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APPLICATIONS OF ARTIFICIAL POTENTIAL FUNCTION
METHODS TO AUTONOMOUS SPACE FLIGHT

S.K. Scarritt∗ and B.G. Marchand†

The goal of this investigation is to identify a systematic approach for the deter-
mination of accurate startup arcs for autonomous spacecraft path planning and
guidance. This capability is of particular interest for on-demand onboard deter-
mination. Artificial potential function methods are commonin the field of path
planning. However, the resulting control requirements arenot always feasible in
practice due to various hardware and mission constraints. Still, the general concept
is useful in the determination of suitable startup arcs for autonomous algorithms
that are capable of addressing these actuator constraints on demand.

INTRODUCTION

The success of iterative gradient based targeting algorithms, whether optimal or suboptimal, de-
pends on the quality of the startup solution available. Thus, autonomous targeting1 suggests auton-
omy in both the computational process used to identify a feasible or optimal solution, given some
initial guess, and in the process of identifying the startuparc itself. Regardless of the targeting algo-
rithm selected, the startup arc need not be completely feasible. However, the quality of the startup
solution does influence the performance of gradient based targeting algorithms. Furthermore, the
solution space explored by gradient based targeting methods is restricted to the immediate vicinity
of the startup arc. This may ultimately limit the types of arcs identified by the targeting process.

Preliminary trajectory design is often accomplished through patched-conic approximations.2 Of
course, two-body patched-conic solutions propagated in a more completen-body model, forn ≥ 3,
do not lead to feasible trajectory arcs since a discontinuity at the patch-point is generally expected.
Iterative targeting algorithms, optimal or suboptimal, are necessary to re-acquire a feasible continu-
ous solution in the full dynamical model. Ultimately, the accuracy of the patched-conic approxima-
tion varies according to the regime and any related mission requirements. Low-energy spacecraft
trajectories that dwell near the gravitational boundary oftwo bodies, for instance, are more sus-
ceptible to third-body effects. Recent studies also investigate the use of graphical methods3,4 and
extensions of the patched-conic approach to include approximations of three-body motion.5 How-
ever, these approaches are typically intended for specific types of transfers, such as low-thrust and/or
gravity assist trajectories. The main drawback of any methodology based on patched-conic approx-
imations is that one cannot guarantee the resulting arcs will lead to reasonable approximations in
multi-body regimes during an onboard determination process. Since the startup solution is crucial to
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the success of any autonomous iterative targeting process,the present investigation seeks to identify
an alternate computational approach for the onboard determination of feasible startup arcs.

The objective of this investigation is twofold: first, to explore the validity of artificial potential
function (APF) methods as a possible tool for generating suitable startup solutions; and second, to
provide direction for future research by identifying areasof development that can have the most
impact on the performance of this method. Artificial potential functions have been used extensively
in path planning, for applications ranging from mobile ground robots,6 to spacecraft formation
flight,7–9 to attitude tracking.10 They are computationally efficient and simple to implement,mak-
ing them ideal for onboard use, but they also have inherent limitations in that a continuous control
capability is typically assumed and they are also often highly suboptimal. These drawbacks hinder
the effectiveness of potential function guidance as a trajectory design tool, since actuation con-
straints are not uncommon in modern spacecraft missions. Both of these issues can be addressed
by autonomous targeters and optimizers. Thus, by using potential function methods to identify the
startup arc the user can take advantage of the speed of potential function methods without violating
any actuator or mission constraints in the final trajectory.

Artificial potential function guidance is based on the idea that the vehicle environment can be rep-
resented mathematically through the definition of potential fields designed to produce some desired
vehicle behavior. The general approach is to construct the potential field such that a global minimum
exists at the target state while any path constraints, such as obstacles, are assigned higher potentials
to discourage the vehicle from traversing those paths. The potential,Φ, is written as a nonlinear
function of the current position and velocity,r(t) andv(t), the desired position and velocity,rdes
andvdes, and any existing constraints (γ):

Φ = f (r(t),v(t), rdes,vdes, γ) (1)

Control variables and parameters are subsequently selected such that the vehicle follows the path
of steepest descent of the potential. If no local minima exist, convergence to the desired goal state
is ensured. In spacecraft applications, potential function methods are used primarily in the field of
formation flight However, the theoretical basis of this method does not preclude the use of potential
functions for more general trajectory planning. The key is the construction of the potential. In this
study, two-body approximations are utilized as a first step towards constructing a set of artificial
potentials that facilitate the identification of trajectories with the desired characteristics. The insight
acquired through this analysis is subsequently useful in maneuver planning for the associated startup
arc.

