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OPTIMAL CONSTELLATION DESIGN FOR SPACE BASED
SITUATIONAL AWARENESS APPLICATIONS

A.T. Takano* and B.G. Marchand?

Modern space situational awareness is focused on the eteirhcking, identi-
fication, and characterization of passive and active resisigace objects. In the
past, this process relied primarily on ground-based sensbowever, difficul-
ties arise when smaller objects are considered, in the rammeo-satellite range
for instance. To supplement ground sensing capabilitiesnatellation of space
based sensors is envisioned. In this study, concepts fronpeter graphics and
numerical optimization are fused into a unique constelfatiesign approach for
space based space situational awareness applications.

INTRODUCTION

As near-Earth space becomes increasingly crowded witrespait and debris, the need for im-
proved space situational awareness (SSA) has become paranvodern SSA is concerned with
the detection, tracking, identification, and charactéiwra(DTI&C) of passive and active resident
space objects (RSOs), at all altitudes, with known accueamy precision. RSOs are said to be
active if they are capable of maneuvering, and passive ¥f &éne not.

Modern advances in technology miniaturization, and thevgrg capabilities of nano- and pico-
satellite platforms, have raised many new and excitingrtieeth challenges in this area. Contem-
porary ground-based systems, such as the space surveiltetwork (SSN), are often unable to
identify objects in the pico-satellite range, much lesgabirize the active RSOs functionality or
predict its path or attitude with sufficient accuracy.

A new area of study focuses on space based space situativasgreess (SBSSA) to provide
DTI&C in lieu of, or in conjunction with existing ground-bag systems. In this study SBSSA goals
are accomplished through a network of space based sensors, ¢constellation of satellite sens-
ing platforms. Although these sensors are devoted to th&DTdf the same RSOs ground-based
systems are concerned with, their operational environngesignificantly different. The neces-
sary nature of the sensors on each platform, and their optimengements and orientations, will
then depend on the specific DTI&C goals that are of interesatgiven circumstance. Techniques
for analysis and optimal design of a network of space-basaedass that adequately supplements
DTI&C goals are the focus of the present investigation.

The constellations providing ATH coverage as a primary cbje are quite different from those
previously considered=3 Traditionally, constellation design is focused on pronigiground cov-
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erage, or coverage below the horizon (BTH) from the perspect each satellite (i.e. coverage
of targets against an Earth background). In contrast, theept study considers coverage above
the horizon (ATH), where satellite sensors scan for RSOmaga space backgrourfd® This ap-
proach enables use of sensors with significant improvemerdsn target detection compared to
ground-based systenis.

In the current study the ‘horizon’ is defined relative to asgrébed tangent height above the
Earth’s limb that is used to define the Earth-centered tanigeight shell (THS), as indicated in
Figurel. The tangent height is defined as the closest distance tcdttie’'€limb where a satellite’s
sensor is still able to observe objects in spA&TH and BTH coverage regions are separated by
an imaginary cone that emanates from the satellite and amggeit to the horizon, enveloping the
Earth and extending to infinity. This boundary is referrecasothe tangent height cone (THE).
The in-plane cross-section of the THC, referred to as thgetainheight triangle (THT) is shown in
Figurel.

Figure 1. ATH vs. BTH Regions — In-Plane Cross-Section

Traditional Constellation Design Methods for ATH Coverage

ATH constellation design methods in the literature may baddd into two categories de-
pending on the characterization of the target region —siadiitude and dual-altitude band regions.
Analyses of single-altitude band target regi®f$ only consider the region between the THS and
an upper target altitude shell (UTAS). Dual-altitude baadyét region$® expand upon this by
defining an arbitrary lower target altitude shell (LTAS)ttimabove the THS and below the UTAS.
These scenarios lead to coverage regions of fundameniffilyemht shapes. Typical coverage re-
gions within single- and dual-altitude band target regiaresshown in Figur@.

