed,  for 1, , 4= = …k
ft k , (71) 

 ( )( )1 0− =i ir t r , (72) 

 ( )( )1 0=iu t , (73) 

 ( )( ) ( )( )1 0,   1, ,3+− = = …k k
f iz t z t k , (74) 

 ( )( ) ( )( )1 4 0− =i fy t y t . (75) 

Equations (70)-(71) simply specify that the initial and terminal times of each phase are fixed. These are 
included in the optimization process as part of the parameter vector, ( )kp  for a given phase. The constraints 
in Equations (72)-(73) specify that the initial position along the startup solution is fixed as is the initial 
control effort, assumed to be zero.  Note that the initial guess for the control vector at each node is actually 
set to zero since the startup solution represents a naturally existing arc that is already close to the desired 
path. Equation (74) ensures continuity in both the state vector and the control accelerations across phases. 
Finally, the periodicity constraint is introduced in Equation (75).  

An optimal solution is sought in the vicinity of the startup solution. Thus, it is appropriate to specify 
bounds on the states and control variables to assist the convergence of the numerical process. In this case, 
the following bounds are arbitrarily selected, 

 ( )

10,000 km 10,000 km
10,000 km 10,000 km
10,000 km 10,000 km

4 m/sec 4 m/sec
4 m/sec 4 m/sec
4 m/sec 4 m/sec

−   
   −   
   −

≤ ≤   
−   

   −
   

−      

y t , (76) 

and 

 ( )

2 2

2 2

2 2

4 m/s 4 m/s
4 m/s 4 m/s
4 m/s 4 m/s

   −
   − ≤ ≤   
   −   

u t . (77) 

Once again, the chief spacecraft path is assumed to be pre-determined and is represented using B-spline 
coefficients. Furthermore, based on previous observations regarding the non-dimensional form of the 
equations of motion (EOMs), a dimensional set of EOMs is employed instead. However, the previous 
example involved a single impulsive maneuver. Here, the control problem involves continuous thrusting 
over 180 days. Thus, the thrust levels are extremely low further complicating the numerical solution 
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process.  

These low thrust levels pose a challenge due to the accuracy of the transcription process and the internal 
tolerance limits in SOCS. To circumvent these limitations, the dimensional equations of motion (km, 
km/sec), are also subject to some internal re-scaling. In this case, the position elements are scaled down by 

310− , while the velocities and control accelerations are scaled up by 310  and 610 , respectively. Whether or 
not internal re-scaling is necessary can only be determined, of course, on a case by case basis and is a 
matter of engineering judgment. 

The results of the optimization process are illustrated in Figure 12. The trajectory in Figure 12 represents 
the path that a deputy spacecraft follows as the chief vehicle evolves along a halo orbit. The origin of this 
figure represents the chief spacecraft itself. In the present example, the chief spacecraft is assumed to 
follow a periodic halo orbit, as determined in the CR3BP, characterized by a maximum out-of-plane 
amplitude of 300,000 km. Thus, the deputy path observed in Figure 12 is associated with the CR3BP. The 
open red arc identifies the startup solution. The closed blue arc, then, represents the converged optimal 
solution via continuous control. The associated control accelerations are illustrated in Figure 13. Note that 
the control effort is highest near the start and end of the trajectory, where the periodicity constraint is 
enforced. Otherwise, the trajectory in Figure 12 is very close to the startup solution and, as such, the control 
accelerations near the lower z-amplitudes are smallest near this region.  

Note that the problem is carefully formulated to ensure a smooth transition into the ephemeris model. 
Basically, the transition only requires a change on the right hand side of Equation (66). As previously 
mentioned, the chief spacecraft path is pre-determined outside of the optimization process and later 
approximated using splines. This particular approach is consistent with past developments involving 
continuous control and formation flight near the libration points as determined in the ephemeris model 
[14]-[17]. Of course, for formation flight in the ephemeris model, the spline coefficients are associated with 
a quasi-periodic Lissajous trajectory, rather than a periodic halo orbit. Furthermore, in the ephemeris 
model, the relative equations of motion are formulated in the inertial frame associated with the JPL DE405 
ephemeris, instead of the synodic rotating frame of the CR3BP. 

