Constellation Design for Space-Based Situational Awareness Applications: An Analytical Approach

Ashley D. Biria and Belinda G. Marchand

Department of Aerospace Engineering and Engineering Mechanics University of Texas at Austin

August 2, 2011

Dual-altitude Band ATH Coverage (1/4)

Reference boundaries

Dual-altitude Band ATH Coverage (2/4)

Single satellite & local horizon

Dual-altitude Band ATH Coverage (3/4)

Below-the-horizon coverage

Dual-altitude Band ATH Coverage (4/4)

Above-the-horizon coverage

Past Studies

- Rider¹ used streets-of-coverage to determine min number of satellites for given coverage multiplicity
 - Limited in application
- \bullet Marchand & Kobel² used geometrical arguments to derive cost index for use with optimization
- Goal: Extend to constellations

¹ Rider, L., "Design of Low to Medium Altitude Surveillance Systems Providing Continuous Multiple Above-the-Horizon Viewing," Optical Engineering, Vol. 28, No. 1, Jan. 1989, pp. 25–29.

²Marchand, B. G. and Kobel, C. J., "Above the Horizon Satellite Coverage with Dual-Altitude Band Constraints," Journal of Spacecraft and Rockets, Vol. 46, No. 4, 2009, pp. 845–857.

Considerations & Assumptions (1/6)

Single satellite in circular orbit

Considerations & Assumptions (2/6)

Omnidirectional sensor

Considerations & Assumptions (3/6)

Coverage area for region of interest

Considerations & Assumptions (4/6)

Satellites equally spaced along circular orbit

Considerations & Assumptions (5/6)

Equal omnidirectional sensors

Considerations & Assumptions (6/6)

Up to 2-fold coverage between adjacent satellites

Goals

- Extend Marchand and Kobel's work to model constellation in a circular orbit
 - Make additional assumptions
 - Use geometrical arguments
 - Account for coverage multiplicities
- Demonstrate consistency in results with numerical approach proposed by Takano³

³Takano, A., "Numerical Analysis and Design of Satellite Constellations for Above the Horizon Coverage", Masters thesis, The University of Texas at Austin December 2010: ← ♣ ▶

Coverage Multiplicity (1/3)

Only 1-fold coverage: $d_{12} > 2R$ 2-fold coverage does not exist

Coverage Multiplicity (2/3)

Upper limit of 1-fold coverage: $d_{12} = 2R$ 2-fold coverage does not yet exist

Coverage Multiplicity (3/3)

2-fold coverage created: $d_{12} < 2R$ (necessary condition)

2-fold and 1-fold coverage exist

Notation

Notation

General Formula

Consider summing all $\mathbf{A}_{1\times,i}$

- Total overlap area $\mathbf{A}'_{p\times}$ would be counted p times
- Thus, $\mathbf{A}'_{p\times}$ must be subtracted p-1 times from the sum

Total coverage area:

$$\mathbf{A}_{1\times} = \sum_{i=1}^{n} \mathbf{A}_{1\times,i} - \sum_{p=2}^{p_{max}} (p-1)\mathbf{A}'_{p\times}$$

Simplifications

- Maximum 2-fold coverage is considered
- 2-fold coverage considered only for adjacent satellites
- Due to symmetry, overlap area is equal for each pair of adjacent satellites

Final Result

For 2-fold coverage, the total coverage area reduces to

$$\mathbf{A}_{1\times} = n \begin{pmatrix} \mathbf{A}_{1\times,1} & -\mathbf{A}_{2\times,12}' \\ \text{area covered} & \text{overlap area for by single sat} & 2 \text{ adjacent sats} \end{pmatrix}$$

Notes:

- Equation gives the total coverage area
- $\mathbf{A}_{1\times,1}$ computed from results of Marchand and Kobel
- Computing $\mathbf{A}'_{2\times,12}$ becomes primary focus

Overlap Area Components

 \longrightarrow Express complex shapes in terms of fundamental ones:

- Triangles
- Circular segments
- Quadrilaterals
- Combinations

Example Overlap Area Shapes: 2 Vertices

2

Example Overlap Area Shapes: 3 Vertices

Taxonomy of Overlap Areas

Table: Relation between the Number of Vertices and Number of Unique Shapes

Number of Vertices	Number of Unique Shapes
2	1
3	3
4	3
5	3
6	3
7	$\overline{2}$
8	1

- 16 unique shapes
- 22 cases

Example Calculation: Case 6.i.a (1/5)

overlap area =

Example Calculation: Case 6.i.a (2/5)

sum of three fundamental areas =

Example Calculation: Case 6.i.a (3/5)

 $composite \; quadrilateral \; + \;$

Example Calculation: Case 6.i.a (4/5)

composite triangle +

Example Calculation: Case 6.i.a (5/5)

composite triangle

Consistency with Numerical Results (1/3)

Covers 5 cases

Consistency with Numerical Results (2/3)

Covers 5 cases

Consistency with Numerical Results (3/3)

Covers 5 cases

Explanation of Kink: Before, $r_s = 9,500 \text{ km}$

Overlap area shape: 4.i.a

Explanation of Kink: Before, $r_s = 10,500 \text{ km}$

Overlap area shape: 4.i.a

Explanation of Kink: During, $r_s = 10,780 \text{ km}$

Overlap area shape: 4.i.a

Explanation of Kink: During, $r_s = 10,800 \text{ km}$

Overlap area shape: 6.ii

Explanation of Kink: During, $r_s = 10,815 \text{ km}$

Overlap area shape: 8

Explanation of Kink: During, $r_s = 10,825 \text{ km}$

Overlap area shape: 4.ii

Explanation of Kink: After, $r_s = 11,200 \text{ km}$

Overlap area shape: 4.ii

Conclusion

- Developed an exact expression for up to 2-fold coverage
- Exact objective function agrees with numerical model developed by Takano
- Objective function suitable for use in optimal constellation design

Questions

Alternative 2-fold Coverage (non-adjacent satellites)

Space-Based Sensors: ATH Coverage

Definition of Overlap Area

$$\mathbf{A}'_{2\times,12} = \frac{1}{2} \left(\mathbf{A}_{1\times,1} \cap \mathbf{A}_{1\times,2} \right)$$

n > 2

$$\mathbf{A}'_{2\times,12} = \mathbf{A}_{1\times,1} \cap \mathbf{A}_{1\times,2}$$

Example Calculation 2: Case 4.i.b

Example Overlap Area Shapes: 6 Vertices

Overlap Area Shape: Case 6.iii Close-up

6.iii

Larger Parameter Space: Fix r_u

Larger Parameter Space: Fix R