Multiple investigators:’ have published work concerning ATH coverage within the lsing
altitude band target region. Early analy®emly considered ATH coverage as a secondary ob-
jective to BTH coverage, and the techniques described themot lend themselves to designing
constellations specifically intended to provide ATH cogeraRideP directly approaches the ATH



N LTAS e
S~ ~ - - ~ ~ -— -
UTAS TTAS
(a) Single-Altitude Band (b) Dual-Altitude Band

Figure 2: Examples of Single- and Dual-Altitude Band Coverage Regjio

coverage problem for a single-altitude band target regradyéically, using geometric reasoning
to obtain solutions. The method constructed is analogoukddtreets of coverage approach to
the BTH coverage problem, dictating satellite positioniognsure total ATH coverage. While his
methods determine the necessary quantity and positioriisgtellites to achieve coverage, they do
not consider the actual amount of coverage in cases whergetieed coverage is not achieved.
Additionally, sensor range in Rider’s study is consideretd unbounded. The necessary mass of a
sensor or antenna may be approximated as increasing pov@dit with the square of the desired
effective rangé, thus the simplifying assumption of unbounded sensor ramgapractical.

Single-altitude band analyses may be considered a subgbt afual-altitude band coverage
problem. The methods presented in the current study ardlyapalicable to single-altitude band,
dual-altitude band, and arbitrary target regions of anpgidorm.

An early treatment of ATH coverage of a dual-altitude bandegregion is presented by Rider
who expands upon his earlier work on the single-altitudedb®PH coverage problem to consider
a prescribed lower altitude bound above the tangent heidig.analysis considers various combi-
nations of equatorial and polar orbital planes, again ugemnetric reasoning to obtain solutions.

More recent research, presented by Marchand and Kopelsents an analytical coverage model
to explicitly evaluate in-plane ATH coverage area for thelehltitude band coverage problem.
In-plane coverage area provided by a single satellite witimiedirectional sensors in a circular
orbit is considered, leading to a time-invariant problemewtthe quantity of coverage area alone
is of interest. However, coverage in a fully populated celfeion may create regions of overlap
where higher coverage multiplicities exist (i.e. regidmsttare simultaneously observed by multiple
satellites). Consequently, the coverage provided by dessajellite does not scale intuitively to the
total coverage of an entire constellation of similarly piosied and equipped satellites.

The primary difference between Marchand and Kolefissult and earlier ATH coverage anal-
yses? is that a measure of actual coverage is obtained. Previalgsas use methods to design
constellations that by their very nature ensure the desibedrage characteristics. A model to com-
pute the actual coverage, given a set of parameters, allmvesfistellation design optimization in a



different sense. Perhaps most importantly, it enablegdassing a variety of existing generalized
numerical optimization methods.

General Approach

The numerical ATH coverage model developed and demongtiratais study is presently only
implemented for planar analysis. Thus, all satellites io@stellation under consideration must lie
in a single orbital plane, and their sensor regions are asdumexhibit some form of cross-plane
symmetry such that in-plane coverage area correlatesde-ttimensional coverage volume in some
reasonable sense. At its most fundamental level, the medehiply a specific sequence of Boolean
operations between the sensor coverage and target regibtimsugh a planar implementation using
the polygon clipping techniqd&2 is used to perform the Boolean operations between polygons
representing the relevant planar regions, the same seggiefoperations may be directly applied
to the volumetric case. Such an implementation would requicorporation of an algorithm to
handle the Boolean operations between non-convex polghedr

The numerical nature of the model and implementation altéavaddress, with greater ease to the
investigator, more complex problems than previously dgsedi analytical model$ Certainly, exact
representations of the ATH coverage area are only availaider a simplified set of assumptions.
Even then, the process of identifying these analyticalesgmtations leads to highly complex non-
unique piecewise differentiable coverage area functidie numerical approach proposed in this
investigation, while computationally more expensive,pplecable to any sensor profile and target
region geometry, provided they can be approximated as pok/g-urthermore, the coverage within
the target region can be determined for any desired covaragtplicity, given a fully defined
constellation. As discussed in the Application sectiois lumerical approach is particularly useful
in SBSSA applications for constellation design, perhapstmreadily to define coverage constraints
or objectives in a parameter optimization problem.

