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OPTIMAL CONSTELLATION DESIGN FOR SPACE BASED
SITUATIONAL AWARENESS APPLICATIONS

A.T. Takano∗ and B.G. Marchand†

Modern space situational awareness is focused on the detection, tracking, identi-
fication, and characterization of passive and active resident space objects. In the
past, this process relied primarily on ground-based sensors. However, difficul-
ties arise when smaller objects are considered, in the nano-or pico-satellite range
for instance. To supplement ground sensing capabilities, aconstellation of space
based sensors is envisioned. In this study, concepts from computer graphics and
numerical optimization are fused into a unique constellation design approach for
space based space situational awareness applications.

INTRODUCTION

As near-Earth space becomes increasingly crowded with spacecraft and debris, the need for im-
proved space situational awareness (SSA) has become paramount. Modern SSA is concerned with
the detection, tracking, identification, and characterization (DTI&C) of passive and active resident
space objects (RSOs), at all altitudes, with known accuracyand precision. RSOs are said to be
active if they are capable of maneuvering, and passive if they are not.

Modern advances in technology miniaturization, and the growing capabilities of nano- and pico-
satellite platforms, have raised many new and exciting technical challenges in this area. Contem-
porary ground-based systems, such as the space surveillance network (SSN), are often unable to
identify objects in the pico-satellite range, much less characterize the active RSOs functionality or
predict its path or attitude with sufficient accuracy.

A new area of study focuses on space based space situational awareness (SBSSA) to provide
DTI&C in lieu of, or in conjunction with existing ground-based systems. In this study SBSSA goals
are accomplished through a network of space based sensors, i.e. a constellation of satellite sens-
ing platforms. Although these sensors are devoted to the DTI&C of the same RSOs ground-based
systems are concerned with, their operational environmentis significantly different. The neces-
sary nature of the sensors on each platform, and their optimal arrangements and orientations, will
then depend on the specific DTI&C goals that are of interest ina given circumstance. Techniques
for analysis and optimal design of a network of space-based sensors that adequately supplements
DTI&C goals are the focus of the present investigation.

The constellations providing ATH coverage as a primary objective are quite different from those
previously considered.1–3 Traditionally, constellation design is focused on providing ground cov-
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erage, or coverage below the horizon (BTH) from the perspective of each satellite (i.e. coverage
of targets against an Earth background). In contrast, the present study considers coverage above
the horizon (ATH), where satellite sensors scan for RSOs against a space background.4–6 This ap-
proach enables use of sensors with significant improvementsin dim target detection compared to
ground-based systems.7

In the current study the ‘horizon’ is defined relative to a prescribed tangent height above the
Earth’s limb that is used to define the Earth-centered tangent height shell (THS), as indicated in
Figure1. The tangent height is defined as the closest distance to the Earth’s limb where a satellite’s
sensor is still able to observe objects in space.4 ATH and BTH coverage regions are separated by
an imaginary cone that emanates from the satellite and runs tangent to the horizon, enveloping the
Earth and extending to infinity. This boundary is referred toas the tangent height cone (THC).4

The in-plane cross-section of the THC, referred to as the tangent height triangle (THT) is shown in
Figure1.
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Figure 1: ATH vs. BTH Regions – In-Plane Cross-Section

Traditional Constellation Design Methods for ATH Coverage

ATH constellation design methods in the literature may be divided into two categories de-
pending on the characterization of the target region – single-altitude and dual-altitude band regions.
Analyses of single-altitude band target regions5,7–9 only consider the region between the THS and
an upper target altitude shell (UTAS). Dual-altitude band target regions4,6 expand upon this by
defining an arbitrary lower target altitude shell (LTAS) that is above the THS and below the UTAS.
These scenarios lead to coverage regions of fundamentally different shapes. Typical coverage re-
gions within single- and dual-altitude band target regionsare shown in Figure2.

