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APPLICATIONS OF ARTIFICIAL POTENTIAL FUNCTION
METHODS TO AUTONOMOUS SPACE FLIGHT

S.K. Scarritt*and B.G. Marchandf

The goal of this investigation is to identify a systematipgach for the deter-
mination of accurate startup arcs for autonomous spadequa#ti planning and
guidance. This capability is of particular interest for d@mand onboard deter
mination. Artificial potential function methods are commiarthe field of path
planning. However, the resulting control requirementsrarealways feasible in
practice due to various hardware and mission constraitit ti$e general concept
is useful in the determination of suitable startup arcs fdoaomous algorithms
that are capable of addressing these actuator constraigismand.

INTRODUCTION

The success of iterative gradient based targeting algositiivhether optimal or suboptimal, de-
pends on the quality of the startup solution available. Tausonomous targetifgsuggests auton-
omy in both the computational process used to identify aili&sr optimal solution, given some
initial guess, and in the process of identifying the stagtgitself. Regardless of the targeting algo-
rithm selected, the startup arc need not be completelylfieadHowever, the quality of the startup
solution does influence the performance of gradient basgdtiag algorithms. Furthermore, the
solution space explored by gradient based targeting metisagstricted to the immediate vicinity
of the startup arc. This may ultimately limit the types ofsaidentified by the targeting process.

Preliminary trajectory design is often accomplished tgfopatched-conic approximatioROf
course, two-body patched-conic solutions propagated ior@ womplete:-body model, fom > 3,
do not lead to feasible trajectory arcs since a discongiratithe patch-point is generally expected.
Iterative targeting algorithms, optimal or suboptimak aecessary to re-acquire a feasible continu-
ous solution in the full dynamical model. Ultimately, theeatacy of the patched-conic approxima-
tion varies according to the regime and any related missguirements. Low-energy spacecraft
trajectories that dwell near the gravitational boundantva$ bodies, for instance, are more sus-
ceptible to third-body effects. Recent studies also ingatt the use of graphical methddsand
extensions of the patched-conic approach to include appetions of three-body motioh.How-
ever, these approaches are typically intended for spegfestof transfers, such as low-thrust and/or
gravity assist trajectories. The main drawback of any nalagy based on patched-conic approx-
imations is that one cannot guarantee the resulting arddeai to reasonable approximations in
multi-body regimes during an onboard determination prec8ice the startup solution is crucial to
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the success of any autonomous iterative targeting prottespresent investigation seeks to identify
an alternate computational approach for the onboard detation of feasible startup arcs.

The objective of this investigation is twofold: first, to éape the validity of artificial potential
function (APF) methods as a possible tool for generatintablg startup solutions; and second, to
provide direction for future research by identifying aredislevelopment that can have the most
impact on the performance of this method. Artificial potahfiuinctions have been used extensively
in path planning, for applications ranging from mobile grdurobots® to spacecraft formation
flight, " to attitude trackingt® They are computationally efficient and simple to implememak-
ing them ideal for onboard use, but they also have inheranitdiions in that a continuous control
capability is typically assumed and they are also oftenlizighboptimal. These drawbacks hinder
the effectiveness of potential function guidance as adtajg design tool, since actuation con-
straints are not uncommon in modern spacecraft missiongh &ahese issues can be addressed
by autonomous targeters and optimizers. Thus, by usingpiatéunction methods to identify the
startup arc the user can take advantage of the speed ofipbtanttion methods without violating
any actuator or mission constraints in the final trajectory.

Artificial potential function guidance is based on the idea the vehicle environment can be rep-
resented mathematically through the definition of potéfieéds designed to produce some desired
vehicle behavior. The general approach is to constructdtengial field such that a global minimum
exists at the target state while any path constraints, ssichstacles, are assigned higher potentials
to discourage the vehicle from traversing those paths. Ttengial, ®, is written as a nonlinear
function of the current position and velocity,t) andv(¢), the desired position and velocitt,
andvg.,s, and any existing constraints)(

¢ = f (I’(t), V(t)a Tdes; Vdes) /7) (l)

Control variables and parameters are subsequently seglsagtdn that the vehicle follows the path
of steepest descent of the potential. If no local minimategmnvergence to the desired goal state
is ensured. In spacecraft applications, potential functiethods are used primarily in the field of
formation flight However, the theoretical basis of this noetliloes not preclude the use of potential
functions for more general trajectory planning. The keyhis ¢onstruction of the potential. In this
study, two-body approximations are utilized as a first stepatds constructing a set of artificial
potentials that facilitate the identification of trajedés with the desired characteristics. The insight
acquired through this analysis is subsequently useful imeueer planning for the associated startup
arc.

