Constellation Design for Space-Based Situational Awareness Applications: An Analytical Approach

Ashley D. Biria and Belinda G. Marchand

Department of Aerospace Engineering and Engineering Mechanics
University of Texas at Austin

August 2, 2011

Dual-altitude Band ATH Coverage (1/4)

Reference boundaries

Dual-altitude Band ATH Coverage (2/4)

Single satellite \& local horizon

Dual-altitude Band ATH Coverage (3/4)

Below-the-horizon coverage

Dual-altitude Band ATH Coverage (4/4)

Above-the-horizon coverage

Past Studies

- Rider ${ }^{1}$ used streets-of-coverage to determine min number of satellites for given coverage multiplicity
- Limited in application
- Marchand \& Kobel ${ }^{2}$ used geometrical arguments to derive cost index for use with optimization
- Goal: Extend to constellations

[^0]
Considerations \& Assumptions (1/6)

Single satellite in circular orbit

Considerations \& Assumptions (2/6)

Omnidirectional sensor

Considerations \& Assumptions (3/6)

Coverage area for region of interest

Considerations \& Assumptions (4/6)

Satellites equally spaced along circular orbit

Considerations \& Assumptions (5/6)

Equal omnidirectional sensors

Considerations \& Assumptions (6/6)

Up to 2-fold coverage between adjacent satellites

Goals

- Extend Marchand and Kobel's work to model constellation in a circular orbit
- Make additional assumptions
- Use geometrical arguments
- Account for coverage multiplicities
- Demonstrate consistency in results with numerical approach proposed by Takano ${ }^{3}$

[^1]
Coverage Multiplicity (1/3)

Only 1-fold coverage: $d_{12}>2 R$
2 -fold coverage does not exist

Coverage Multiplicity (2/3)

Upper limit of 1-fold coverage: $d_{12}=2 R$
2 -fold coverage does not yet exist

Coverage Multiplicity (3/3)

2-fold coverage created: $d_{12}<2 R$ (necessary condition)
2 -fold and 1 -fold coverage exist

Notation

Notation

General Formula

Consider summing all $\mathbf{A}_{1 \times, i}$

- Total overlap area $\mathbf{A}_{p \times}^{\prime}$ would be counted p times
- Thus, $\mathbf{A}_{p \times}^{\prime}$ must be subtracted $p-1$ times from the sum

Total coverage area:

$$
\mathbf{A}_{1 \times}=\sum_{i=1}^{n} \mathbf{A}_{1 \times, i}-\sum_{p=2}^{p_{\max }}(p-1) \mathbf{A}_{p \times}^{\prime}
$$

Simplifications

- Maximum 2-fold coverage is considered
- 2-fold coverage considered only for adjacent satellites
- Due to symmetry, overlap area is equal for each pair of adjacent satellites

Final Result

For 2-fold coverage, the total coverage area reduces to

$$
\mathbf{A}_{1 \times}=n\left(\begin{array}{c}
\underbrace{\mathbf{A}_{1 \times, 1}}_{\begin{array}{c}
\text { area covered } \\
\text { by single sat }
\end{array}}-\underbrace{\mathbf{A}_{2 \times, 12}^{\prime}}_{\begin{array}{c}
\text { overlap area for } \\
2 \text { adjacent sats }
\end{array}}
\end{array}\right)
$$

Notes:

- Equation gives the total coverage area
- $\mathbf{A}_{1 \times, 1}$ computed from results of Marchand and Kobel
- Computing $\mathbf{A}_{2 \times, 12}^{\prime}$ becomes primary focus

Overlap Area Components

\longrightarrow Express complex shapes in terms of fundamental ones:

- Triangles
- Circular segments
- Quadrilaterals
- Combinations

Example Overlap Area Shapes: 2 Vertices

2

Example Overlap Area Shapes: 3 Vertices

3.i

3.ii

3.iii.b

Taxonomy of Overlap Areas

Table: Relation between the Number of Vertices and Number of Unique Shapes

Number of Vertices	Number of Unique Shapes
2	1
3	3
4	3
5	3
6	3
7	2
8	1

- 16 unique shapes
- 22 cases

Example Calculation: Case 6.i.a ($1 / 5$)

overlap area $=$

Example Calculation: Case 6.i.a (2/5)

sum of three fundamental areas $=$

Example Calculation: Case 6.i.a (3/5)

composite quadrilateral +

Example Calculation: Case 6.i.a (4/5)

composite triangle +

Example Calculation: Case 6.i.a (5/5)

composite triangle

Consistency with Numerical Results (1/3)

Covers 5 cases

Consistency with Numerical Results (2/3)

Covers 5 cases

Consistency with Numerical Results (3/3)

Covers 5 cases

Explanation of Kink: Before, $r_{s}=9,500 \mathrm{~km}$

Overlap area shape: 4.i.a

Explanation of Kink: Before, $r_{s}=10,500 \mathrm{~km}$

Overlap area shape: 4.i.a

Explanation of Kink: During, $r_{s}=10,780 \mathrm{~km}$

Overlap area shape: 4.i.a

Explanation of Kink: During, $r_{s}=10,800 \mathrm{~km}$

Overlap area shape: 6.ii

Explanation of Kink: During, $r_{s}=10,815 \mathrm{~km}$

Overlap area shape: $\mathbf{8}$

Explanation of Kink: During, $r_{s}=10,825 \mathrm{~km}$

Overlap area shape: 4.ii

Explanation of Kink: After, $r_{s}=11,200 \mathrm{~km}$

Overlap area shape: 4.ii

Conclusion

- Developed an exact expression for up to 2-fold coverage
- Exact objective function agrees with numerical model developed by Takano
- Objective function suitable for use in optimal constellation design

Questions

Alternative 2-fold Coverage (non-adjacent satellites)

Space-Based Sensors: ATH Coverage

Definition of Overlap Area

$$
n=2
$$

$$
\mathbf{A}_{2 \times, 12}^{\prime}=\frac{1}{2}\left(\mathbf{A}_{1 \times, 1} \cap \mathbf{A}_{1 \times, 2}\right)
$$

$$
n>2
$$

$\mathbf{A}_{2 \times, 12}^{\prime}=\mathbf{A}_{1 \times, 1} \cap \mathbf{A}_{1 \times, 2}$

Example Calculation 2: Case 4.i.b

Example Overlap Area Shapes: 6 Vertices

6.i.a

6.ii

6.iii

Overlap Area Shape: Case 6.iii Close-up

6.iii

Larger Parameter Space: Fix r_{u}

Larger Parameter Space: Fix R

[^0]: ${ }^{1}$ Rider, L., "Design of Low to Medium Altitude Surveillance Systems Providing Continuous Multiple Above-the-Horizon Viewing," Optical Engineering, Vol. 28, No. 1, Jan. 1989, pp. 25-29.
 ${ }^{2}$ Marchand, B. G. and Kobel, C. J., "Above the Horizon Satellite Coverage with Dual-Altitude Band Constraints," Journal of Spacecraft and Rockets, Vol. 46, No. 4, 2009, pp. 845-857.

[^1]: ${ }^{3}$ Takano, A., "Numerical Analysis and Design of Satellite Constellations for Above the Horizon Coverage", Masters thesis, The University of Texas at Austin, December 2010.

