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TRACKING CONTROL OF NANOSATELLITES WITH UNCERTAIN
TIME VARYING PARAMETERS

D. Thakur∗and B.G. Marchand†

The focus of this study is an adaptive control scheme that maintains consistent
satellite attitude tracking performance in the presence ofuncertain time-varying
inertia parameters. Potentially large variations in the inertia matrix may occur due
to changes in fuel mass, fuel slosh, and deployable appendages such as booms and
solar arrays. As such, the assumption of a constant inertia matrix may not suffice
for precise tracking maneuvers. The present investigationdevelops an appropriate
description for a class of time-dependent inertia uncertainty. An adaptive con-
trol law is implemented to recover closed-loop stability and accurate attitude and
angular velocity tracking in the face of such parametric uncertainty.

INTRODUCTION AND MOTIVATION

The attitude control of rigid spacecraft is a widely studiedsubject, and several stabilizing feed-
back controllers are available in existing literature1–3. Specifically, spacecraft attitude control ap-
plications with practical design considerations such as arbitrarily large inertia matrix uncertainty
has been the focus of extensive research efforts over the years2,4–8. Among these, adaptive con-
trol is able to adjust to uncertain parameters using an online identification (estimation) mechanism.
While many solutions exist for controlling systems with unknown constant inertia matrix, research
in feedback and adaptive control of unknown time-varying inertia matrix is fairly limited.

For instance, mass properties of a spacecraft change with fuel consumption. Although the change
in mass may be considered negligible for larger spacecraft,smaller spacecraft such as nanosatellite
may exhibit larger variations especially if the propulsivemass accounts for a significant portion of
the total mass. Thus, it becomes necessary to model the inertia parameters as time-varying quanti-
ties for tracking control applications. Similarly, deployable spacecraft appendages such as antennas,
solar arrays, or sensor booms may change the geometry and, subsequently, the inertia matrix de-
scription of the satellite. For example, the QuakeSat9 earth observation nanosatellite and Delfi-C310

nanosatellites are both designed with deployable solar panels and communication antennas. The as-
sumption of a constant inertia matrix may not suffice for precise tracking maneuvers for satellite
missions with rapid fuel consumption or deployable appendages.

Motivated by the aforementioned issues, the focus of this study is an adaptation mechanism that
maintains consistent attitude and angular velocity tracking performance of a satellite in the face of
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uncertain time-varying inertia parameters. The type of time-variation discussed in this study arises
during spacecraft appendage deployment and is assumed to bea known quantity. Specifically, the
known time-varying component is multiplicative in nature,and the initial inertia parameters are the
uncertain quantities. Thus, while the inertia-matrix changes with time, the uncertain component of
the matrix remains constant throughout the mission. The spacecraft is assumed to be equipped with
a thruster actuation system that enables full three-axis control.

The main objective is to enable the satellite to accurately track a reference trajectory in the pres-
ence of arbitrarily large uncertainty for a time-dependentinertia matrix. Adaptive control adjusts to
unknown system parameters by updating its controller parameters online using measured signals,
and does so while maintaining stability and consistent performance of the system. A vast majority
of existing adaptive attitude-control formulations for stabilizing spacecraft attitude tracking dynam-
ics is based upon the classical certainty equivalence (CE) principle. However, CE based adaptive
controllers can suffer from performance degradation if theunderlying reference signal does not
satisfy certain persistence of excitation (PE) conditions11–13. A recently introduced noncertainty-
equivalence (non-CE) adaptive attitude-tracking controlmethod by Seo and Akella7 overcomes this
limitation and delivers superior performance to the classical CE-based adaptive control scheme. The
control formulation provided in the present study is based on the methodology of Seo and Akella.
While the original non-CE adaptive control result addresses a constant inertia matrix, the present
investigation modifies the original result to handle a time-varying inertia matrix of the multiplicative
form stated earlier. The present formulation retains the asymptotic convergence and global stability
properties of the original result. Furthermore, it provides the added benefit that the parameter esti-
mation error converges to zero even when the underlying reference signal does not satisfy certain
PE conditions. This feature is a direct consequence of the time-varying nature of the inertia matrix
and is unavailable in the original non-CE adaptive control result for constant inertia matrix.