Multiple investigators5,7–9 have published work concerning ATH coverage within the single-
altitude band target region. Early analyses8 only considered ATH coverage as a secondary ob-
jective to BTH coverage, and the techniques described theredo not lend themselves to designing
constellations specifically intended to provide ATH coverage. Rider5 directly approaches the ATH
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Figure 2: Examples of Single- and Dual-Altitude Band Coverage Regions

coverage problem for a single-altitude band target region analytically, using geometric reasoning
to obtain solutions. The method constructed is analogous tothe streets of coverage approach to
the BTH coverage problem, dictating satellite positioningto ensure total ATH coverage. While his
methods determine the necessary quantity and positioning of satellites to achieve coverage, they do
not consider the actual amount of coverage in cases where thedesired coverage is not achieved.
Additionally, sensor range in Rider’s study is considered to be unbounded. The necessary mass of a
sensor or antenna may be approximated as increasing proportionally with the square of the desired
effective range,7 thus the simplifying assumption of unbounded sensor range is impractical.

Single-altitude band analyses may be considered a subset ofthe dual-altitude band coverage
problem. The methods presented in the current study are equally applicable to single-altitude band,
dual-altitude band, and arbitrary target regions of any planar form.

An early treatment of ATH coverage of a dual-altitude band target region is presented by Rider6

who expands upon his earlier work on the single-altitude band ATH coverage problem to consider
a prescribed lower altitude bound above the tangent height.The analysis considers various combi-
nations of equatorial and polar orbital planes, again usinggeometric reasoning to obtain solutions.

More recent research, presented by Marchand and Kobel,4 presents an analytical coverage model
to explicitly evaluate in-plane ATH coverage area for the dual-altitude band coverage problem.
In-plane coverage area provided by a single satellite with omni-directional sensors in a circular
orbit is considered, leading to a time-invariant problem when the quantity of coverage area alone
is of interest. However, coverage in a fully populated constellation may create regions of overlap
where higher coverage multiplicities exist (i.e. regions that are simultaneously observed by multiple
satellites). Consequently, the coverage provided by a single satellite does not scale intuitively to the
total coverage of an entire constellation of similarly positioned and equipped satellites.

The primary difference between Marchand and Kobel’s4 result and earlier ATH coverage anal-
yses5–9 is that a measure of actual coverage is obtained. Previous analyses use methods to design
constellations that by their very nature ensure the desiredcoverage characteristics. A model to com-
pute the actual coverage, given a set of parameters, allows for constellation design optimization in a
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different sense. Perhaps most importantly, it enables design using a variety of existing generalized
numerical optimization methods.

General Approach

The numerical ATH coverage model developed and demonstrated in this study is presently only
implemented for planar analysis. Thus, all satellites in a constellation under consideration must lie
in a single orbital plane, and their sensor regions are assumed to exhibit some form of cross-plane
symmetry such that in-plane coverage area correlates to three-dimensional coverage volume in some
reasonable sense. At its most fundamental level, the model is simply a specific sequence of Boolean
operations between the sensor coverage and target regions.Although a planar implementation using
the polygon clipping technique10–12 is used to perform the Boolean operations between polygons
representing the relevant planar regions, the same sequences of operations may be directly applied
to the volumetric case. Such an implementation would require incorporation of an algorithm to
handle the Boolean operations between non-convex polyhedron.

The numerical nature of the model and implementation allow it to address, with greater ease to the
investigator, more complex problems than previously developed analytical models.4 Certainly, exact
representations of the ATH coverage area are only availableunder a simplified set of assumptions.
Even then, the process of identifying these analytical representations leads to highly complex non-
unique piecewise differentiable coverage area functions.The numerical approach proposed in this
investigation, while computationally more expensive, is applicable to any sensor profile and target
region geometry, provided they can be approximated as polygons. Furthermore, the coverage within
the target region can be determined for any desired coveragemultiplicity, given a fully defined
constellation. As discussed in the Application section, this numerical approach is particularly useful
in SBSSA applications for constellation design, perhaps most readily to define coverage constraints
or objectives in a parameter optimization problem.