METHODOLOGY

In this section a numerical model for the evaluation of ATHem@ge provided by a constella-
tion of sensors is developed. To demonstrate the generaépbbehind the methodology, without
incurring large computational penalties, the analysisgméed is planar. That is, all satellites are
assumed to exist on the same orbital plane. Furthermolguah the sensor profiles are three-
dimensional, as is the ATH target region, the coverage velismot explicitly computed. Rather,
the cross-sectional area of coverage - within the consiais orbit plane - is determined instead.
The computation of the resulting 2-D ATH coverage area i®andished through a specific se-
guence of Boolean operations between polygons that regresess-sections of sensor profiles and
target regions. These Boolean operations return both therage area and the coverage multi-
plicity. Boolean operations between polygons are perfadriong the well-established technique
of polygon clipping?? traditionally used in digital image synthesis and geospatformation sys-
tems. This approach is used to evaluate ATH coverage of aigedemultiplicity provided by planar
constellations of any size. From a numerical perspectigeniethodology presented is independent
of the geometry of the sensor profile and target regions. KMewyeross-orbit-plane symmetry is re-
quired in order to maintain some correlation between thegrland volumetric coverage scenarios,
i.e. as in-plane coverage area increases, so must covavhgeey and vice versa. FiguBillus-
trates ATH coverage of an Earth-centered annular targ@nggovided by a planar constellation
of sensor platforms with arbitrarily defined sensor profiles



Figure 3: A Constellation of Platforms With Arbitrary Sensor Pradileroviding ATH Coverage

Defining Sensor Regions

Because the sensor profile of each satellite, and the taggietrr are all represented as poly-
gons, the number of points used to define each polygon wdtathe accuracy of the coverage area
calculations. The ‘resolution’ of a polygon, then, refaergtie number of points per contour (PPC)
that define its boundary. Polygons may have multiple costéug. a region with an interior hole,
or a polygon composed of multiple separate regions), thus,variable indicates the number of
vertices used to define each contour upon generation of itired jpolygon.

Omni-Directional Sensor Regions  For simplicity, much of the discussion in this study as-
sumes omni-directional satellite sensors with no loss efegaity. Under this assumption, the
effective range shellRSg, theactual ATH region covered by the satellite, i.e. the sensor region
excluding the BTH region) is computed by simple geometry.ofated illustration of the effective
range shell is shown in Figu#e The interior half angle of the THTF;, is computed as

~v = arcsin ? (1)
S

Given an in-plane longitude (angular displacement of thellga from the positiver-axis) of#, it
is then clear that the initial and final angles for the circylartion of the boundary are given by

1/Jf:—7T+’Y+9. (3)

For a polygon resolution ofr PPC, the first vertex lies at the satellite. The remaining- 1
vertices are distributed along the outside circular ardefdensor region, between angigsand



Figure 4. Notation for Computing Effective Range Shelt§ ) Vertices for the Omni-Directional
Sensor Case

1y at radiusi in a counter-clockwise direction. The curve is implicitipsed between the initial
and final vertices.

Arbitrary Sensor Regions In analyzing non-omni-directional sensor regions with en in-
plane cross-section, the effective range shBlbz is isolated by subtracting the THT from the
sensor region (by Boolean difference operation, usinggmiyclipping). Referring to Figurba a
polygon is defined representing the in-plane cross-secfitine arbitrary sensor profile?.Sap and
the tangent height triangle, THT (Figusd). Although the THT extends to infinity, for practical
purposes it need only extend beyond the sensor cross+sdotidhis step. Because of the non-
omni-directional shape, the in-plane attitude of the sewnsass-section must be considered, and
the resulting effective range shell shape varies conditiersith attitude, as shown in Figurés-
5d. The additional clipping operation to isolai&Sg incurs a small performance penalty over the
omni-directional case, where none is required. Howeves,tdihe low resolution of the THT, the
performance penalty is typically negligiblé.