ARTIFICIAL POTENTIAL FUNCTION TRAJECTORY DESIGN
Potential Function Construction

There are numerous ways to construct the overall potentiadtion for a given problem. Con-
sider, for instance, a transfer between two intersectitgior One possible approach would be to
accomplish the transfer by executing a maneuver at the pbintersection between the two paths.
Subsequently, the following candidate potential is iderdi

it = k(Ting —10)" (Nine — To), 2)

wherer is the current positiont;,,; is the point of intersection, ankl is a user-defined weight.
Designing a potential to achieve a transfer between nardatting orbits is more complex. The



approach selected in this study is based on a potentialitumcbntrol algorithm developed for
microsatellites® The construction of the artificial potential begins with &reation of a desired
velocity field. This is a function of the current state and sodesired final target state or path
constraint. The potential is then only explicitly a functiof the error between the current and
desired velocities,

(I)vel - k(vt(r07 rdeSanes) - VO)T(Vt(rO7 rdeS7Vdes) - V0)7 (3)

wherevj is the current velocity at positiory, v, is the required transfer velocity (at the current
position) as computed via the velocity field equations, lapgandv,,., are the desired (i.e. target)
position and velocity. This simplifies to

e = kAV? (4)

which is simply the square of the maneuver cost scaled by s@reselected weighit

Velocity fields can be constructed to impose any user-deftoadtraints on the trajectory, both
along the path and at the endpoint. The calculation of theogpiate desired velocity, though, can
be an extremely complex endeavour. For example, of paaticaterest in this investigation is the
design of a velocity field that guides the trajectory to a gfmstterminal state. If the transfer time
is not specified, targeting a final state is equivalent toetamg a final orbit. Ideally, the computed
desired velocityv; at a given initial state minimizes the overall transfsy. However, for non-
circular orbits, calculation of optimal transfer manewsyaven between coplanar orbits, is an area
of study unto itselff13 Thus, optimization of the desired velocity field is beyond #itope of the
present study. Specific details of the velocity field corttoms used in this investigation will be
discussed with the corresponding examples.

Maneuver Planning

Typically, path planning via the APF approach is accomplisby defining a virtual force that
is equal to the sum of the gradients of each active potentthl n@spect to the current position and
velocity of the vehicle! This virtual force yields the desired acceleration vectarthe vehicle.
This acceleration is then matched as closely as possibladydhicle’s actuators. Naturally, the
resulting control history is continuous and unconstrajreefibature that is generally undesirable for
the present application.Certainly, the approach is nenitkéd for cases involving discrete control
parameters, such as impulsive maneuvers more commonhogatpin classical trajectory design.
Reconciling APF methods with the use of discrete control een considered for the problem
of spacecraft formation flight? and the present investigation adopts a similar approactthisn
case, the time derivative of the potential, rather than thdignt, is selected to identify appropriate
locations for impulsive maneuvers. Since the vehicle isstrammed to stay on its current orbit
until a maneuver is performed, changes in the potedtiahn result only from the propagation of
the vehicle state. Instead of using actuation to ddwvt some pre-specified value, the algorithm
described here seeks the minimum valuebadlong the current path. If the current orbit does not
intersect the desired orbit, then the potential is basectwtity error and the minimum corresponds
to the point at which the desired maneuver will have the lowascost.

The overall potential field presented here consists of eithe intersection potential defined in
Equation R) or the velocity potential in Equatior8). A graphical overview of the full APF maneu-
ver planning algorithm is provided in Figude Following initialization, the algorithm determines



whether or not the vehicle is already on the desired patlot|fthe next step is to check whether the
vehicle has reached the user-specified maximum allowalfdauof maneuvers. If additional ma-

neuvers are still permissible, then the current state igggated forward in time until the necessary
conditions for a minimurr(% =0 and‘ng’ > 0) are met. At that point, a maneuver is performed

to match the current velocity to the calculated desiredaigiand next iteration of the algorithm
begins.
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Figurel. Overview of APF Maneuver Planning

TRAJECTORY DESIGN EXAMPLES

Initial testing of the APF trajectory design algorithm fees on transfers in Earth orbit. The first
example shown is a simple coplanar transfer, for which thayéinal optimal solution is already
known. This example provides a useful means for evaluatiegperformance of APF algorithm



against an established benchmark. Subsequent exampsbtomplexity; an inclined two-body
transfer is examined, followed by a lunar return exampleitieorporates third-body effects.