METHODOLOGY

In this section a numerical model for the evaluation of ATH coverage provided by a constella-
tion of sensors is developed. To demonstrate the general concept behind the methodology, without
incurring large computational penalties, the analysis presented is planar. That is, all satellites are
assumed to exist on the same orbital plane. Furthermore, although the sensor profiles are three-
dimensional, as is the ATH target region, the coverage volume is not explicitly computed. Rather,
the cross-sectional area of coverage - within the constellations orbit plane - is determined instead.
The computation of the resulting 2-D ATH coverage area is accomplished through a specific se-
quence of Boolean operations between polygons that represent cross-sections of sensor profiles and
target regions. These Boolean operations return both the coverage area and the coverage multi-
plicity. Boolean operations between polygons are performed using the well-established technique
of polygon clipping,10 traditionally used in digital image synthesis and geospatial information sys-
tems. This approach is used to evaluate ATH coverage of any desired multiplicity provided by planar
constellations of any size. From a numerical perspective, the methodology presented is independent
of the geometry of the sensor profile and target regions. However, cross-orbit-plane symmetry is re-
quired in order to maintain some correlation between the planar and volumetric coverage scenarios,
i.e. as in-plane coverage area increases, so must coverage volume, and vice versa. Figure3 illus-
trates ATH coverage of an Earth-centered annular target region provided by a planar constellation
of sensor platforms with arbitrarily defined sensor profiles.
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Figure 3: A Constellation of Platforms With Arbitrary Sensor Profiles Providing ATH Coverage

Defining Sensor Regions

Because the sensor profile of each satellite, and the target region are all represented as poly-
gons, the number of points used to define each polygon will affect the accuracy of the coverage area
calculations. The ‘resolution’ of a polygon, then, refers to the number of points per contour (PPC)
that define its boundary. Polygons may have multiple contours (i.e. a region with an interior hole,
or a polygon composed of multiple separate regions), thus, this variable indicates the number of
vertices used to define each contour upon generation of the initial polygon.

Omni-Directional Sensor Regions For simplicity, much of the discussion in this study as-
sumes omni-directional satellite sensors with no loss of generality. Under this assumption, the
effective range shell (RSE, theactual ATH region covered by the satellite, i.e. the sensor region
excluding the BTH region) is computed by simple geometry. A notated illustration of the effective
range shell is shown in Figure4. The interior half angle of the THT,γ, is computed as

γ = arcsin
rt
rs
. (1)

Given an in-plane longitude (angular displacement of the satellite from the positivex-axis) ofθ, it
is then clear that the initial and final angles for the circular portion of the boundary are given by

ψi = π − γ + θ, (2)

ψf = −π + γ + θ. (3)

For a polygon resolution ofm PPC, the first vertex lies at the satellite. The remainingm − 1
vertices are distributed along the outside circular arc of the sensor region, between anglesψi and
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Figure 4: Notation for Computing Effective Range Shell (RSE) Vertices for the Omni-Directional
Sensor Case

ψf at radiusR in a counter-clockwise direction. The curve is implicitly closed between the initial
and final vertices.

Arbitrary Sensor Regions In analyzing non-omni-directional sensor regions with a known in-
plane cross-section, the effective range shell,RSE is isolated by subtracting the THT from the
sensor region (by Boolean difference operation, using polygon clipping). Referring to Figure5a, a
polygon is defined representing the in-plane cross-sectionof the arbitrary sensor profile,RSarb and
the tangent height triangle, THT (Figure5b). Although the THT extends to infinity, for practical
purposes it need only extend beyond the sensor cross-section for this step. Because of the non-
omni-directional shape, the in-plane attitude of the sensor cross-section must be considered, and
the resulting effective range shell shape varies considerably with attitude, as shown in Figures5c-
5d. The additional clipping operation to isolateRSE incurs a small performance penalty over the
omni-directional case, where none is required. However, due to the low resolution of the THT, the
performance penalty is typically negligible.13

Numerical ATH Coverage Model

For simplicity, the model development discussion considers omni-directional sensor platforms
equally distributed in a single circular orbit. However, itis fundamental to observe that the same
models apply toany configuration of satellites subject to the planar analysis this study is concerned
with.