This particular example represents a step towards a greater goal, that is, to incorporate constrained 
nonlinear optimal control in the ephemeris model through the use of existing and proven software tools. 
The ultimate success of these examples brings about the solution to multiple issues related to the numerical 
sensitivities of the problem. Naturally, in working with any existing optimization software packages, it is 
important to keep in mind the traditional applications and the internal limitations of the software. For 
formation keeping near the libration points, the differences in scale between the position elements, the 
relative velocities, and the necessary control accelerations is quite significant. Oftentimes, the control effort 
necessary to achieve a prescribed nominal motion can be extremely small yet crucial in achieving the 
desired nominal accuracy. 

In the two examples presented here, involving impulsive and continuous control, addressing the variable 
scales problem is critical in the success of the optimization process. Because of these scale differences, it is 
not surprising to find that the traditional non-dimensional formulation of the dynamical model is inadequate 
based on the numerical methods employed and the associated limitations in accuracy. Past investigations 
[13-16] consider continuous control in both the CR3BP and the ephemeris model using high accuracy 
integrators to identify the desired solutions. Clearly, a numerical integration approach leads to solutions 
that are continuous and smooth in all variables. In a nonlinear programming approach, however, continuity 
is, in fact, a constraint that may not always be achieved to within the expected tolerance levels. In fact, 
what seems like a reasonable tolerance, in the non-dimensional system, may lead to unacceptable 
discontinuities in the solution.  
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Figure 12 - Periodic Relative Orbit via Continuous Optimal Control 
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Figure 13 - Continuous Optimal Control Acceleration History 
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 To illustrate this, consider that an acceleration on the order of 910−  m/sec2 translates into a non-
dimensional control input on the order of 710−  non-dimensional units. If the internal tolerances of the 
software do not allow for tolerances below this level, then it is possible for the optimizer to converge onto a 
discontinuous control time history, even if the solution appears continuous in position and velocity. 
Naturally, discontinuities in the control input make the remaining results suspect. For instance, changing 
some of the internal scaling of the optimization process can lead to essentially identical results in position 
and velocity while the control acceleration histories appear totally different simply because these were 
small enough to fall below the tolerances allowed by the software. In essence, the optimizer is fooled into 
believing the present solution meets all the constraints. In this case, a simple internal rescaling of the states 
and control inputs is insufficient. However, the combination of the dimensional equations with the internal 
rescaling can be quite successful in achieving continuity on all variables.  

CONCLUSIONS 

The focus of this investigation is on formation keeping near the libration points via nonlinear optimal 
control. This is an initial step towards implementing, in a more practical capacity, constrained nonlinear 
optimal control in the ephemeris model. The examples presented here include optimal impulsive and 
continuous control. Two methodologies are considered in solving the optimal control problem. In either 
approach, a discrete representation of the equations of motion is necessary. Both methods divide the 
trajectory into segments consisting of grid points or nodes. The first method employs numerical integration 
to determine both the state at each node as well as the gradients needed for the optimization process. The 
second method does not use numerical integration directly. Instead, the states at each node are 
approximated from defect equations based on a Hermite-Simpson discretization. Then, the problem is 
reduced to one of nonlinear programming. The resulting state equations, the boundary conditions, and the 
path constraints are all grouped into a large sparse system of constraint equations. The solution to the 
optimal control problem is obtained via sequential quadratic programming by approximating the cost index 
to second order, subject to the augmented system of constraints, and numerically estimating the Jacobian 
and Hessian matrices using sparse finite differencing.  

The first method, based on a subspace trust region method, employs a discretization scheme that offers 
greater accuracy while sacrificing performance. The second method sacrifices some accuracy in the interest 
of computational efficiency. This particular approach incorporates the Sparse Optimal Control Software 
(SOCS), developed by Betts [20], into the formation keeping analysis. The analysis reveals some numerical 
difficulties associated with the initial formulation of the dynamical model and the numerical methods 
employed in SOCS. However, these issues are overcome by introducing an alternate form for the 
dynamical model along with some internal rescaling of variables. The success of the examples presented 
here lay the foundation for future efforts to incorporate nonlinear programming in the solution of the 
constrained optimal formation keeping problem. 
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