AAS 11-592

TRACKING CONTROL OF NANOSATELLITES WITH UNCERTAIN
TIME VARYING PARAMETERS

D. Thakur*and B.G. Marchand?

The focus of this study is an adaptive control scheme thattaiais consistent
satellite attitude tracking performance in the presencenakrtain time-varying
inertia parameters. Potentially large variations in thetia matrix may occur due
to changes in fuel mass, fuel slosh, and deployable appesdagh as booms and
solar arrays. As such, the assumption of a constant inegtaxymay not suffice
for precise tracking maneuvers. The present investigatéwelops an appropriate
description for a class of time-dependent inertia uncetyai An adaptive con-
trol law is implemented to recover closed-loop stabilitylatcurate attitude and
angular velocity tracking in the face of such parametricartanty.

INTRODUCTION AND MOTIVATION

The attitude control of rigid spacecraft is a widely studsedbject, and several stabilizing feed-
back controllers are available in existing literatti®e Specifically, spacecraft attitude control ap-
plications with practical design considerations such adrarily large inertia matrix uncertainty
has been the focus of extensive research efforts over the?feh Among these, adaptive con-
trol is able to adjust to uncertain parameters using an emdiantification (estimation) mechanism.
While many solutions exist for controlling systems with nolvn constant inertia matrix, research
in feedback and adaptive control of unknown time-varyirgrtia matrix is fairly limited.

For instance, mass properties of a spacecraft change witbdnsumption. Although the change
in mass may be considered negligible for larger spaceamdller spacecraft such as nanosatellite
may exhibit larger variations especially if the propulsimass accounts for a significant portion of
the total mass. Thus, it becomes necessary to model th&iparameters as time-varying quanti-
ties for tracking control applications. Similarly, depshle spacecraft appendages such as antennas,
solar arrays, or sensor booms may change the geometry dmkgaently, the inertia matrix de-
scription of the satellite. For example, the Quaké@Satrth observation nanosatellite and Delfil€3
nanosatellites are both designed with deployable solalpamd communication antennas. The as-
sumption of a constant inertia matrix may not suffice for edracking maneuvers for satellite
missions with rapid fuel consumption or deployable appgada

Motivated by the aforementioned issues, the focus of thidysis an adaptation mechanism that
maintains consistent attitude and angular velocity tragkierformance of a satellite in the face of
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uncertain time-varying inertia parameters. The type o&twariation discussed in this study arises
during spacecraft appendage deployment and is assumedatkrmvn quantity. Specifically, the
known time-varying component is multiplicative in natuaed the initial inertia parameters are the
uncertain quantities. Thus, while the inertia-matrix adeswith time, the uncertain component of
the matrix remains constant throughout the mission. Theexpaft is assumed to be equipped with
a thruster actuation system that enables full three-axigr@lo

The main objective is to enable the satellite to accuratelgkta reference trajectory in the pres-
ence of arbitrarily large uncertainty for a time-dependeattia matrix. Adaptive control adjusts to
unknown system parameters by updating its controller patars online using measured signals,
and does so while maintaining stability and consistentgoerdnce of the system. A vast majority
of existing adaptive attitude-control formulations faalsitizing spacecratft attitude tracking dynam-
ics is based upon the classical certainty equivalence (@Egiple. However, CE based adaptive
controllers can suffer from performance degradation if an€eerlying reference signal does not
satisfy certain persistence of excitation (PE) conditidnis. A recently introduced noncertainty-
equivalence (non-CE) adaptive attitude-tracking contrethod by Seo and Akelfeovercomes this
limitation and delivers superior performance to the clzesCE-based adaptive control scheme. The
control formulation provided in the present study is basedhe methodology of Seo and Akella.
While the original non-CE adaptive control result addresseonstant inertia matrix, the present
investigation modifies the original result to handle a tivaeying inertia matrix of the multiplicative
form stated earlier. The present formulation retains tlyengsotic convergence and global stability
properties of the original result. Furthermore, it proddiee added benefit that the parameter esti-
mation error converges to zero even when the underlyingeete signal does not satisfy certain
PE conditions. This feature is a direct consequence of the-tiarying nature of the inertia matrix
and is unavailable in the original non-CE adaptive contslit for constant inertia matrix.