Although the selected application of the theoretical development shown here is for nanosatellites,
the overall approach is applicable for a spacecraft of any mass and dimension. Furthermore, the
application is not limited to spacecraft with time-varyinginertia due to deploying appendages. The
approach outlined here may be extended to spacecraft exhibiting time-varying inertia properties due
to thermal deformation, fuel slosh, or any other physical characteristics, as long as the description
of the inertia-matrix conforms to the multiplicative form.

PROBLEM FORMULATION

A dynamical model for the spacecraft tracking problem is formulated using Euler parameters and
Euler’s rotational equations of motion. Euler parameters,also known as quaternions,3 provide a
nonsingular attitude description and are well suited for spacecraft applications. The Euler parameter
kinematic differential equation may be expressed in the form

q̇(t) =
1

2
E(q(t))ω(t), (1)

where the unit quaternionq(t) ∈ R
4 consists of scalar and vector components denoted asq0 and

qv respectively. Thus,q = [q0, qv] and satisfies the unit-norm constraintq0
2 + qv

Tqv = 1. The
4× 3 matrixE(q) is defined as

E(q(t)) =

[

−qT
v

q0I+ [qv×]

]

. (2)
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where[qv×] is the matrix representation of the linear cross-product operationqv× and is given by
the skew-symmetric vector cross-product matrix operator2

[qv×] =





0 −qv3 qv2
qv3 0 −qv1
−qv2 qv1 0



 . (3)

In Equation (2), ω(t) ∈ R
3 is the angular velocity of the rigid body relative to an inertially fixed

reference frame, whileI is the3× 3 identity matrix.

While the attitude kinematical equations describe the timeevolution of a rigid spacecraft’s orien-
tation in space, Euler’s rotational equations of motion address the impact of external control torques.
These equations are given by

J(t)ω̇(t) = −J̇(t)ω(t)− ω(t)× J(t)ω(t) + u(t), (4)

whereJ(t) is the time-varying, symmetric positive definite mass-moment of inertia matrix of the
spacecraft andu(t) ∈ R

3 is the external control torque. Note that for notational convenience, the
argumentt is hereafter left out.

Tracking Error Dynamics

Consider a spacecraft that is to track the attitude trajectory of a passive target through controlled
maneuvers. The spacecraft is required to converge on to the target’s quaternion attitude description
as well as its angular rotation rates within a specified time period and maintain the convergence for
all time thereafter. A control law that satisfies this convergence specification needs constant mea-
sured updates for the current attitude of the spacecraft andthe desired attitude where the spacecraft
should be. The control law aims to drive the attitude and angular velocity tracking errors to zero by
adjusting the control effort based on measured updates or estimates of the state.

In order to drive the tracking error to zero, the control law needs a complete dynamical description
of the error states. To begin with, a rotation matrix that permits transformation between reference
frames is established. The direction cosine matrix,BCN (q), denotes a transformation from inertial
reference frameN to body-fixed referenceB (i.e.,N −→ B), while the argumentq indicates the
quaternion that parametrizes the DCM to achieve the desiredtransformation. Thus,BCN (q) can be
expressed in terms of the quaternion3,14 q, that is,

BCN (q) = (q0
2 − qv

Tqv)I+ 2qvqv
T − 2 [qv×] . (5)

As is often the case, the commanded or reference angular velocity may be prescribed in its own
reference frameR. In this case the rotation given byR −→ B is obtained by combining the corre-
sponding rotation matrices,BCN (q) andRCN (qr), through matrix multiplication. The combined
rotations can be condensed into a single rotation matrix,BCR(qe), as follows

BCR(qe) =
BCN (q)

(

RCN (qr)
)T

. (6)

whereqe denotes the error between the actual quaternion(N
q

−→ B) and desired quaternion(N
qr−→

R) states.

The angular velocity tracking error is expressed as

ωe = ω − BCR(qe)ωr (7)
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and provides the error between the angular velocity of the spacecraft and,ωr(t), the commanded
angular velocity. In order to obtain the tracking error dynamics, the time derivative of Equation (6)
and Equation (7) are evaluated along Equation (4). Thus, the attitude error dynamics for a rigid
body is given by

q̇(t) =
1

2
E(qe)ωe, (8)

and the angular velocity tracking error dynamics are derived as follows

ω̇e = J−1

(

−J̇ω − [ω×]Jω + u
)

+ [ωe×]× BCR(qe)ωr −
BCR(qe)ω̇r. (9)