ARTIFICIAL POTENTIAL FUNCTION TRAJECTORY DESIGN

Potential Function Construction

There are numerous ways to construct the overall potential function for a given problem. Con-
sider, for instance, a transfer between two intersecting orbits. One possible approach would be to
accomplish the transfer by executing a maneuver at the pointof intersection between the two paths.
Subsequently, the following candidate potential is identified,

Φint = k(rint − r0)T (rint − r0), (2)

wherer0 is the current position,rint is the point of intersection, andk is a user-defined weight.
Designing a potential to achieve a transfer between non-intersecting orbits is more complex. The
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approach selected in this study is based on a potential function control algorithm developed for
microsatellites.8 The construction of the artificial potential begins with thecreation of a desired
velocity field. This is a function of the current state and some desired final target state or path
constraint. The potential is then only explicitly a function of the error between the current and
desired velocities,

Φvel = k(vt(r0, rdes, vdes)− v0)T (vt(r0, rdes, vdes)− v0), (3)

wherev0 is the current velocity at positionr0, vt is the required transfer velocity (at the current
position) as computed via the velocity field equations, andrdes andvdes are the desired (i.e. target)
position and velocity. This simplifies to

Φvel = k∆v2 (4)

which is simply the square of the maneuver cost scaled by someuser selected weightk.

Velocity fields can be constructed to impose any user-definedconstraints on the trajectory, both
along the path and at the endpoint. The calculation of the appropriate desired velocity, though, can
be an extremely complex endeavour. For example, of particular interest in this investigation is the
design of a velocity field that guides the trajectory to a specified terminal state. If the transfer time
is not specified, targeting a final state is equivalent to targeting a final orbit. Ideally, the computed
desired velocityvt at a given initial state minimizes the overall transfer∆v. However, for non-
circular orbits, calculation of optimal transfer maneuvers, even between coplanar orbits, is an area
of study unto itself.11–13 Thus, optimization of the desired velocity field is beyond the scope of the
present study. Specific details of the velocity field constructions used in this investigation will be
discussed with the corresponding examples.

Maneuver Planning

Typically, path planning via the APF approach is accomplished by defining a virtual force that
is equal to the sum of the gradients of each active potential with respect to the current position and
velocity of the vehicle.7 This virtual force yields the desired acceleration vector for the vehicle.
This acceleration is then matched as closely as possible by the vehicle’s actuators. Naturally, the
resulting control history is continuous and unconstrained, a feature that is generally undesirable for
the present application.Certainly, the approach is not intended for cases involving discrete control
parameters, such as impulsive maneuvers more commonly employed in classical trajectory design.
Reconciling APF methods with the use of discrete control hasbeen considered for the problem
of spacecraft formation flight,14 and the present investigation adopts a similar approach. Inthis
case, the time derivative of the potential, rather than the gradient, is selected to identify appropriate
locations for impulsive maneuvers. Since the vehicle is constrained to stay on its current orbit
until a maneuver is performed, changes in the potentialΦ can result only from the propagation of
the vehicle state. Instead of using actuation to driveΦ to some pre-specified value, the algorithm
described here seeks the minimum value ofΦ along the current path. If the current orbit does not
intersect the desired orbit, then the potential is based on velocity error and the minimum corresponds
to the point at which the desired maneuver will have the lowest ∆v cost.

The overall potential field presented here consists of either the intersection potential defined in
Equation (2) or the velocity potential in Equation (3). A graphical overview of the full APF maneu-
ver planning algorithm is provided in Figure1. Following initialization, the algorithm determines
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whether or not the vehicle is already on the desired path. If not, the next step is to check whether the
vehicle has reached the user-specified maximum allowable number of maneuvers. If additional ma-
neuvers are still permissible, then the current state is propagated forward in time until the necessary

conditions for a minimum
(

dΦ
dt

= 0 and d2Φ
dt2

> 0
)

are met. At that point, a maneuver is performed

to match the current velocity to the calculated desired velocity and next iteration of the algorithm
begins.

Figure 1. Overview of APF Maneuver Planning

TRAJECTORY DESIGN EXAMPLES

Initial testing of the APF trajectory design algorithm focuses on transfers in Earth orbit. The first
example shown is a simple coplanar transfer, for which the analytical optimal solution is already
known. This example provides a useful means for evaluating the performance of APF algorithm
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against an established benchmark. Subsequent examples build in complexity; an inclined two-body
transfer is examined, followed by a lunar return example that incorporates third-body effects.