Single Multiplicity The basis for the single coverage model is illustrated in Figure 6. Here,
n− 1 union operations (Figures6a-6i) are performed between then satellite effective range shells,
RSE to produce a total effective sensor region,RSTE. A final intersection operation with the target
region,AS, yields the region of total single coverage within the target region, shown in Figure6l as
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C1×, defined in set notation as

C1× =

(

n
⋃

i=1

RSEi

)

∩AS. (4)

Determination of the area enclosed byC1× is computed directly from the vertices of each polygon
contour.14 This method is applied to each contour of the resulting polygonC1×, adding areas inside
fill regions to the total area, and subtracting areas inside hole regions.

(a)RSE1

∪

(b) RSE2

=

(c) T1

(d) T1
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(e)RSE3
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(f) T2

(g) T4

∪

(h) RSE6

=

(i) RSTE

(j) RSTE

∩

(k) AS

=

(l) C1×

Figure 6: Single Coverage Illustration – 6 Satellite Constellation

Double Multiplicity Determining regions of double coverage requires a different sequence of
Boolean operations, as illustrated in Figure7. Intersections between all unique pairs of sensor
regions, as shown in Figures7a-7f, isolate all regions of double sensor overlap. These regions are
then combined using union operations (Figures7g-7j). Finally, an intersection with the target region,
yieldsC2× (the region of double coverage within the target region), shown in 7l. This sequence is

8



expressed in set notation as

C2× =

(

n−1
⋃

i1=1

n
⋃

i2=i1+1

(

RSEi1
∩RSEi2

)

)

∩AS. (5)

The indices for the union operations are chosen to avoid redundant or meaningless calculations,
i.e. only address each unique combination of satellites once. For instance, performingRSE1

∩

RSE2
followed byRSE2

∩RSE1
is a redundancy (they represent the same region – the intersection

operator is commutative). Similarly, consideringRSE1
∩RSE1

for double coverage is meaningless
–RSE1

cannot cover the same region twice. The area insideC2× is evaluated just as in the single
multiplicity case.

(a)RSE1

∩

(b) RSE2

=

(c) T1

(d) RSE2

∩

(e)RSE3

=

(f) T2

(g) T1

∪

(h) T2

=

(i) T3

(j) RSTE

∩

(k) AS

=

(l) C2×

Figure 7: Double Coverage Illustration – 6 Satellite Constellation
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Arbitrary Multiplicity Upon performing a similar analysis to the triple multiplicity case,13 a
clear pattern emerges, yielding a general expression forp multiplicity coverage of ann satellite
constellation,Cp×:

Cp× =





n−p+1
⋃

i1=1

n−p+2
⋃

i2=i1+1

...
n−1
⋃

ip−1=ip−2+1

n
⋃

ip=ip−1+1

(

RSEi1
∩RSEi2

∩ · · · ∩RSEip

)



 ∩AS. (6)

Note thatn ≥ p. This is clear when considering the opposite case by logic alone – i.e., it is
impossible for a three satellite constellation to yield quadruple coverage. This expression reduces
toC1×andC2×for p values of 1 and 2 respectively. The enclosed area ofCp× is evaluated just as in
the single multiplicity case.

Number of Clipping Operations

The performance of the numerical coverage model depends on polygon resolution, and the
number of necessary clipping operations. Polygon resolution is chosen by the investigator based on
the level of precision desired, while the number of satellites and the coverage multiplicity of interest
dictate the number of clipping operations. The bounds on thefinite unions in Equation (6) ensure
consideration of all uniquep-combinations fromn satellites. Thus,qp(n) ≡

(

n
p

)

is the number of

possiblep-combinations out ofn satellites, and is determined byn!/p!(n − p)!.15

In general,qp(n) p-tuplets are each subject top−1 intersections. The resultingqp(n) regions are
combined byqp(n) − 1 unions, followed by one intersection with the target region, formingCp×.
The total number of clip operations is(p − 1)qp(n) + qp(n)− 1 + 1, or

Qp(n) ≡ pqp(n) = p

(

n

p

)

=
n!