Numerical ATH Coverage Model

For simplicity, the model development discussion considenni-directional sensor platforms
equally distributed in a single circular orbit. Howeveristfundamental to observe that the same
models apply t@any configuration of satellites subject to the planar analyssgtudy is concerned
with.

Sngle Multiplicity ~ The basis for the single coverage model is illustrated irufe®. Here,
n — 1 union operations (Figureda-6i) are performed between thesatellite effective range shells,
RSE to produce a total effective sensor regiétfir. A final intersection operation with the target
region, AS, yields the region of total single coverage within the targgion, shown in Figurél as
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(1 «, defined in set notation as
Cix = (U RSEZ) NAS. (4)

1=1

Determination of the area enclosed®@y. is computed directly from the vertices of each polygon
contour! This method is applied to each contour of the resulting paiy@; ., adding areas inside

fill regions to the total area, and subtracting areas insidie fegions.

Figure 6: Single Coverage lllustration — 6 Satellite Constellation

Double Multiplicity Determining regions of double coverage requires a diffesequence of
Boolean operations, as illustrated in Figufe Intersections between all unique pairs of sensor
regions, as shown in Figur&s7f, isolate all regions of double sensor overlap. These regioe
then combined using union operations (Figufgsj). Finally, an intersection with the target region,
yields Cs . (the region of double coverage within the target regiondwshin 71. This sequence is



expressed in set notation as

n—1 n
Cox = (U U (BSs,n RSEQ)) N AS. 5)

i1=1142=11+1

The indices for the union operations are chosen to avoidnaaht or meaningless calculations,
i.e. only address each unique combination of satellite® . orfor instance, performingSg, N
RSE, followed by RSE, N RSE, is aredundancy (they represent the same region — the iotierse
operator is commutative). Similarly, consideriR$r, N RSE, for double coverage is meaningless
— RSE, cannot cover the same region twice. The area in€lgleis evaluated just as in the single
multiplicity case.

(1) Cax
Figure 7: Double Coverage lllustration — 6 Satellite Constellation



Arbitrary Multiplicity ~ Upon performing a similar analysis to the triple multipljccasel® a
clear pattern emerges, yielding a general expressiop foultiplicity coverage of am satellite
constellation (),

n—p+1 n—p+2 n—1 n

o= U U -~ U U (BSs, NRSg, 0---NRSg, ) | NA4S. ()

i1=1 i2=i1+1 Z—pflz’ipfg-l-l Z—p:ip71+l

Note thatn > p. This is clear when considering the opposite case by logineal i.e., it is
impossible for a three satellite constellation to yield dyugle coverage. This expression reduces
to C1 xandCs for p values of 1 and 2 respectively. The enclosed ared,gfis evaluated just as in
the single multiplicity case.

Number of Clipping Operations

The performance of the numerical coverage model dependlgggn resolution, and the
number of necessary clipping operations. Polygon resmlus chosen by the investigator based on
the level of precision desired, while the number of satsléind the coverage multiplicity of interest
dictate the number of clipping operations. The bounds orittiie unions in Equationg) ensure
consideration of all uniqug-combinations fromm satellites. Thusg,(n) = (;‘) is the number of

possiblep-combinations out of. satellites, and is determined by/p!(n — p)!.1°
In generalg,(n) p-tuplets are each subjectpo- 1 intersections. The resulting,(n) regions are

combined byg,(n) — 1 unions, followed by one intersection with the target regi@nming C,,.
The total number of clip operations (g — 1)g,(n) + g,(n) — 1+ 1, or

n n!
Q) =pasn) =p(1) = i @

A plot of Q,,(n) is shown in Figure8. Although single coverage requires onlyclipping opera-
tions, higher coverage multiplicities require a signifiibatarger number of clipping operations. For
instance, fom = 15, up to 15 or 210 clip operations may be required to determeg@ns of single
or double coverage, respectively. In contrast, for octapierage, up to 51,480 clip operations may
be necessary, creating a highly computationally intengredlem.