To determine the desired velocity field for the following exales, a target point on the final
orbit is selected to be an apse of the transfer orbit. If asfearproceeds from a lower orbit to a
higher orbit, then the target point is defined to meet the pgisacondition. If, instead, the transfer
proceeds from a higher orbit to a lower orbit, a periapsidd@n is imposed at the target point.
Subsequently, the eccentricity vector of the transfertastgiven byé,,

wheref ; is a unit vector aligned with the Earth-to-target line. Thagmitude of the target position
vector can be determined from the target directignand the orbital parameters of the desired
orbit. The vecto®; can be used along with the initial and final positionsandr ¢, to compute the
eccentricity of the transfer as follows:

Tf —T0
rgét — I’}Fét

(6)

€t =

From two-body analysis, the desired veloaityis then given by

v — ig \/% [ev ((Ro x @)7ro) ro + (o + &l ro) (o x 1) )

Coplanar Transfer

Selection of the target point depends on the relative gegroéthe initial and final orbits and can
include numerous factors, particularly for more complengfers involving third-body perturba-
tions. For the purpose of this investigation, only the @lqilanes are considered when designating
r ¢ In no plane change is required, the target point is chosée the position on the desired orbit
that is directly opposite the current position, so that

Pr=—0 ®)

This choice off ; ensures that the transfer angle is alway8°. For the case of two circular orbits,
this results in a Hohmann transfer. Fig@@) shows the desired velocity field for transfer from
a circular equatorial orbit with an altitude of 100 km to ahpéical equatorial orbit with perigee
altitude of 400 km. The initial and target states for thisfer are listed in Tablé. The resulting
potential, calculated according to Equati@), (s given in Figure2(b).

The transfer trajectory that ensues from this potentigh@s\s in Figure3. An analytical optimal
result exists for the coplanar case in the form of a doublargéntial transfer through an angle of
180°. As Figure3 shows, the APF method matches this result, which has aAotalf 1.25 km/s.
Although the problem addressed in this example is fairlyidtj the result demonstrates that the
APF algorithm is capable of performing on par with analyjtiteethods, when they are available.

Inclined Transfer

If the initial and desired orbits are not coplanar, the tapgént is the point where the desired orbit
intersects the plane of the initial orbit. This target vedsoperpendicular to the angular velocity
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Figure 2. Coplanar Velocity Field and Potential Function
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Table 1. Coplanar Transfer Initial and Target States

Parameter Initial Target

x (km)  -6478.145  0.000
y (km) 0.000  12587.983

z (km) 0.000 0.0000
v, (km/s)  0.000 -4.708
v, (km/s)  -7.844 0.000
v, (km/s)  0.000 0.000
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Figure3. Coplanar Transfer




Table 2. Inclined Transfer Initial and Target States

Parameter Initial Target

x (km)  -5610.238  190.512
y (km) 0.000  12396.744
z(km)  3239.073 2177.562

v, (km/s)  0.000 -4.690
v, (kmis) — -7.844 0.000
v, (km/s)  0.000 0.410

vectors of both orbits, so its direction is given by

hO X hdes
[[ho X haes ||

-

F==+ )
Equation 0) yields two results for the direction of intersection, altigh both answers may not
always be valid depending on the geometry of the two orbftsvd legitimate intersection points
do exist, then point with the greater radial distance from ¢bntral body is chosen as the target
point in order to minimize thé\v resulting from the plane change. An example velocity field a
its associated potential are shown in Figudéa) and 4(b). The initial and target states for this
example are given in Tab2 Note that the potential surface is not smooth as it was icdiptanar
case; this is due to a singularity that occurs in the calmriabf €, Equation 5), when the initial
and final position vectors are exactly aligned. Under theselitions, the resulting transfer orbit is
rectilinear.

The non-coplanar transfer, shown in Figuierequires a much greatexv than the coplanar
example due to the plane change. This transfer has a totabt8s46 km/s, compared to 1.25
km/s for the coplanar example. Using a Lambert targetingralym to achieve this same transfer,
for the same transfer time, results indav of 6.11 km/s. Because of the high cost incurred by
changing the orbital plane, it is often preferable to perfahe plane change at a greater radius
than the intersection point and then use a third maneuveutdhe vehicle on the target ortt.
Incorporating this approach to inclined transfers into At method should produce significant
improvement for cases involving large plane changes; tilidbaexplored further in future studies.

