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CONSTELLATION DESIGN FOR SPACE-BASED SITUATIONAL
AWARENESS APPLICATIONS: AN ANALYTICAL APPROACH

Ashley D. Biria*and Belinda G. Marchandf

Optimization processes rely on the availability of a préiree cost function. Gen-
erally, such representations are often analytically atéd. However, when con-
sidering optimal constellation design for space-basedespuational awareness
applications, a closed-form representation of the cosbirislonly available under
certain assumptions. The present investigation focuses subset of cases that
admit exact representations. In this case, geometricalinaegts are employed
to establish an analytical formulation for the coveragagevided as well as
for the coverage multiplicity. These analytical results assential in validating
numerical approximations that are able to simulate moreptexconfigurations.

INTRODUCTION

As presently envisioned, space-based space situatiormabaess (SBSSA) employs a network
of space-based sensors to supplement ground sensing litegsalni the detection, tracking, iden-
tification, and characterization (DTI&C) of active or passresident space objects (RSOs). The
present investigation focuses specifically on a consimtliaif space-based sensors, uniformly dis-
tributed along a circular orbit. The work is an extensiontafttpreviously presented by Marchand
and Kobel for a single satellite. Consistent with the assumptionshisf ¢arlier study, the present
investigation considers only the coverage of a region tkisteabove the horizon of the satellites
and within a pre-specified altitude band. The objective im&ximize the coverage provided by the
constellation sensors within the region of interest.

One of the most difficult aspects of this problem is the ded@inibf the cost index, namely the
coverage provided by the sensors. As demonstrated by Madcirad Kobél in their initial study,
even under extremely simplified assumptions, such as oreotitinal sensors, obtaining a closed-
form representation of the cost index is a complex proceigsiré&l illustrates some of the relevant
problem parameters in the single satellite case, as defindthichand and Kobél.
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Figure 1. Shell intersections for a single satellite on a caular orbit with coverage area shaded

The three concentric circles in Figuteepresent reference boundaries; they are the tangentheigh
shell (THS), the lower target altitude shell (LTAS), and tipper target altitude shell (UTAS). The
tangent height shell (THS), then, is associated with a ysecified reference altitude above the
surface of the Earth below which, for instance, atmospheffiects may interfere with sensors.
A satellite’s horizon is defined as the line originating frone satellite and tangent to the THS.
The revolution of the TL in three dimensions traces out a ctatened here the tangent height cone
(THC). The region of interest to the sensors lies outsidgd th€, within the sensor range shell (RS),
and inside the region between the UTAS and LTAS. This regaprasents a three-dimensional
volume, and the constellation’s goal is to maximize coverafjthis region. Due to the inherent
symmetry introduced by the omnidirectional sensor assismpmaximizing the ATH coverage
volume is equivalent to maximizing the cross-sectionakcage ared.This cross-sectional area of
coverage appears shaded in Figlir&nder these assumptions, a nonlinear piecewise difietgat
objective function fully describes the coverage area fbpassible satellite altitudes constrained
tor; < rs < re, Wherer,, is associated with the critical altitude at which no ATH cage is
provided?

This initial work by Marchand and Kobklis a powerful approach for the dual-altitude band
problem as compared to previous research on the subjectidansiudy by Rideralso considered



the dual-altitude band ATH problem for constellations iw [ medium altitudes with multiple
orbital planes, where the satellites lie within or above doal-altitude band. In his approach,
Rider uses spherical geometry and the streets-of-covenatfeod: to derive formulas for coverage
multiplicity, which is the number of satellites that can sitaneously view a particular region.
Rider then relates coverage multiplicity to the requirechber of orbital planes, required number
of satellites per orbital plane, and latitude constraifitisus, given a desired coverage multiplicity,
the required number of sensors for global coverage is cdeipldetermined.

The present investigation extends the results of Marchaddabel to accommodate multiple
satellites with equal omnidirectional sensors uniformibtributed along a circular orbit. An exam-
ple of such a constellation is depicted in Fig@&réWhile a similar constellation could be designed
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Figure 2. Seven-satellite constellation on a circular orti

for ATH coverage using Rider's method, the goal here is tal#ish a foundation for an alterna-
tive analytical approach that offers much greater flexypgind the potential to carry that flexibility
through to the three-dimensional case. That is to say th#tedrplanar case, using constellation
coverage area as a design metric allows for the accommadatia greater variety of problem
specifications and constraints. First, Riddid not consider satellites located between the THS
and LTAS. If for some reason the satellite altitude is retd to be below the LTAS, the coverage
area approach offers a solution. Secondly, this coverag®e @n be used as a cost index in an
optimization process that can more clearly describe ardlilesight to the quality of a solution.