Fortunately,Q,(n) is only an upper bound on the number of clip operations thétakmost
never occur in a practical implementation. While perforgnihe intersections for a singjetuplet,
the program will abort and move to the nextuplet if the current region becomes empty after an
intermediate intersection operation. The intersectioarof region with an empty region is itself
empty. Additionally, geometric criteria (i.e. non-overtang bounding boxes) can be used to avoid
performing unnecessary intersection operations.

IMPLEMENTATION & VALIDATION

The numerical models discussed in the previous sectiomakeimented in both MATLAB and
C++. The polygon clipping library GPE1? is written in C and is directly integrated in a C++
environment, and indirectly in MATLAB via a MEX interface. xiEensive documentation of both
implementations may be found in the thesis produced duhisgstudy> Fixed multiplicity models
(i.e. single, double, triple, quadruple) are implemented straightforward way using nested loops.
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Figure 8: Clip Operations(),(n) vs. Number of Satellites

Combinations of satellite coverage regions are iteratexliih by the loop variables while perform-
ing the necessary Boolean operations to determine covesggms of the specified multiplicity. A
special approach is necessary for the arbitrary multiglicase. A loop structure generates indices
denoting they,(n) = (Z) combinations of satellites for analysis during executavaiding the need
for prior knowledge of coverage multiplicity prior to runte.

For validation, the analytical model presented by Marchand Kobef is employed for the
examples presented here. This model considers a single-direntional sensor platform, in a
circular orbit, covering a dual-altitude band target regiddditional validation and analyses on
approximation error are presented in earlier publicaf®psoduced during the course of this study.
An initial polygon resolution of 100 points per contour isufal to be sufficient to achieve relative
error below 0.1% compared to the analytical formulation.

APPLICATION
Time-Invariant Problems

Cases where the distances between the satellites and reggmis remain fixed may be con-
sidered time-invariant. That is, the amount of ATH coverag®ains constant as the satellites
in the constellation evolve along their orbit. Based on #dsumption, the following examples
demonstrate the use of the proposed methodology in optiomatellation design. The first exam-
ple presents the minimum number of satellites required; avange of constellation altitudes, to
achieve 99.9% single, double, and triple coverage over geraf altitudes. The second example
expands on this by also considering the sensor range asgmgeEsiameter.

Example 1. A Single Independent Variable Case A planar constellation providing ATH cov-
erage to an Earth-centered annular target region is cassidé hen omni-directional sensor plat-
forms are equally distributed in a single circular orbit.nStellation altitudes between 100 and 6000
km are considered at 1 km resolution. At each altitude, termim constellation populations pro-
viding at least 99.9% single, double, or triple coveragedatermined with a simple grid search, the

11



results of which are shown in Figuge Just as coverage area is computed numerically, so is the are
of the target region. Due to roundoff and truncation ertoe, tivo computed areas may not be the
same, despite representing the exact same regions. Taptkigfrom causing an erroneous result,
99.9% coverage is considered rather than 100%. The miniadtiele constellation configurations
providing single, double, and triple coverage are showngufes10a10c
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Figure 9: Minimum Constellation Population vs. Altitude

Table 1. Example 1 Parameters

Parameter Description Value
hy tangent height 100 km
hy lower target altitude 1000 km
hau upper target altitude 5000 km
R omni-directional sensor range10000 km
m initial polygon resolution 100 PPC

Table 2 Example 1 Optimal Solutions

Coverage Mult.| Optimal Pop.| Altitude Range

1x 3 satellites| 999 — 1210 km
2% 6 satellites| 1058 — 1187 km
3% 10 satellites| 705 — 1113 km

Example 2. A Two Independent Variable Case  Expanding upon the problem in Example 1,
in addition to varying circular orbit altitude (19500-3&D&m), variation in omni-directional sen-

12



(a) 1x cov., 3 sat.h = 999 km (b) 2x cov., 6 sat.h = 1058 km (c) 3x cov., 10 sat.h = 705 km