Lunar Transfer

In order for the APF method to be a useful general tool for tifigng startup arcs, it must be
able to produce valid results for more complex cases, suclskasar trajectories. In the examples
below, the velocity field construction described previgusl employed in the APF algorithm to
design a return trajectory from a low-lunar parking orhititial conditions for the parking orbit are
listed in Table3. To determine an appropriate target orbit, i.e. one thdtretilirn the spacecratft to
some acceptable Earth entry interface, a set of entry @ntsris chosen along with an estimated
arrival time. These constraints are used to compute thg etdte (position and velocity), which
is then propagated backwards in time until reaches the kplaere of influence. The position and
velocity at the end of the propagation are input as the di:éimal state for the APF algorithm. The
entry interface constraints and arrival time for this exigve given in Tabld. It should be noted
that the timing of the vehicle’s arrival at the target stat@ow significant, as the entry parameters
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Figure5. Non-Coplanar Transfer

will depend on the relative configuration of the Earth and kloBecause the current APF method
determines maneuvers independent of time, there may emigraatch between the assumed time
of arrival at the desired state, determined via the backvwaogagation, and the actual time of
arrival of the APF-determined departure trajectory. Thigectified by adjusting the vehicle’s initial
departure time through a simple offset targeting algorititheach iteration, the arrival time error
is computed and that value is subtracted from the currenartiee time. This method typically
reduces the arrival time error to within 1 second in 3 or 4aitiens.

The trajectory generated by the APF algorithm is shown inufei@. This arc has a totahv of
1.9483 kml/s, which is high for a lunar return, but this is asue&than can be addressed to some
extent by a targeting or optimization algorithm. Ideallyptigh, the cost of the startup arc should
be as low as possible before being passed on to the targetitige, so it is beneficial to examine
ways in which the cost of the APF trajectory can be reduced.

Phasing is extremely important when designing trajecsoinemulti-body systems. Using two-
body approximations to construct the artificial potentialdineglects the effects of phasing, a lim-
itation that can have a detrimental effect on the performasfcthe APF algorithm. Consider the
return example described previously. If the departure auiy éimes for this transfer were shifted,
the change in the Earth-Moon configuration could cause aewttie difference in the trajectory
produced by the APF algorithm. To demonstrate this timirigotf the transfer above is subjected
to time shifts over a range af 12 revolutions of the initial orbit. These arcs have the sanit@ain
conditions and entry parameters as those listed in T&x¥ewl4, except that the epochs for depar-
ture and arrival are shifted by revolutions. The costs of the resulting transfers are gibo#gainst
n in Figure?. It is clear from Figure’ that significant improvements in cost can be achieved far thi
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Table 3. Initial Conditions

Epoch  2-Aug-2018 17:16:06 TDT

X (km) -1834.7155

y (km) -66.2361

z (km) -73.9653
vz (KM/S) -0.0864
vy (km/s) 0.8139
v, (km/s) 1.4136

Table 4. Estimated Arrival Conditions

Epoch 7-Aug-2018 00:52:08 TDT
Geocentric Altitude (km) 121.92
Longitude (deg) -134.5456
Geocentric Latitude -19.20410
Geocentric Azimuth (deg) 13.9960
Geocentric Flight Path Angle (deg) -5.8600

7 (% 10%)

Initial Orbit

Transfer Orbit

o] ManeLuwvers
Initial Position
Earth at Arrival

%10
v ( ) 800

x (%104)

Figure6. APF Lunar Return, 1.9483km/s
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transfer simply by waiting for a few revolutions before dejay; the totalAv drops from 1.9843
km/s to 1.5813 km/s, a reduction of over 0.4 km/s, in the amofgust 4 revolutions. Conversely, a
poor choice of transfer epoch can have a disastrous effembginas evidenced by the 2.6236 km/s
trajectory that results from delaying by 2 revolutions. Watiterations of the APF algorithm must

be capable of taking these phasing effects into accountdardo be truly effective as a general
trajectory design tool.
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Figure7. Av of Time-shifted Return Trajectories

CONCLUSIONS

This investigation examines the use of artificial poterftiaiction (APF) methods as a means of
identifying suitable startup arcs for targeting and opziation algorithms. The primary objectives
of the study are to evaluate the feasibility of this approsmwhcomplex trajectory design and to
determine key areas of development for future researchdi@ate potential functions are defined
in terms of a) error between the current position and a dgsitersection point on a target orbit and
b) error between the current velocity and the desired viglamind a method for calculating a desired
velocity field, based on two-body analysis, is presentedes€hare employed in the development
of a preliminary APF trajectory design algorithm for orbitiansfers. This algorithm uses the time
derivative of the potential to determine impulsive maneudeeations, rather than the classical APF
approach of using the gradient to calculate a desired aetiele vector. The APF design method is
utilized to generate sample Earth orbit and lunar retuijedtaries, and the effect of phasing on the
overall trajectory cost is investigated. Results indiché this method has promise as a tool for fast
calculation of startup trajectories, but the current tveaypbased potential function construction
limits its effectiveness in more complex dynamical systewhere timing plays a significant role
in the cost and structure of solution arcs. Future work valilsto address this issue through the
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development of potentials that incorporate more complaxadyics and can better address issues
such as large plane changes and time sensitivity.
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