Although the selected application of the theoretical dgwelent shown here is for nanosatellites,
the overall approach is applicable for a spacecraft of angsnaad dimension. Furthermore, the
application is not limited to spacecratft with time-varyimgrtia due to deploying appendages. The
approach outlined here may be extended to spacecraft 8rgikime-varying inertia properties due
to thermal deformation, fuel slosh, or any other physicarahteristics, as long as the description
of the inertia-matrix conforms to the multiplicative form.

PROBLEM FORMULATION

A dynamical model for the spacecraft tracking problem isrfolated using Euler parameters and
Euler’s rotational equations of motion. Euler parametafsp known as quaterniorisprovide a
nonsingular attitude description and are well suited faicggraft applications. The Euler parameter
kinematic differential equation may be expressed in thefor

q(t) = ;E(q(t))w(?t), (1)

where the unit quaternioq(t) € R* consists of scalar and vector components denoteg asd
qv respectively. Thusy = [qo, qv] and satisfies the unit-norm constraigt + q,”q, = 1. The
4 x 3 matrix E(q) is defined as

T
Bla) = | 1 % ] @



wherelqy x] is the matrix representation of the linear cross-produeraiong, x and is given by
the skew-symmetric vector cross-product matrix opefator

0 - QUa QUQ
[qv X] = qvg 0 _QUl . (3)
- qUQ qv1 O

In Equation ), w(t) € R? is the angular velocity of the rigid body relative to an inaly fixed
reference frame, whil&is the3 x 3 identity matrix.

While the attitude kinematical equations describe the gwwution of a rigid spacecraft’s orien-
tation in space, Euler’s rotational equations of motionradsl the impact of external control torques.
These equations are given by

J(t)w(t) = —J(t)w(t) — w(t) x J(t)w(t) +u(t), (4)

whereJ(¢) is the time-varying, symmetric positive definite mass-mptr inertia matrix of the
spacecraft anai(t) € R3 is the external control torque. Note that for notationalvesrence, the
argument is hereafter left out.

Tracking Error Dynamics

Consider a spacecraft that is to track the attitude trajgaba passive target through controlled
maneuvers. The spacecraft is required to converge on tauthets quaternion attitude description
as well as its angular rotation rates within a specified tim@ool and maintain the convergence for
all time thereafter. A control law that satisfies this cogegrce specification needs constant mea-
sured updates for the current attitude of the spacecrafttendesired attitude where the spacecraft
should be. The control law aims to drive the attitude and Emgelocity tracking errors to zero by
adjusting the control effort based on measured updatediorages of the state.

In order to drive the tracking error to zero, the control laaeds a complete dynamical description
of the error states. To begin with, a rotation matrix thainp&s transformation between reference
frames is established. The direction cosine maFr(Z{V (q), denotes a transformation from inertial
reference frame\' to body-fixed referenc# (i.e., ' — B), while the argumeng indicates the
guaternion that parametrizes the DCM to achieve the desimedformation. Thu$cV (q) can be
expressed in terms of the quatermidfiq, that is,

BCN(q) = (q02 - qVTqV)I + 2qquT -2 [QVX] . (5)

As is often the case, the commanded or reference angulatityefoay be prescribed in its own
reference fram&. In this case the rotation given iy — B is obtained by combining the corre-
sponding rotation matrice§C"V (q) and®*C" (q,), through matrix multiplication. The combined
rotations can be condensed into a single rotation mat¥y(q, ), as follows

BCR(q,) = 5N (q) (RCN(q,)" . (6)

whereq, denotes the error between the actual quaterohén®s B) and desired quaternigh’ A,
R) states.