Figure 10. Smallest Constellations Providing at Least 99.9% ATH Cage at Different Multiplic-
ities

sor range (17000-30000 km) is considered in a>4@00 grid. Typically, sensor range is a fixed
guantity depending upon available hardware. However, sichnalysis may be useful during a
trade study to determine the minimum sensor performanagreztjto achieve coverage subject to
other constraints. The problem parameters are shown i Ballhe minimum number of satellites

required to achieve at least 99.9% single coverage acregshtise space is shown in Figlie
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Figure 11: Minimum Constellation Size For 99.9% Single Coverage M$tudle and Sensor Range

Time-Varying Problems

In cases with elliptical orbits, more complex target regioor even constellations with pop-
ulations distributed across multiple circular and/orpgitial orbits (in the same plane), the ATH

13



Table 3. Example 2 Parameters

Parameter Description Value
hy tangent height 100 km
hy lower target altitude | 20000 km
I upper target altitude | 36000 km
m initial polygon resolution| 100 PPC

coverage amount is time-varying in general. The overlapvbenh sensor coverage and target re-
gions varies continuously.

Time-varying problems may be analyzed using the technigiessloped in this study by per-
forming instantaneous coverage evaluations at specifiegbtthroughout a time interval of interest.
Figure12 shows the ATH coverage provided by a planar constellatiod s#nsor platforms in ar-
bitrarily prescribed orbits with arbitrarily defined sengwofiles over a prescribed time interval.
A sufficiently long time interval, and a sufficiently shonni-step must be selected to ensure the
analysis adequately characterizes the behavior of theraysin a system with periodic behavior,
an appropriate time interval is one period. However, namepé cases such as that shown in Fig-
urel2 are more difficult to analyze because the judgment of theyahalust dictate an appropriate
time interval.
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Figure 12 ATH Coverage Over Time — Arbitrary Sensor Profiles, Asynmioellarget Region

Using this numerical approach, constellation design @misl can be addressed using various
parameter optimization techniques.
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Example 3: Analysis of Coverage by Elliptical Orbits  As in the time-invariant problems, an
annular target region is considered. However, due to the-tiwariant nature of the target region
itself, a time-invariant solution is optimal, as is demoatd in this example.

The problem is posed as a Mixed-Integer Non-Linear ProgriaamiMINLP) problem and solved
using MIDACO .16 MIDACO is a zeroth order heuristic solver and uses an antyotiptimization
(ACO) approach-’ Because ACO is a heuristic approach to MINLP, there are ntyicsl opti-
mality criteria for non-convex problems such as this, thes dlgorithm is allowed to run until it
ceases improvement upon the solution.

A constellation composed of two elliptical orbits with ogite periapsis directions is considered.
Each orbit is initially populated by three satellites, earbup with dissimilar omni-directional
sensor performance. Within each orbit the satellites atmlggspaced in mean anomaly. The
objective is the minimize the total population of the coliat®n, while ensuring continuous single
coverage of the target region. The formulation allows fog onboth orbits to have zero population
(although zero population in both orbits results in an obsiwiolation of the continuous coverage
constraint). Problem parameters are summarized in Pable

Table 4: Example 3 Parameters

Parameter Description Value
hy tangent height 100 km
hy lower target altitude 1000 km
ha upper target altitude 10000 km
k number of distinct orbits in constellation 2 orbits
Ry omni-directional sensor range of sats. in orbit 15000 km
Ry omni-directional sensor range of sats. in orbit 20000 km
m initial polygon resolution 100 PPC

Table 5. Example 3 Start Point & Solution (682 func. evals, 300s)

Decision Variable Description Start Point|  Solution
a semi-major axis (both orbits) | 10000 km 8588.0

e eccentricity (both orbits) 0.25 0

My, M at epoch for lead sat. in orbit P 0 rad 0 rad

ny orbit 1 population 3 satellites| 0 satellites

ng orbit 2 population 3 satellites| 6 satellites

Table5 shows the start point and solution after 300 seconds (68&idimevaluations). From an
infeasible start point (coverage gaps), a feasible 12lgatstate is identified by the 15th function
evaluation. By the 98th function evaluation, the preserseldtion is converged upon. With 6
satellites distributed in a single circular orbit, the s$imn is time-invariant when only concerned
with the quantity of coverage, as expected.