(p − 1)!(n − p)!
. (7)

A plot of Qp(n) is shown in Figure8. Although single coverage requires onlyn clipping opera-
tions, higher coverage multiplicities require a significantly larger number of clipping operations. For
instance, forn = 15, up to 15 or 210 clip operations may be required to determine regions of single
or double coverage, respectively. In contrast, for octuplecoverage, up to 51,480 clip operations may
be necessary, creating a highly computationally intensiveproblem.

Fortunately,Qp(n) is only an upper bound on the number of clip operations that will almost
never occur in a practical implementation. While performing the intersections for a singlep-tuplet,
the program will abort and move to the nextp-tuplet if the current region becomes empty after an
intermediate intersection operation. The intersection ofany region with an empty region is itself
empty. Additionally, geometric criteria (i.e. non-overlapping bounding boxes) can be used to avoid
performing unnecessary intersection operations.

IMPLEMENTATION & VALIDATION

The numerical models discussed in the previous section are implemented in both MATLAB and
C++. The polygon clipping library GPC11,12 is written in C and is directly integrated in a C++
environment, and indirectly in MATLAB via a MEX interface. Extensive documentation of both
implementations may be found in the thesis produced during this study.13 Fixed multiplicity models
(i.e. single, double, triple, quadruple) are implemented in a straightforward way using nested loops.
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Figure 8: Clip Operations,Qp(n) vs. Number of Satellites

Combinations of satellite coverage regions are iterated through by the loop variables while perform-
ing the necessary Boolean operations to determine coverageregions of the specified multiplicity. A
special approach is necessary for the arbitrary multiplicity case. A loop structure generates indices
denoting theqp(n) ≡

(

n
p

)

combinations of satellites for analysis during execution,avoiding the need
for prior knowledge of coverage multiplicity prior to runtime.

For validation, the analytical model presented by Marchandand Kobel4 is employed for the
examples presented here. This model considers a single omni-directional sensor platform, in a
circular orbit, covering a dual-altitude band target region. Additional validation and analyses on
approximation error are presented in earlier publications13 produced during the course of this study.
An initial polygon resolution of 100 points per contour is found to be sufficient to achieve relative
error below 0.1% compared to the analytical formulation.

APPLICATION

Time-Invariant Problems

Cases where the distances between the satellites and targetregions remain fixed may be con-
sidered time-invariant. That is, the amount of ATH coverageremains constant as the satellites
in the constellation evolve along their orbit. Based on thisassumption, the following examples
demonstrate the use of the proposed methodology in optimal constellation design. The first exam-
ple presents the minimum number of satellites required, over a range of constellation altitudes, to
achieve 99.9% single, double, and triple coverage over a range of altitudes. The second example
expands on this by also considering the sensor range as a design parameter.

Example 1: A Single Independent Variable Case A planar constellation providing ATH cov-
erage to an Earth-centered annular target region is considered. Then omni-directional sensor plat-
forms are equally distributed in a single circular orbit. Constellation altitudes between 100 and 6000
km are considered at 1 km resolution. At each altitude, the minimum constellation populations pro-
viding at least 99.9% single, double, or triple coverage aredetermined with a simple grid search, the
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results of which are shown in Figure9. Just as coverage area is computed numerically, so is the area
of the target region. Due to roundoff and truncation error, the two computed areas may not be the
same, despite representing the exact same regions. To prevent this from causing an erroneous result,
99.9% coverage is considered rather than 100%. The minimum-altitude constellation configurations
providing single, double, and triple coverage are shown in Figures10a-10c.
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Figure 9: Minimum Constellation Population vs. Altitude