The angular velocity tracking error is expressed as

We =W — BCR(qe)wT (7)



and provides the error between the angular velocity of tleepaft andw,(¢), the commanded
angular velocity. In order to obtain the tracking error dymes, the time derivative of EquatioB)(
and Equation¥) are evaluated along Equatiod)( Thus, the attitude error dynamics for a rigid
body is given by

q(t) = %E(qe)we, (8)

and the angular velocity tracking error dynamics are ddragfollows
G, =31 <—jw — Jwx]Jw + u) + [wex] x BCR(q,)w, — BCR(q, )@ 9)

The control objective is to track any reference trajectfry, w. |, for all initial conditions,[q(0), w(0)],
assuming full feedback of the signatg w] and uncertainty in the time-varying inertia parameters.
That is, a control torque needs to be designed such that; . [q,,, w.] = 0, while ensuring
that the signalsv andq remain bounded at all times. In this way, a tracking controbfem has
been converted into a stabilization problem for the erratest

Typeof Inertia Matrix Considered

A spacecraft with symmetric positive definite time-varyingrtia matrix of the form
J(t) =T, (), (10)

is addressed in the subsequent control methods. In EqUatprl, € 123 is a matrix of constant
uncertain parameters, ade(t) € R3*3 is a known matrix function that models the time-variation
of J(¢). Additionally, the condition is imposed thdt, and ¥ (¢) are each symmetric and positive
definite. The type of uncertainty stated in Equatit@)(has a multiplicative nature. A time-varying
inertia matrix of this form may be observed in a spacecrafiengoing thermal variations, fuel slosh,
or spacecraft appendage deployment such as magnetometes bantennas and solar arrays. In
this section, a model that demonstrates variations inddceohg a sensor boom deployment is
developed and employed as an application for the controiditation provided in the next section.
Note, however, that the control algorithm developed subsetly may be implemented for any
inertia-matrix that satisfies Equatiohd).

Consider a satellite in the shape of a rectangular prism medsioni; x [; x 3l; and mass
myg. The satellite carries two sensor booms which remain inaesiaconfiguration during launch
and subsequent orbit deployment (e.g., the GOES spaceuisston®). The booms may be a
lightweight collapsible structure such as the Self-DepigyAstromast®. During the course of the
mission the booms, which are modeled as two slender barsgthi@l; and massyvmg (where
0 < a < 1), are deployed using a motor-controlled extension. Arsitlation of the deployment
sequence is provided in Figulle in which the booms are shown to symmetrically extend thinoug
the center of the top and bottom faces of the spacecraft noain b

Assume, for simplicity, that the prism and slender bars deanle a uniform mass distribution
before, during, and after boom-deployment. Furthermossyume that the bars are deployed at a
constant rate over the duration nfseconds. Given that the bar's mass to length rat%% and
that the bar length;(¢), is obtained by

r(t) = 2Tl1t, (11)
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Figure 1: Sensor Boom Deployment Sequence

where0 < t < 7, it follows that the mass of each ban,,(¢), increases at a steady rate as shown
below

mp(t) = 220, (12)
T
Consequently, the mass of the prism,(¢), simultaneously decreases as described by
me(t) = mp — P (13)
T

In Equation {3), my denotes the initial total mass of the prism with stowed baoms

Based on the characteristics of the satellite describedjirmttons {1)-(13), and through an ap-
plication of the parallel-axis theorem, the satelliteradi-varying inertia parameters are determined
about its principle axes in the form of EquatidrO) as follows

%mol% 0 0
J, = 0 Smol? 0 . (14)
0 0 %mol%
During sensor boom deployment, for the duratiog ¢ < 7, the matrix®¥(¢) is described as
1—22¢ 0 0
@O =| 0 L ghih Rt Pt 0 - W9
0 1+ 2t +12%¢% + 1633

At the completion of the boom deployment sequence, thatismat > 7, the matrix¥(¢) = ¥
is constant and is described by

1 -2« 0 0
P(t) = 0 1—%04—#%04—#%04 0
0 0 1+ a+12a + 16«

In this way, the time-varying matrix is bounded for all tinead preserves the symmetric positive-
definite property of the inertia matrix.