Example 4. Continuous Observation of CONUS GEO Satellites  In contrast to the previous
example, an asymmetric Earth-fixed target region is consitlbere. From a geostationary orbit,
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the target region is defined a4 000 km in altitude, between 148V and 6T W longitude (populated
by satellites serving the continental United States).

One immediately obvious solution corresponds to placimgstitellites on a geostationary orbit.
However, because this particular arrangement is itsel-imariant, it is not particularly useful in
demonstrating the algorithm’s capability for addressingetvarying problems. Instead, consider
an alternate arrangement where the constellation is caedpisatellites placed across four smaller
identical orbits, equally distributed in periapsis difent Unlike previous examples, the satellites
are no longer equally distributed within each orbit, andiastead equally distributed within a range
in mean anomaly. The positioning (mean anomaly at epochadf group is prescribed such that
apoapsis of the center of each satellite group occurs asftettregion is centered above apoapsis
of each orbit. In order to maintain this synchronizatiorg time period (and thus semi-major axis)
of the orbits is prescribed to revisit geostationary ait&@n integer number of times per day (twice
daily in this example).

The objective in this example is to minimize the satellitess® range, i.e. determine the smallest
sensor range capable of covering the target region contsiyoT he problem is subsequently posed
as a non-linear programming (NLP) problem, where all intgggameters are prescribed, and ap-
proached using the interior-point solver fimincon.'® The decision variables are satellite sensor
range,R, orbit eccentricitye, and satellite group spread, M . Problem parameters are summarized
in Table6.

Table 6: Example 4 Parameters

Parameter Description Value
hy tangent height 100 km
hy lower target altitude 41164.13 km
hy upper target altitude 43164.13 km
by, western target longitude 148W
Au eastern target longitude 61°W
k number of distinct orbits in constellation 4 orbits
n total constellation population 8 satellites
m initial polygon resolution 100 PPC

Table 7: Example 4 Start Point & Solution

Decision Variable Description Start Point| Solution
R omni-directional sensor range12000 km | 17444 km

e orbit eccentricity 0.50 0.40

AM group spread 90° km 89.4°

Table7 shows the infeasible start point and solution, obtaineer &2 iterations. The start point
and solution constellations are shown in Figutdaand14brespectively. Although the number of
satellites in each orbit and the constellation as a wholanefixed, this example demonstrates how
the numerical ATH coverage model may be used in an NLP-didesistellation design process.
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Figure 14: Start Point to Solution With Continuous<1Coverage Constraint
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CONCLUSION

An efficient numerical algorithm is devised, based on cotxépm computer graphics, that fa-
cilitates the optimal constellation design for space-daggace situational awareness applications.
The proposed approach is effective and efficient in addrgdsdth time-invariant and time-varying
problems and further addresses n-tuple coverage from anuahperspective. The results pre-
sented in this study also demonstrate the success of thisagipin addressing the complexities
of heterogeneous sensor and orbital configurations witlenconstellation. This is of particular
importance because exact representations of above tteoharoverage are not available in such
cases.

ACKNOWLEDGMENTS

This research was carried out at The University of Texas atiAwand was funded by the Air
Force Office of Scientific Research through the Air Force Yplmvestigator Award, contract #
FA9550-09-1-0227. Any opinions, findings, and conclusioneecommendations expressed in this
material are those of the authors and do not necessarilgtréfike views of the funding agency.

REFERENCES

[1] L. Rider and W. S. Adams, “Circular Polar ConstellatidAsoviding Continuous Single or
Multiple Coverage Above a Specified Latituddgurnal of the Astronautical Sciences, Vol. 35,
1987, pp. 155-192.

[2] J. G. Walker, “Circular Orbit Patterns Providing Contous Whole Earth Coverage,” Tech.
Rep. 70211, Royal Aircraft Establishment, November 1970.