To determine the desired velocity field for the following examples, a target point on the final
orbit is selected to be an apse of the transfer orbit. If a transfer proceeds from a lower orbit to a
higher orbit, then the target point is defined to meet the apoapsis condition. If, instead, the transfer
proceeds from a higher orbit to a lower orbit, a periapsis condition is imposed at the target point.
Subsequently, the eccentricity vector of the transfer orbit is given byêt,

êt = −r̂f , (5)

wherer̂f is a unit vector aligned with the Earth-to-target line. The magnitude of the target position
vector can be determined from the target directionr̂f and the orbital parameters of the desired
orbit. The vector̂et can be used along with the initial and final positions,r0 andrf , to compute the
eccentricity of the transfer as follows:

et =
rf − r0

rT
0

êt − rTf êt
. (6)

From two-body analysis, the desired velocityvt is then given by

vt =
1

r2
0

√

µ

r0 + etê
T
t r0

[

et

(

(ĥ0 × êt)T r0
)

r0 +
(

r0 + etê
T
t r0

)

(ĥ0 × r0)
]

. (7)

Coplanar Transfer

Selection of the target point depends on the relative geometry of the initial and final orbits and can
include numerous factors, particularly for more complex transfers involving third-body perturba-
tions. For the purpose of this investigation, only the orbital planes are considered when designating
r̂f . In no plane change is required, the target point is chosen tobe the position on the desired orbit
that is directly opposite the current position, so that

r̂f = −
r0
r0
. (8)

This choice of̂rf ensures that the transfer angle is always180◦. For the case of two circular orbits,
this results in a Hohmann transfer. Figure2(a) shows the desired velocity field for transfer from
a circular equatorial orbit with an altitude of 100 km to an elliptical equatorial orbit with perigee
altitude of 400 km. The initial and target states for this transfer are listed in Table1. The resulting
potential, calculated according to Equation (3), is given in Figure2(b).

The transfer trajectory that ensues from this potential is shown in Figure3. An analytical optimal
result exists for the coplanar case in the form of a doubly cotangential transfer through an angle of
180◦. As Figure3 shows, the APF method matches this result, which has a total∆v of 1.25 km/s.
Although the problem addressed in this example is fairly trivial, the result demonstrates that the
APF algorithm is capable of performing on par with analytical methods, when they are available.

Inclined Transfer

If the initial and desired orbits are not coplanar, the target point is the point where the desired orbit
intersects the plane of the initial orbit. This target vector is perpendicular to the angular velocity
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Figure 2. Coplanar Velocity Field and Potential Function
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Table 1. Coplanar Transfer Initial and Target States

Parameter Initial Target

x (km) -6478.145 0.000
y (km) 0.000 12587.983
z (km) 0.000 0.0000

vx (km/s) 0.000 -4.708
vy (km/s) -7.844 0.000
vz (km/s) 0.000 0.000
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Figure 3. Coplanar Transfer
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Table 2. Inclined Transfer Initial and Target States

Parameter Initial Target

x (km) -5610.238 190.512
y (km) 0.000 12396.744
z (km) 3239.073 2177.562

vx (km/s) 0.000 -4.690
vy (km/s) -7.844 0.000
vz (km/s) 0.000 0.410

vectors of both orbits, so its direction is given by

r̂f = ±
h0 × hdes

||h0 × hdes||
. (9)

Equation (9) yields two results for the direction of intersection, although both answers may not
always be valid depending on the geometry of the two orbits. If two legitimate intersection points
do exist, then point with the greater radial distance from the central body is chosen as the target
point in order to minimize the∆v resulting from the plane change. An example velocity field and
its associated potential are shown in Figures4(a) and 4(b). The initial and target states for this
example are given in Table2. Note that the potential surface is not smooth as it was in thecoplanar
case; this is due to a singularity that occurs in the calculation of êt, Equation (5), when the initial
and final position vectors are exactly aligned. Under these conditions, the resulting transfer orbit is
rectilinear.

The non-coplanar transfer, shown in Figure5, requires a much greater∆v than the coplanar
example due to the plane change. This transfer has a total cost of 3.46 km/s, compared to 1.25
km/s for the coplanar example. Using a Lambert targeting algorithm to achieve this same transfer,
for the same transfer time, results in a∆v of 6.11 km/s. Because of the high cost incurred by
changing the orbital plane, it is often preferable to perform the plane change at a greater radius
than the intersection point and then use a third maneuver to put the vehicle on the target orbit.2

Incorporating this approach to inclined transfers into theAPF method should produce significant
improvement for cases involving large plane changes; this will be explored further in future studies.