NON-CE ADAPTIVE ATTITUDE CONTROL

In this section, an adaptive attitude and angular velocégking control algorithm is presented
for the problem described by Equatio) @nd Equationq). The control method is based on the
non-CE adaptive control results of Seo and Akéllahich addresses a constant inertia matrix. The
present investigation modifies the control algorithm todiara time-varying inertia matrix in the
form of Equation 10). The main results of the paper are summarized in the thebedonv.

Theorem 1.Consider the attitude and angular velocity tracking pnobtiescribed by Equations
(8) and @) with a time-varying inertia matrix in the form of EquatiohQ), whereJ, is unknown.
Assuming full-state feedback, suppose the adaptive danfrat is prescribed by

u = o (—W (é + 5) + W TWT (ky(q,, —we,) + we)> : (16)
6 = I‘W? [(B+ kv)we, + ke, | — I‘VVT"‘Jef’ 17
§ = TWiw,,, (18)

where the terms,, k,, andg = k, + k, are positive scalar constants, whilés a6 x 6 positive-
definite and diagonal constant matrix. Furthermore, in Egoa (16)-(18), the quantityW is the
regressor matrix defined by

Wo* = -0 1, 0w — & Hwx]J,Pw + J, ([wx]°C*(q,)w, — FCR(q,)w,)

19
+ 3o (kpBae, + kpde, + kuwe) , (19)

where 0 = [Jo,,, Jo1a, J0155 J022s J0ss 5 J033]T contains the six unique entries of the matdix
Finally, the variableso., € R* andW ; € R**¢ in Equations 16)-(18) are linear, stable variables
calculated according to the following first-order filter dynics

wejc - _/Bwef + We, (20)
W; = —BW;+ W, (21)
with arbitrary initial conditions’ The adaptive controller stated above ensures boundedoresh f

closed-loop signals and asymptotic convergence of thkitr@error signalsim, ., , [q,,, we] =0
for all initial conditions[q(0), w(0)] and reference trajectoriés,., w,]

Proof. Following the approach of Seo and Akella, the dynamics ofdfiqn @) are transformed
to a more desirable parameter-affine form through the claaeldition and subtraction of the term
J (kpBae, + kpd,, + kvwe).” Thatis,

we - - pﬁqev - kpq&) - kvwe

; 22
+3,! (\11—1 (u —JWw - [wx]Jo\I’w> + T30t + T, (kpBa, + kpdte, + k;vwe)> 7 (22)

where¢ = [wx|BCR(q,)w, — BC®(q,)w, and the time-varying inertia matrix is replaced with
its multiplicative formJ = J,¥ as defined earlier in Section . Recognizing the last four ¢erm
post-multiplyingJ; ! as the regressor matrix defined in Equatib8){ Equation 22) simplifies to

We = —kpBd,, — kpde, — kywe + I, (T u+ WO*). (23)

Next, define the signat as
v=Ulu, (24)



and consider the linear filter variablg obtained from
I)f:—ﬁuf+u, (25)

which is possible sinc& in Equation 24) is a known, bounded signal. The signahow plays
the role of a pseudo-control variable. This is a key step whi@kes the non-CE adaptive control
approach feasible for a time-varying inertia matrix dgstaon. With the introduction of> andv ,
the ensuing stability analysis follows closely with the aggzh of Seo and AkellA.