[3] J. G. Walker, “Continuous Whole Earth Coverage by Ciacrbit Satellite Patterns,” Tech.
Rep. 77044, Royal Aircraft Establishment, March 1977.

[4] B. G. Marchand and C. Kobel, “Geometry of Optimal Coverdgr Space Based Targets with
Visibility Constraints,”The Journal of Spacecraft and Rockets, Vol. 46, No. 4, 2009, pp. 845—
857.

[5] L. Rider, “Optimal orbital constellations for globalexving of targets against a space back-
ground,”Optical Engineering, Vol. 19, No. 2, 1980, pp. 219-223.

[6] L. Rider, “Design of low to medium altitude surveillansgstems providing continuous mul-
tiple above-the-horizon viewing@ptical Engineering, Vol. 28, No. 1, 1989, pp. 25-29.

[7] K. J. Gordon, “The Computation of Satellite ConstebthatiRange Characteristicsil AA/AAS
Astrodynamics Conference, August 1994, pp. 1-9.

[8] D. C. Beste, “Design of Satellite Constellations for Ol Continuous CoveragelEEE
Transactions on Aerospace and Electronic Systems, Vol. 14, No. 3, 1978, pp. 466-473.

[9] J. M. Hanson and A. N. Linden, “Improved Low-Altitude Cstellation Design Methods,”
Journal of Guidance, Control, and Dynamics, Vol. 12, No. 2, 1988, pp. 228-236.

[10] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overma@gmputational Geometry. Algo-
rithms and Applications. Springer-Verlag, 3 ed., 2008.

19



[11] A. Murta, “General Polygon Clipping Library,” http://www.cs.man.ac.uk/ ~ toby/
alan/software/

[12] B. Vatti, “A Generic Solution to Polygon ClippingCommunications of the ACM, Vol. 35,
No. 7, 1992, pp. 57-63.

[13] A. T. Takano, “Numerical Analysis and Design of SatellConstellations for Above the Hori-
zon Coverage,” Master’s thesis, The University of Texasdti, 2010.

[14] W. H. Beyer, ed.CRC Sandard Mathematical Tables, pp. 123-124. CRC Press, 28 ed., 1987.

[15] J. H. Conway and R. K. Guyihe Book of Numbers, ch. 3, pp. 67-68. Springer-Verlag, 1 ed.,
1996.

[16] M. Schlueter, J. J. Rckmann, and M. Gerdts, “Mixed lete@istributed Ant Colony Opti-
mization,” http://www.midaco-solver.com/index.html

[17] M. Schlueter, J. A. Egea, and J. R. Banga, “Extended @lohg optimization for non-convex
mixed integer nonlinear programming;omputers and Operations Research, Vol. 36, No. 7,
2009, pp. 2217-2229.

[18] The MathWorks,Fmincon. http://iwww.mathworks.com/help/toolbox/optim/ug/
fmincon.html

20


http://www.cs.man.ac.uk/~toby/alan/software/
http://www.cs.man.ac.uk/~toby/alan/software/
http://www.midaco-solver.com/index.html
http://www.mathworks.com/help/toolbox/optim/ug/fmincon.html
http://www.mathworks.com/help/toolbox/optim/ug/fmincon.html

	Introduction
	Traditional Constellation Design Methods for ATH Coverage
	General Approach

	Methodology
	Defining Sensor Regions
	Omni-Directional Sensor Regions
	Arbitrary Sensor Regions

	Numerical ATH Coverage Model
	Single Multiplicity
	Double Multiplicity
	Arbitrary Multiplicity

	Number of Clipping Operations

	Implementation & Validation
	Application
	Time-Invariant Problems
	Example 1: A Single Independent Variable Case
	Example 2: A Two Independent Variable Case

	Time-Varying Problems
	Example 3: Analysis of Coverage by Elliptical Orbits
	Example 4: Continuous Observation of CONUS GEO Satellites


	Conclusion
	Acknowledgments