The control objective is to track any reference trajectory,[qr,ωr], for all initial conditions,[q(0),ω(0)],
assuming full feedback of the signals[q,ω] and uncertainty in the time-varying inertia parameters.
That is, a control torqueu needs to be designed such thatlimt→∞

[

qev , ωe

]

= 0, while ensuring
that the signalsω andq remain bounded at all times. In this way, a tracking control problem has
been converted into a stabilization problem for the error states.2

Type of Inertia Matrix Considered

A spacecraft with symmetric positive definite time-varyinginertia matrix of the form

J(t) = JoΨ(t), (10)

is addressed in the subsequent control methods. In Equation(10), Jo ∈ ℜ3×3 is a matrix of constant
uncertain parameters, andΨ(t) ∈ ℜ3×3 is a known matrix function that models the time-variation
of J(t). Additionally, the condition is imposed thatJo andΨ(t) are each symmetric and positive
definite. The type of uncertainty stated in Equation (10) has a multiplicative nature. A time-varying
inertia matrix of this form may be observed in a spacecraft undergoing thermal variations, fuel slosh,
or spacecraft appendage deployment such as magnetometer booms, antennas and solar arrays. In
this section, a model that demonstrates variations inducedduring a sensor boom deployment is
developed and employed as an application for the control formulation provided in the next section.
Note, however, that the control algorithm developed subsequently may be implemented for any
inertia-matrix that satisfies Equation (10).

Consider a satellite in the shape of a rectangular prism of dimensionl1 × l1 × 3l1 and mass
m0. The satellite carries two sensor booms which remain in a stowed configuration during launch
and subsequent orbit deployment (e.g., the GOES spacecraftmission15). The booms may be a
lightweight collapsible structure such as the Self-Deploying Astromast16. During the course of the
mission the booms, which are modeled as two slender bars of length 2l1 and massαm0 (where
0 < α < 1), are deployed using a motor-controlled extension. An illustration of the deployment
sequence is provided in Figure1, in which the booms are shown to symmetrically extend through
the center of the top and bottom faces of the spacecraft main body.

Assume, for simplicity, that the prism and slender bars eachhave a uniform mass distribution
before, during, and after boom-deployment. Furthermore, assume that the bars are deployed at a
constant rate over the duration ofτ seconds. Given that the bar’s mass to length ratio isαm0

2l1
and

that the bar length,r(t), is obtained by

r(t) =
2l1
τ

t, (11)
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Figure 1: Sensor Boom Deployment Sequence

where0 ≤ t ≤ τ , it follows that the mass of each bar,mp(t), increases at a steady rate as shown
below

mp(t) =
αm0

τ
t. (12)

Consequently, the mass of the prism,mc(t), simultaneously decreases as described by

mc(t) = m0 − 2
αm0

τ
t. (13)

In Equation (13), m0 denotes the initial total mass of the prism with stowed booms.

Based on the characteristics of the satellite described in Equations (11)-(13), and through an ap-
plication of the parallel-axis theorem, the satellite’s time-varying inertia parameters are determined
about its principle axes in the form of Equation (10) as follows

Jo =





5

6
m0l

2
1

0 0

0 5

6
m0l

2

1
0

0 0 1

6
m0l

2

1



 . (14)

During sensor boom deployment, for the duration0 ≤ t ≤ τ , the matrixΨ(t) is described as

Ψ(t) =





1− 2α
τ
t 0 0

0 1− 7

5

α
τ
t+ 12

5

α
τ2
t2 + 16

5

α
τ3
t3 0

0 0 1 + α
τ
t+ 12 α

τ2
t2 + 16 α

τ3
t3



 . (15)

At the completion of the boom deployment sequence, that is, at time t > τ , the matrixΨ(t) = Ψ

is constant and is described by

Ψ(t) =





1− 2α 0 0

0 1− 7

5
α+ 12

5
α+ 16

5
α 0

0 0 1 + α+ 12α + 16α



 .

In this way, the time-varying matrix is bounded for all time,and preserves the symmetric positive-
definite property of the inertia matrix.
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NON-CE ADAPTIVE ATTITUDE CONTROL

In this section, an adaptive attitude and angular velocity tracking control algorithm is presented
for the problem described by Equation (8) and Equation (9). The control method is based on the
non-CE adaptive control results of Seo and Akella,7 which addresses a constant inertia matrix. The
present investigation modifies the control algorithm to handle a time-varying inertia matrix in the
form of Equation (10). The main results of the paper are summarized in the theorembelow.