Table 1: Example 1 Parameters

Parameter Description Value

ht tangent height 100 km
hl lower target altitude 1000 km
hu upper target altitude 5000 km
R omni-directional sensor range10000 km

m initial polygon resolution 100 PPC

Table 2: Example 1 Optimal Solutions

Coverage Mult. Optimal Pop. Altitude Range

1× 3 satellites 999 − 1210 km
2× 6 satellites 1058 − 1187 km
3× 10 satellites 705 − 1113 km

Example 2: A Two Independent Variable Case Expanding upon the problem in Example 1,
in addition to varying circular orbit altitude (19500-36000 km), variation in omni-directional sen-
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(a) 1× cov., 3 sat.,h = 999 km (b) 2× cov., 6 sat.,h = 1058 km (c) 3× cov., 10 sat.,h = 705 km

Figure 10: Smallest Constellations Providing at Least 99.9% ATH Coverage at Different Multiplic-
ities

sor range (17000-30000 km) is considered in a 400×400 grid. Typically, sensor range is a fixed
quantity depending upon available hardware. However, suchan analysis may be useful during a
trade study to determine the minimum sensor performance required to achieve coverage subject to
other constraints. The problem parameters are shown in Table3. The minimum number of satellites
required to achieve at least 99.9% single coverage across the phase space is shown in Figure11.
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Figure 11: Minimum Constellation Size For 99.9% Single Coverage vs. Altitude and Sensor Range

Time-Varying Problems

In cases with elliptical orbits, more complex target regions, or even constellations with pop-
ulations distributed across multiple circular and/or elliptical orbits (in the same plane), the ATH

13



Table 3: Example 2 Parameters

Parameter Description Value

ht tangent height 100 km
hl lower target altitude 20000 km
hu upper target altitude 36000 km

m initial polygon resolution 100 PPC

coverage amount is time-varying in general. The overlap between sensor coverage and target re-
gions varies continuously.

Time-varying problems may be analyzed using the techniquesdeveloped in this study by per-
forming instantaneous coverage evaluations at specified times throughout a time interval of interest.
Figure12 shows the ATH coverage provided by a planar constellation of6 sensor platforms in ar-
bitrarily prescribed orbits with arbitrarily defined sensor profiles over a prescribed time interval.
A sufficiently long time interval, and a sufficiently short time-step must be selected to ensure the
analysis adequately characterizes the behavior of the system. In a system with periodic behavior,
an appropriate time interval is one period. However, non-periodic cases such as that shown in Fig-
ure12are more difficult to analyze because the judgment of the analyst must dictate an appropriate
time interval.
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Figure 12: ATH Coverage Over Time – Arbitrary Sensor Profiles, Asymmetric Target Region

Using this numerical approach, constellation design problems can be addressed using various
parameter optimization techniques.
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Example 3: Analysis of Coverage by Elliptical Orbits As in the time-invariant problems, an
annular target region is considered. However, due to the time-invariant nature of the target region
itself, a time-invariant solution is optimal, as is demonstrated in this example.

The problem is posed as a Mixed-Integer Non-Linear Programming (MINLP) problem and solved
using MIDACO.16 MIDACO is a zeroth order heuristic solver and uses an ant colony optimization
(ACO) approach.17 Because ACO is a heuristic approach to MINLP, there are no analytical opti-
mality criteria for non-convex problems such as this, thus the algorithm is allowed to run until it
ceases improvement upon the solution.

A constellation composed of two elliptical orbits with opposite periapsis directions is considered.
Each orbit is initially populated by three satellites, eachgroup with dissimilar omni-directional
sensor performance. Within each orbit the satellites are equally spaced in mean anomaly. The
objective is the minimize the total population of the constellation, while ensuring continuous single
coverage of the target region. The formulation allows for one or both orbits to have zero population
(although zero population in both orbits results in an obvious violation of the continuous coverage
constraint). Problem parameters are summarized in Table4.