Next, Equation 20) is differentiated on both sides and appropriate subgiitatare made using
the transformed angular-velocity tracking error dynanmdsquation 23), as well as Equatior2(),
Equation 24), and EquationZ5). The resulting expression is

d’@f = _Bwef - kp/qu,U - kpqev - kv (wef + Bwef)

. . (26)
+ J;l (I/f + ﬁl/f + <Wf9* + 5Wf0*>) .
Upon examining the above expression, note that every terscaked by the constarit and is
accompanied by its corresponding derivative. The expadsirearranged so that the derivatives
are on the left hand side of the equation. Then, Equag6ngan be written as a perfect differential,
that is,

d
- |:w6f + kpQe, + Fowe; — Ity - JO_IWfO*}

dt (27)
= =B (We; + kpQe, + kowe, — I vy — I "W 6%) .
The solution to Equatior2() is given by
We; + kpQe, + kowe, — I, (v + W0%) = ee™ 7, (28)
wheree encompasses the initial conditions of all integrable terms
€ = Wwe, (0) + kpa, (0) + kywe, (0) — I (15(0) + W (0)6*) . (29)

If the initial conditions are chosen such tlat= 0, then EquationZ8) can be directly solved to
obtain an expression fab., that is independent of the angular-velocity tracking erréhis is
accomplished by selectind ((0) = 0, v(0) = 0, andw, (0) = (w.(0) + kpq,, (0)) /kp. Thus,
by selecting the initial conditions in this manner, it falle that

We; = —kpQe, — kywe, + 37" (v + W;6%). (30)

Consistent with the non-CE construction in Seo and Akélllag signal,d € RY, is introduced
that estimates the unknown inertia in conjunction véitl RS. In other words, the estimates for the
unknown@* vector are generated by the combined sigﬁ\&I 6. Subsequently, the filter signal,
is determined through

vy=-W;(0+35). (31)

whereind is given by Equatiorl8.” Combining Equations30) and @1), the dynamical equation
for the filter signalsw., is given by

Gy = ~hylle, — kowe, — I Wy (04667 (32)



In Equation 82), letz = 6 + 6 — 6*, which provides the parameter estimation error for the G&n-
adaptive control problem. The dynamical equation goveytite time evolution of is determined
through appropriate substitutions of Equatioh#)( (18), and @0) in the equationz = 6 + 4, thus
yielding,
z=-TW,; I 'W;z. (33)
Consider the following Lyapunov-like function modified foSed
A

«] Omin

le"_lz,

1
V= §wsz8f + [qz;qe,u + (qeo - 1)2] +

where\ > 0, andyj,,,i» IS the minimum eigenvalue d,. The derivative ol is given by

(z'T7'z2+2'T7'%),

V= w! we, — 2g0. +

Omin

= we, (“kpte, = howe, ='W z) + qf we — o 2" W1, Wz,
Oomtn
_ . A _
= —kylwe, I — kpweque,u - weTfJO "Wz +qf (we, + Bwe,) — 7 2" WiI Wz
Omin

= —kv||wef||2 — k‘pwgfqeu - wgf.]o_lwfz + qZJ (—k‘pqeu - k:vwef — JO_Isz + Bwef)

A

— 2" W} ' Wz
250, .
Omzn

_ _ A _
= —kollwe, |* = Epllae, 1P — wl, I, "Wz — al 3 "Wz — 5 2" Wi, "Wz
Omin

2 2 A
< = Shollwe, I” = Shollac, I = 5195 Wz

—ky 3 _ Ao
(o P+ st 35 W g 135 W5l

3 kv ef o

—k 3 B )\ B

—L (lae, I+ —al I, "Wz + —[|T W sz |2
3 kp ky

2 2 A
< —Shollwe,I” = Shollac, I” = S5 W )P
<0,
which indicates that’ < 0 and consequently. ., q. ,z € L, thatis, the closed loop signals are
bounded. Since the integral f exists and is finiteqev,wef,J;lez € Lo N L4 and subse-

quently, (qev,wef, % (sz)) € L., which permit the following conclusion based on Barbalat's
lemma

q, (1)
lim we, (1) =0. (34)
t—o0 —1
JO sz(t)

Furthermore, by invoking Equatiol?), it becomes clear thdim,_,., = w..

Finally, it remains to extract the actual controliefrom the filtered signal ;. This can be done
simply through the substitution
u="® (v +Bry), (35)
which can be expanded through substitutions of Equatidvs (18), (21), and @1) to recover the
expression in Equatiorl6).