Theorem 1.Consider the attitude and angular velocity tracking problem described by Equations
(8) and (9) with a time-varying inertia matrix in the form of Equation (10), whereJo is unknown.
Assuming full-state feedback, suppose the adaptive control input is prescribed by

u = Ψ
(

−W
(

θ̂ + δ
)

+WfΓW
T
f

(

kp(qev − ωef ) + ωe

)

)

, (16)

˙̂
θ = ΓWT

f

[

(β + kv)ωef + kpqev

]

− ΓWTωef , (17)

δ = ΓWT
f ωef , (18)

where the termskp, kv, andβ = kp + kv are positive scalar constants, whileΓ is a6 × 6 positive-
definite and diagonal constant matrix. Furthermore, in Equations (16)-(18), the quantityW is the
regressor matrix defined by

Wθ∗ = −Ψ−1JoΨ̇ω −Ψ−1[ω×]JoΨω + Jo

(

[ω×]BCR(qe)ωr −
BCR(qe)ω̇r

)

+ Jo

(

kpβqev + kpq̇ev + kvωe

)

,
(19)

whereθ∗ = [J011 , J012 , J013 , J022 , J023 , J033 ]
T contains the six unique entries of the matrixJo.

Finally, the variablesωef ∈ R
3 andWf ∈ R

3×6 in Equations (16)-(18) are linear, stable variables
calculated according to the following first-order filter dynamics

ω̇ef = −βωef + ωe, (20)

Ẇf = −βWf +W, (21)

with arbitrary initial conditions.7 The adaptive controller stated above ensures boundedness for all
closed-loop signals and asymptotic convergence of the tracking error signalslimt→∞

[

qev , ωe

]

= 0
for all initial conditions[q(0),ω(0)] and reference trajectories[qr,ωr]

Proof. Following the approach of Seo and Akella, the dynamics of Equation (9) are transformed
to a more desirable parameter-affine form through the careful addition and subtraction of the term
J
(

kpβqev + kpq̇ev + kvωe

)

.7 That is,

ω̇e = −kpβqev − kpq̇ev − kvωe

+ J−1

o

(

Ψ−1

(

u− JoΨ̇ω − [ω×]JoΨω
)

+ Joφ+ Jo

(

kpβqev + kpq̇ev + kvωe

)

)

,
(22)

whereφ = [ω×]BCR(qe)ωr −
BCR(qe)ω̇r and the time-varying inertia matrix is replaced with

its multiplicative formJ = JoΨ as defined earlier in Section . Recognizing the last four terms
post-multiplyingJ−1

o as the regressor matrix defined in Equation (19), Equation (22) simplifies to

ω̇e = −kpβqev − kpq̇ev − kvωe + J−1

o

(

Ψ−1u+Wθ∗
)

. (23)

Next, define the signalν as
ν = Ψ−1u, (24)
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and consider the linear filter variableνf obtained from

ν̇f = −βνf + ν, (25)

which is possible sinceΨ in Equation (24) is a known, bounded signal. The signalν now plays
the role of a pseudo-control variable. This is a key step which makes the non-CE adaptive control
approach feasible for a time-varying inertia matrix description. With the introduction ofν andνf ,
the ensuing stability analysis follows closely with the approach of Seo and Akella.7

Next, Equation (20) is differentiated on both sides and appropriate substitutions are made using
the transformed angular-velocity tracking error dynamicsin Equation (23), as well as Equation (21),
Equation (24), and Equation (25). The resulting expression is

ω̈ef = −βω̇ef − kpβqev − kpq̇ev − kv
(

ω̇ef + βωef

)

+ J−1

o

(

ν̇f + βνf +
(

Ẇfθ
∗ + βWfθ

∗
))

.
(26)

Upon examining the above expression, note that every term isscaled by the constantβ and is
accompanied by its corresponding derivative. The expression is rearranged so that the derivatives
are on the left hand side of the equation. Then, Equation (26) can be written as a perfect differential,
that is,

d

dt

[

ω̇ef + kpqev + kvωef − J−1

o νf − J−1

o Wfθ
∗
]

= −β
(

ω̇ef + kpqev + kvωef − J−1

o νf − J−1

o Wfθ
∗
)

.
(27)