Table 4: Example 3 Parameters

Parameter Description Value

ht tangent height 100 km
hl lower target altitude 1000 km
hu upper target altitude 10000 km

k number of distinct orbits in constellation 2 orbits
R1 omni-directional sensor range of sats. in orbit 15000 km
R2 omni-directional sensor range of sats. in orbit 210000 km
m initial polygon resolution 100 PPC

Table 5: Example 3 Start Point & Solution (682 func. evals, 300s)

Decision Variable Description Start Point Solution

a semi-major axis (both orbits) 10000 km 8588.0
e eccentricity (both orbits) 0.25 0

M20 M at epoch for lead sat. in orbit 2 0 rad 0 rad
n1 orbit 1 population 3 satellites 0 satellites
n2 orbit 2 population 3 satellites 6 satellites

Table5 shows the start point and solution after 300 seconds (682 function evaluations). From an
infeasible start point (coverage gaps), a feasible 12 satellite state is identified by the 15th function
evaluation. By the 98th function evaluation, the presentedsolution is converged upon. With 6
satellites distributed in a single circular orbit, the solution is time-invariant when only concerned
with the quantity of coverage, as expected.

Example 4: Continuous Observation of CONUS GEO Satellites In contrast to the previous
example, an asymmetric Earth-fixed target region is considered here. From a geostationary orbit,
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Figure 13: Start Point to Solution With Continuous 1× Coverage Constraint
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the target region is defined as±1000 km in altitude, between 148◦W and 61◦W longitude (populated
by satellites serving the continental United States).

One immediately obvious solution corresponds to placing the satellites on a geostationary orbit.
However, because this particular arrangement is itself time-invariant, it is not particularly useful in
demonstrating the algorithm’s capability for addressing time-varying problems. Instead, consider
an alternate arrangement where the constellation is composed of satellites placed across four smaller
identical orbits, equally distributed in periapsis direction. Unlike previous examples, the satellites
are no longer equally distributed within each orbit, and areinstead equally distributed within a range
in mean anomaly. The positioning (mean anomaly at epoch) of each group is prescribed such that
apoapsis of the center of each satellite group occurs as the target region is centered above apoapsis
of each orbit. In order to maintain this synchronization, the time period (and thus semi-major axis)
of the orbits is prescribed to revisit geostationary altitude an integer number of times per day (twice
daily in this example).

The objective in this example is to minimize the satellite sensor range, i.e. determine the smallest
sensor range capable of covering the target region continuously. The problem is subsequently posed
as a non-linear programming (NLP) problem, where all integer parameters are prescribed, and ap-
proached using the interior-point solver infmincon.18 The decision variables are satellite sensor
range,R, orbit eccentricitye, and satellite group spread,∆M . Problem parameters are summarized
in Table6.

Table 6: Example 4 Parameters

Parameter Description Value

ht tangent height 100 km
hl lower target altitude 41164.13 km
hu upper target altitude 43164.13 km
λl western target longitude 148◦W
λu eastern target longitude 61◦W

k number of distinct orbits in constellation 4 orbits
n total constellation population 8 satellites
m initial polygon resolution 100 PPC

Table 7: Example 4 Start Point & Solution

Decision Variable Description Start Point Solution

R omni-directional sensor range12000 km 17444 km
e orbit eccentricity 0.50 0.40

∆M group spread 90◦ km 89.4◦

Table7 shows the infeasible start point and solution, obtained after 32 iterations. The start point
and solution constellations are shown in Figures14aand14brespectively. Although the number of
satellites in each orbit and the constellation as a whole remain fixed, this example demonstrates how
the numerical ATH coverage model may be used in an NLP-drivenconstellation design process.
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Figure 14: Start Point to Solution With Continuous 1× Coverage Constraint
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CONCLUSION

An efficient numerical algorithm is devised, based on concepts from computer graphics, that fa-
cilitates the optimal constellation design for space-based space situational awareness applications.
The proposed approach is effective and efficient in addressing both time-invariant and time-varying
problems and further addresses n-tuple coverage from a numerical perspective. The results pre-
sented in this study also demonstrate the success of this approach in addressing the complexities
of heterogeneous sensor and orbital configurations within the constellation. This is of particular
importance because exact representations of above the horizon coverage are not available in such
cases.
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