NUMERICAL SIMULATIONS

In this section, two sets of numerical simulation studiesparformed to validate the performance
of the adaptive control algorithm in the presence of ungastan time varying-inertia parameters.
The first set of simulations is provided for a non-PE refeeeangular velocity profile, while the
second set is for a PE reference signal. For this specific gheaitme quantitied,, and¥ are given
by Equations 14) and (L5) where

mo=30kg, [=02m, a=0.1, 7= 200seconds. (36)
An initial error of 30% is assumed in the knowledge &f, that is
6(0) + 6(0) = 1.30". (37)
The actual and commanded initial conditions are

q(0) = [ 0.9487, 0.1826, 0.1826, 0.18268 |,
w@0)=[0, 0, 0]"
q,(0) = [ L0, 0,0 ]T'

rad/s

The reference angular velocity profile is updated at eachlsition time. In addition, as mentioned
previously, the initial filter-states are as follows

W(0) =0, wi(0) = w,(0) +kl:pqve (O).

Non-PE Reference Trajectory

In this set of simulations, the following non-PE referenegeictory is simulated:
w, = 0.1 cos(t)(1 — e*01) 4+ (0.087 + 0.006sin(t))te 0. [ 1 1 1]7 radls  (38)

which is obtained from the example provided in Seo and Akellae gain values are selected as
k, = 0.08, k, = 0.07, andT’ = diag{100,0.01,0.01, 200, 0.01,100}. A simulation is performed
for a period 0f200 seconds using the aforementioned parameter values.

The results of the simulation are illustrated in Fig@réWhile the attitude and angular velocity
errors both asymptotically converge to zero as expectedgthnvergence of of the parameter esti-
mation norm to zero is rather unexpected. In general, theRtbnature of the reference trajectory
prohibits the convergence of the parameter estimates totthe values. However, there is added
persistence of excitation due to the time-varying tebnin the inertia matrix. This allows the pa-
rameter estimates to converge to their true values evereingbe of a non-PE reference trajectory.
The control torques remain time-varying and increase inlidmdge to accommodate the variations
in the inertia parameters and ensure faithful tracking efrdference trajectory for the entire simu-
lation period. The constant matrIxis used to tune the rate of the estimation error convergesice a
well as improve the attitude and angular velocity error esgence.
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Figure 2: Non-CE adaptive tracking-control simulation for a spaaéowith time-varying inertia
parameters tracking a non-PE reference signal.
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PE Reference Trajectory
In this set of simulations, a PE reference trajectory givwen b

wy = [ cos(t)+2, Scos(t), sin(t)+2 ]T rad/s (39)

is simulated. As in the first set of simulations, this refemitrajectory is obtained from the ex-
ample provided in Seo and Akella. The gain values are selem$é;, = 0.8, k, = 0.8, and

I' = diag{1,0.001,0.001,1,0.001,1}. As before, the duration of the simulation280 seconds.
The results of the simulation are illustrated in Fig@reThe attitude and angular velocity errors
both asymptotically converge to zero as expected. For a feEeree trajectory, the convergence of
the parameter estimation norm is expected and clearly et/fdam the illustration.
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Figure 3: Non-CE adaptive tracking-control simulation for a spaaéicwith time-varying inertia
parameters tracking a PE reference signal.
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CONCLUSIONS

The problem of spacecraft attitude-tracking in the preseofcarbitrarily large multiplicative
uncertainties for a time-varying inertia matrix is addezks A noncertainty-equivalence adaptive
controller is employed for consistent angular velocity attitude tracking. Numerical simulations
for non-persistently exciting and persistently excitigference trajectories are performed, which
demonstrate asymptotic convergence of the attitude andlameglocity tracking errors to zero.
Moreover, the persistence of excitation induced by the-itamging inertia parameters enables the
parameter estimation error norm to also converge to zeno een the underlying reference tra-
jectory itself does not satisfy persistence of excitationditions.
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