The solution to Equation (27) is given by

ω̇ef + kpqev + kvωef − J−1

o (νf +Wfθ
∗) = εe−βt, (28)

whereε encompasses the initial conditions of all integrable terms

ε = ω̇ef (0) + kpqev(0) + kvωef (0)− J−1 (νf (0) +Wf (0)θ
∗) . (29)

If the initial conditions are chosen such thatε = 0, then Equation (28) can be directly solved to
obtain an expression foṙωef that is independent of the angular-velocity tracking error. This is
accomplished by selectingWf (0) = 0, νf (0) = 0, andωef (0) =

(

ωe(0) + kpqev(0)
)

/kp. Thus,
by selecting the initial conditions in this manner, it follows that

ω̇ef = −kpqev − kvωef + J−1 (νf +Wfθ
∗) . (30)

Consistent with the non-CE construction in Seo and Akella,7 the signal,δ ∈ R
6, is introduced

that estimates the unknown inertia in conjunction withθ̂ ∈ R
6. In other words, the estimates for the

unknownθ∗ vector are generated by the combined signalθ̂ + δ. Subsequently, the filter signalνf

is determined through

νf = −Wf

(

θ̂ + δ
)

, (31)

whereinδ is given by Equation18.7 Combining Equations (30) and (31), the dynamical equation
for the filter signal,ωef is given by

ω̇ef = −kpqev − kvωef − J−1

o Wf

(

θ̂ + δ − θ∗
)

. (32)
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In Equation (32), let z = θ̂+ δ− θ∗, which provides the parameter estimation error for the non-CE
adaptive control problem. The dynamical equation governing the time evolution ofz is determined

through appropriate substitutions of Equations (17), (18), and (30) in the equatioṅz =
˙̂
θ + δ̇, thus

yielding,
ż = −ΓWf

TJ−1

o Wfz. (33)

Consider the following Lyapunov-like function modified from Seo8

V =
1

2
ωT

ef
ωef +

[

qT
ev
qev + (qe0 − 1)2

]

+
λ

2jomin

zTΓ−1z,

whereλ > 0, andjomin is the minimum eigenvalue ofJo. The derivative ofV is given by

V̇ = ωT
ef

˙ωef − 2 ˙q0e +
λ

2jomin

(

żTΓ−1z+ zTΓ−1ż
)

,

= ωT
ef

(

−kpqev − kvωef − J−1

o Wfz
)

+ qT
ev
ωe −

λ

2jomin

zTWT
f J

−1

o Wfz,

= −kv‖ωef‖
2 − kpω

T
ef
qev − ωT

ef
J−1

o Wfz+ qT
ev

(

ω̇ef + βωef

)

−
λ

2jomin

zTWT
f J

−1

o Wfz

= −kv‖ωef‖
2 − kpω

T
ef
qev − ωT

ef
J−1

o Wfz+ qT
ev

(

−kpqev − kvωef − J−1

o Wfz+ βωef

)

−
λ

2jomin

zTWT
f J

−1

o Wfz

= −kv‖ωef‖
2 − kp‖qev‖

2 − ωT
ef
J−1

o Wfz− qT
ev
J−1

o Wfz−
λ

2jomin

zTWT
f J

−1

o Wfz

≤ −
2

3
kv‖ωef ‖

2 −
2

3
kp‖qev‖

2 −
λ

3
‖J−1

o Wfz‖
2

−kv
3

(

‖ωef ‖
2 +

3

kv
ωT

ef
J−1

o Wfz+
λ

kv
‖J−1

o Wfz‖
2

)

−kp
3

(

‖qev‖
2 +

3

kp
qT
evJ

−1

o Wfz+
λ

kp
‖J−1

o Wfz‖
2

)

≤ −
2

3
kv‖ωef ‖

2 −
2

3
kp‖qev‖

2 −
λ

3
‖J−1

o Wfz‖
2

≤ 0,

which indicates thaṫV ≤ 0 and consequentlyωef ,qev , z ∈ L∞, that is, the closed loop signals are

bounded. Since the integral ofV̇ exists and is finite,qev ,ωef ,J
−1

o Wfz ∈ L2 ∩ L∞ and subse-
quently,

(

q̇ev , ω̇ef ,
d
dt
(Wfz)

)

∈ L∞, which permit the following conclusion based on Barbalat’s
lemma

lim
t→∞





qev(t)
ωef (t)

J−1

o Wfz(t)



 = 0. (34)

Furthermore, by invoking Equation (32), it becomes clear thatlimt→∞ = ωe.