Lunar Transfer

In order for the APF method to be a useful general tool for identifying startup arcs, it must be
able to produce valid results for more complex cases, such ascislunar trajectories. In the examples
below, the velocity field construction described previously is employed in the APF algorithm to
design a return trajectory from a low-lunar parking orbit. Initial conditions for the parking orbit are
listed in Table3. To determine an appropriate target orbit, i.e. one that will return the spacecraft to
some acceptable Earth entry interface, a set of entry constraints is chosen along with an estimated
arrival time. These constraints are used to compute the entry state (position and velocity), which
is then propagated backwards in time until reaches the lunarsphere of influence. The position and
velocity at the end of the propagation are input as the desired final state for the APF algorithm. The
entry interface constraints and arrival time for this example are given in Table4. It should be noted
that the timing of the vehicle’s arrival at the target state is now significant, as the entry parameters
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Figure 4. Non-Coplanar Velocity Field and Potential Function

9



−0.5

0

0.5

−0.5

0

0.5

1

−0.2

0

0.2

 

x (×104)
y (×104) 

z
(×

10
4
)

Desired Orbit

Initial Orbit

Transfer Orbit

Maneuvers

Initial Position

Figure 5. Non-Coplanar Transfer

will depend on the relative configuration of the Earth and Moon. Because the current APF method
determines maneuvers independent of time, there may exist amismatch between the assumed time
of arrival at the desired state, determined via the backwardpropagation, and the actual time of
arrival of the APF-determined departure trajectory. This is rectified by adjusting the vehicle’s initial
departure time through a simple offset targeting algorithm. At each iteration, the arrival time error
is computed and that value is subtracted from the current departure time. This method typically
reduces the arrival time error to within 1 second in 3 or 4 iterations.

The trajectory generated by the APF algorithm is shown in Figure6. This arc has a total∆v of
1.9483 km/s, which is high for a lunar return, but this is an issue than can be addressed to some
extent by a targeting or optimization algorithm. Ideally, though, the cost of the startup arc should
be as low as possible before being passed on to the targeting routine, so it is beneficial to examine
ways in which the cost of the APF trajectory can be reduced.

Phasing is extremely important when designing trajectories in multi-body systems. Using two-
body approximations to construct the artificial potential field neglects the effects of phasing, a lim-
itation that can have a detrimental effect on the performance of the APF algorithm. Consider the
return example described previously. If the departure and entry times for this transfer were shifted,
the change in the Earth-Moon configuration could cause a noticeable difference in the trajectory
produced by the APF algorithm. To demonstrate this timing effect, the transfer above is subjected
to time shifts over a range of±12 revolutions of the initial orbit. These arcs have the same initial
conditions and entry parameters as those listed in Tables3 and4, except that the epochs for depar-
ture and arrival are shifted byn revolutions. The costs of the resulting transfers are plotted against
n in Figure7. It is clear from Figure7 that significant improvements in cost can be achieved for this
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Table 3. Initial Conditions

Epoch 2-Aug-2018 17:16:06 TDT
x (km) -1834.7155
y (km) -66.2361
z (km) -73.9653

vx (km/s) -0.0864
vy (km/s) 0.8139
vz (km/s) 1.4136

Table 4. Estimated Arrival Conditions

Epoch 7-Aug-2018 00:52:08 TDT
Geocentric Altitude (km) 121.92

Longitude (deg) -134.5456
Geocentric Latitude -19.20410

Geocentric Azimuth (deg) 13.9960
Geocentric Flight Path Angle (deg) -5.8600

Figure 6. APF Lunar Return, 1.9483 km/s
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transfer simply by waiting for a few revolutions before departing; the total∆v drops from 1.9843
km/s to 1.5813 km/s, a reduction of over 0.4 km/s, in the course of just 4 revolutions. Conversely, a
poor choice of transfer epoch can have a disastrous effect oncost, as evidenced by the 2.6236 km/s
trajectory that results from delaying by 2 revolutions. Future iterations of the APF algorithm must
be capable of taking these phasing effects into account in order to be truly effective as a general
trajectory design tool.
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Figure 7. ∆v of Time-shifted Return Trajectories

CONCLUSIONS

This investigation examines the use of artificial potentialfunction (APF) methods as a means of
identifying suitable startup arcs for targeting and optimization algorithms. The primary objectives
of the study are to evaluate the feasibility of this approachfor complex trajectory design and to
determine key areas of development for future research. Candidate potential functions are defined
in terms of a) error between the current position and a desired intersection point on a target orbit and
b) error between the current velocity and the desired velocity, and a method for calculating a desired
velocity field, based on two-body analysis, is presented. These are employed in the development
of a preliminary APF trajectory design algorithm for orbital transfers. This algorithm uses the time
derivative of the potential to determine impulsive maneuver locations, rather than the classical APF
approach of using the gradient to calculate a desired acceleration vector. The APF design method is
utilized to generate sample Earth orbit and lunar return trajectories, and the effect of phasing on the
overall trajectory cost is investigated. Results indicatethat this method has promise as a tool for fast
calculation of startup trajectories, but the current two-body-based potential function construction
limits its effectiveness in more complex dynamical systemswhere timing plays a significant role
in the cost and structure of solution arcs. Future work will seek to address this issue through the
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development of potentials that incorporate more complex dynamics and can better address issues
such as large plane changes and time sensitivity.
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