Finally, it remains to extract the actual controlleru from the filtered signalνf . This can be done
simply through the substitution

u = Ψ (ν̇f + βνf ) , (35)

which can be expanded through substitutions of Equations (17), (18), (21), and (31) to recover the
expression in Equation (16).
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NUMERICAL SIMULATIONS

In this section, two sets of numerical simulation studies are performed to validate the performance
of the adaptive control algorithm in the presence of uncertainty in time varying-inertia parameters.
The first set of simulations is provided for a non-PE reference angular velocity profile, while the
second set is for a PE reference signal. For this specific example, the quantitiesJo andΨ are given
by Equations (14) and (15) where

m0 = 30 kg, l = 0.2 m, α = 0.1, τ = 200 seconds. (36)

An initial error of30% is assumed in the knowledge ofJo, that is

θ̂(0) + δ(0) = 1.3θ∗. (37)

The actual and commanded initial conditions are

q(0) =
[

0.9487, 0.1826, 0.1826, 0.18268
]T

,

ω(0) =
[

0, 0, 0
]T

rad/s,

qr(0) =
[

1, 0, 0, 0
]T

.

The reference angular velocity profile is updated at each simulation time. In addition, as mentioned
previously, the initial filter-states are as follows

Wf (0) = 0, ωf (0) =
ωe(0) + kpqve(0)

kp
.

Non-PE Reference Trajectory

In this set of simulations, the following non-PE reference trajectory is simulated:

ωr = 0.1 cos(t)(1− e0.01t
2

) + (0.08π + 0.006 sin(t))te−0.01t2 ·
[

1 1 1
]T

rad/s, (38)

which is obtained from the example provided in Seo and Akella. The gain values are selected as
kp = 0.08, kv = 0.07, andΓ = diag{100, 0.01, 0.01, 200, 0.01, 100}. A simulation is performed
for a period of200 seconds using the aforementioned parameter values.

The results of the simulation are illustrated in Figure2. While the attitude and angular velocity
errors both asymptotically converge to zero as expected, the convergence of of the parameter esti-
mation norm to zero is rather unexpected. In general, the non-PE nature of the reference trajectory
prohibits the convergence of the parameter estimates to their true values. However, there is added
persistence of excitation due to the time-varying termΨ in the inertia matrix. This allows the pa-
rameter estimates to converge to their true values even in the case of a non-PE reference trajectory.
The control torques remain time-varying and increase in amplitude to accommodate the variations
in the inertia parameters and ensure faithful tracking of the reference trajectory for the entire simu-
lation period. The constant matrixΓ is used to tune the rate of the estimation error convergence as
well as improve the attitude and angular velocity error convergence.
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Figure 2: Non-CE adaptive tracking-control simulation for a spacecraft with time-varying inertia
parameters tracking a non-PE reference signal.
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PE Reference Trajectory

In this set of simulations, a PE reference trajectory given by

ωr =
[

cos(t) + 2, 5 cos(t), sin(t) + 2
]T

rad/s, (39)

is simulated. As in the first set of simulations, this reference trajectory is obtained from the ex-
ample provided in Seo and Akella. The gain values are selected askp = 0.8, kv = 0.8, and
Γ = diag{1, 0.001, 0.001, 1, 0.001, 1}. As before, the duration of the simulation is200 seconds.
The results of the simulation are illustrated in Figure3. The attitude and angular velocity errors
both asymptotically converge to zero as expected. For a PE reference trajectory, the convergence of
the parameter estimation norm is expected and clearly evident from the illustration.
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Figure 3: Non-CE adaptive tracking-control simulation for a spacecraft with time-varying inertia
parameters tracking a PE reference signal.
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CONCLUSIONS

The problem of spacecraft attitude-tracking in the presence of arbitrarily large multiplicative
uncertainties for a time-varying inertia matrix is addressed. A noncertainty-equivalence adaptive
controller is employed for consistent angular velocity andattitude tracking. Numerical simulations
for non-persistently exciting and persistently exciting reference trajectories are performed, which
demonstrate asymptotic convergence of the attitude and angular-velocity tracking errors to zero.
Moreover, the persistence of excitation induced by the time-varying inertia parameters enables the
parameter estimation error norm to also converge to zero even when the underlying reference tra-
jectory itself does not satisfy persistence of excitation conditions.
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