Of course, there are limitations to this analytical apphodt; for example, more complex sensor
profiles are desired, the loss of symmetry makes an andlgatation especially difficult. For
such scenarios, a more suitable approach is the numeridabcheroposed by Takard® which
uses geometrical arguments similar to those first introdiune Marchand and Kobglbut with
techniques from computational geometry. Therefore, hithatkbenefits from validation by an
analytical approach, which is demonstrated in this ingasitbn as a secondary goal.

To maintain continuity relative to the initial work of Marahd and Kobet, the methodology
presented is based on geometrical arguments. First, kdlyirsleesections are determined. Then,
based on the spatial interaction of these intersectionsigeical elements are identified for a



unique region of each coverage multiplicity. Finally, a aonique, nonlinear piecewise differen-
tiable objective function is developed that characterthescoverage area fot, < r, < r,, and
maximum coverage multiplicity a,,,... = 2. This restriction is imposed for now because analysis
becomes prohibitively complex if greater coverage mudttipes are permitted.

COMPUTING THE TOTAL COVERAGE AREA

The computational methods employed for determining thal twdverage area build upon the
work of Marchand and Kob&while taking advantage of the inherent symmetry in the csilagion.
For the single satellite problem, the area computedfarvas denoted aA and referred to a region
of 1-fold coverage. For a constellation, an analogous axistsefor each satellité subject to a
coverage multiplicityp > 1, so the notation is modified td, ; and computed according to the
methods described in Marchand and Kobel.

Next, this notation is generalized by first definiéf, as the collection of regions of coverage
multiplicity greater than or equal te that lie within the “region of interest” — that is, within the
dual-altitude band, outside the THC, and within the RS. Birlyj defineC];,X as the collection of
regions of coverage multiplicity strictly equal tothat lie within the region of interest. Then, let
A, refer to the area of’,» and A;,X refer to the area OCLX- In fact, A is the desired total
area covered by the entire constellation within the regioimterest, but computing it analytically
is especially challenging.

As shown by Marchand and Kobklshell intersections are used to define the vertices of poly-
gons, the areas of which are computed analytically by camlylsurveying all possible geometries
that the intersections of shells could form. For a multeB#é¢ constellation, even though all shell
intersections can be analytically determined with a fewatigus, the polygon identification process
becomes much more cumbersome. Marchand and Kebelwed that it is advantageous to com-
pute the areas of complex geometries by adding up areasrmoeptary components — triangles,
composite triangles, circular sectors and segments — thagasily determined analytically. But
for computing coverage area, as the single satellite cageres explicit conditions and equations
for each shell configuration, the multi-satellite case nexpuexplicit conditions and equations for
each shell configuration and for each coverage multiplicifpis reasoning suggests that, .,
for any coverage multiplicity. of interest, could be expressed as a compositioApf for all

ke [papmax]:

Pmax
Ap =Y Al (1)

k=pc
The quantityA,, . actually has many uses in formulating optimization schem®&appose, for
example, that it is desired to have continuous 2-fold cayeiat the annular region bounded by the
dual-altitude band shell, termed AS. In this caAe,, should be as close tA o5 as possible. For
the scope of this paper, only the total coverage area is efast, so Eq.1) would be used with
p. = 1. However, Eq. 1) does not take advantage of the results of Marchand and Kateln
alternative approach is presented here that Asgs;.

Consider summing all, ;. By this action, each regiofi, . would be counted times for all
k € [2,pmae). Thus, A}, must be subtractedl — 1 times from the sum to obtain the actual total
coverage area:

Pmax

A1>< :ZAlx,i_ Z(k_l) ;CX (2)
=1

k=2



Also, observe in Eq.9) that in generalA; ; could be different for each but since the satellites
have equal range shells and are uniformly distributed asooigcular orbit, the area ;. ; is equal
for each satellite:

A=A Vi 3

Recall that this paper limits the discussion of coveraga @adculations to maximum coverage
multiplicity pa. = 2. Let AL, .ij refer to the region formed by the intersection of the ranggish
of S; andS; that is also within the region of interest and subject tac8yri2-fold coverage. Then,
Al is obtained from adding up;, ;. for all i andy, leading to the following result:

2>< =3 ZZ 2X,15 Z Z A2>< K7 (4)

2131 i=1 j=i+1
J#i

However, due to the significant symmetry of the problemgctyri2-fold coverage typically only
occurs for pairs of adjacent satellites. As such, this olagiem is restated as a constraint for further
simplicity. Thus, Eq.4) can be re-expressed as

Adyin + Z Ay (i) (5)

Notice that forn = 2 or 3, satellites are adjacent for all possible pairs. As for Bj. gince the

satellites have equal range shells and are uniformly diged along a circular orbit, the overlap
areaAl, ij Is equal for each pair of adjacent satellites. Thus, thevaon arbitrarily focuses
on S; and .S, without loss of generality. Furthermore, the number of IBEepairs is equal to the

number of satellites, so Edp)(becomes

/2>< = nA/2><,12 (6)
where

(7)

, 3 (ALINAL) n=2
2ot A 1NAixe n>2

The first case in Eq.7) is degenerate and differentiated from the second in owtet fo function
properly with Eq. B). Finally, by substituting Eq.6) and Eqg. 8) into Eq. ) and simplifying,
Eqg. ) reduces to

Aix =n(Arxa — A, 1) (8)

which in conjunction with Eq.q) is used to compute the total coverage area of the conselldh
fact, much of the following discussion focuses on obtairanglytical formulas for the area defined

by Eq. (7).

SHELL INTERSECTIONS

With the extension to satellite constellations, the odgibd key intersections defined by Marc-
hand and Kobélare still valid and defined by the five problem parameters-,, r;, r;, andR. It
is useful to label the original 14 intersections as Type findel as those that are associated with
only one satellite, occurring between the range shell arefeaence boundary or between a tan-
gent line and a reference boundary. However, the analysigngplicated by the manifestation of



new intersection points associated with regions of coveragltiplicity p > 1. As is evident from
Figure2, when multiple satellites are introduced, each satellii® dssociated with it these same 14
intersection points rotated through appropriate mulsig&the satellite separation angle,

_27T

0, 9)

n
wheren, a sixth problem parameter, is the number of satellites énctinstellation. In addition to
theseldn Type | intersections, surfaces associated with one datétiiersecting those of another
create new intersections denoted as Type Il, which are ofiatyahat cannot exist in the single
satellite case. These changes in geometry necessitate iieti@ystem for labeling intersection
points that is illustrated in Figur&
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Figure 3. Key shell intersections for a satellite constelt&pon on a circular orbit



The labels for Type | intersections are unchanged with tweepiions. First, a second subscript
is appended after a comma to denote the associated satedlitexample, poinB; 3 refers to point
By of S3. ForT intersections, a second and third subscript are appentlmdaadomma. Secondly,
points involving the intersection of the TL and RS of one Kiédehave modified subscripts to
accommodate the complexity of Type Il intersections. THE¥ang are sample transformations
from the notation of Marchand and Kobébr Type | intersections of;

BQ — B271
T — Ti,11

Unlike points A, B, L, andU, pointsT' can involve two satellites, thus requiring two numbers
after the comma to precisely describe which satellites ssecated with that intersection. The first
number after the comma refers to the satellite from whichriheriginates, and the second number
refers to the satellite whose RS intersects that TL. Foraigis before the comma, 1” and “2”

still indicate intersections to the right and left of a sktis| respectively. To be precise,rotating
coordinate framesg;, fori = 1,...,n, are defined as follows2, ; is the unit vector directed from
the center of the Earth t6;; &3 ; is the unit vector normal to the plane of motion of the satelli
constellation, along the angular momentum vector; &nd= &, ; x &3 ;. In fact, the&; frame is
identical to the rotating coordinate system used by Mardrard Kobet and all intersections are
determined relative to this coordinate system. To fatdizomparison to Marchand and KoBed,
shorthand notation is therefore defined for fheunit vectors:x = &; 1,y = €1, andz = &3 ;.
Thus, for all intersection points, subscrigt’refers to intersections with a positivg ; component
and subscript2” refers to intersections with a negatigée; component. TheA” and “B” subscripts
have a similar interpretation to that used by Marchand artsteKowhere “A” refers to intersections
between a TL of5; and target shell that are farthest fréfnand “B” refers to intersections between
a TL of S; and target shell that are closest$o Mathematically, these subscripts are used to
differentiate the two solutions produced by a quadratiaéqun, and they are added to the subscript
of the T" intersections because with the inclusion of Type Il intetisas, the quadratic equation
associated with" intersections can have two valid solutions. For converedefine the following
subscripts for intersectiond, B, L, U, T', W, andD:

pe{l,2}

o€{la,1p,24,2p}

T € {3,4}
Ce{1,2,14,15,24,25} = {p, 0}

Their use is described throughout the remainder of thissecBhouldp ando appear in the same
equation, then they must be coupled and have the followiagiaprelationship:

o€ {pa,pB} (11)

(10)

In the single satellite case, the olyintersections are the result of the satellite’s TL intetisgc
its own RS; the TL can only exit the RS because the sateltitm fivhich the TL originates is within
the RS. However, with Type Il intersections in a constadlatia satellite’s TL can both enter and
exit another’'s RS. Observe in Figuahat if R is increased untib; is within the RS ofS;, point
T1 12 disappears while poirif; , 12 remains. This is a concrete scenario showing that if only one

1T

T intersection truly exists, it must have subscrigf’: From this result, a convention for ambiguous



cases is defined. For example, if the intersection of a TL ativamfrom.S; intersects its own RS,
that intersection must Bg, , ;; or T, 4.

There are two other intersection points to define: inteisestof two range shells and intersec-
tions of two tangent lines. The former is indicated withlaand three numbers in the subscript. If
the W ;; intersection is farthest from the origin, then= 3; if the W ;; intersection is closest to
the origin, thenr = 4. The two subscripts after the comma indicate the satebigseciated with
the intersection, where < j by convention. The intersection of two tangent lines is radnwith
D,,,;.ij- Thep; andp; subscripts are equal tioor 2 and respectively indicate which TL of satellite
1 andj is associated with the intersection. For example, thesetgion of the left TL ofS; with
the right TL of S3 would be denoted aB,; ;3. Again, a convention is imposed such that j.

As in the single satellite case, the locations of theseseteion points are integral to the compu-
tation of satellite coverage area. To simplify the deteation of intersection points, this approach
uses the same rotating coordinate system as implementecitshihd and Kobéi.As depicted in
Figure 3, they-axis extends from the Earth 1), and thex-axis is perpendicular to thg-axis and
in the plane of the orbit. This rotating coordinate systemegia simple formula for the location of
theith satellite in Cartesian coordinates as

(xs;,Ys;) = (rssin(i — 1)0s, rs cos(i — 1)0) (12)

where the satellites are numbered clockwise in increasidgro Thus, for a constellation with
positive angular momentun$; can be viewed as the leading satellite.

Type | Intersections

Let Z be an auxiliary Type | intersection point equal to anyofB, L, U, or T', which together
were used to identify the original 14 intersections pulditpy Marchand and Kobél.Since the
original 14 intersections were defined relativeSg the correct rotation that gives the remaining
14(n — 1) Type | intersections is analogous to that used in Eg), (which describes the location of
each satellite. Thus, all Type | intersections of the cdlatien can be identified in th&; frame as

Tz, | _ cos(i — 1)0s sin(i — 1)6s Tz, (13)
Yz., | | —sin(i = 1) cos(i —1)0s YZe o

which is essentially a clockwise rotation of the input vecto fact, Eq. (2) is absorbed by Eq1Q)
by letting Z = S and disregarding thé subscript.

Intersections of Two Range Shells

The intersections of the RS ¢f with the RS ofS; (W3 ;;, W4 ;) are denoted al/; ;;, and are
most easily computed via the use of coordinate transfoomsti First, note that the midpoint of a

line connectings; ande is
Lo + Ts. Ys + Ys,
Mlj = ( Si sj Ysi st) (14)

2 ’ 2
The midpoint is used in the definition of a new reference framge t- ;; is the unit vector parallel
to OM,;; 3,5 is the unit vector normal to the plane of motion of the sateltionstellation, along
the angular momentum vector; afgd;; = ©2,; x ©3,;. The origin of R;; is chosen to be at/;;
because this greatly simplifies the math. FBrintersections,S; has a negativé; ;; component
and S; has a positivet; ;; component by convention. A shorthand for the distance betvwe/o



satellites is also defined @s; = |S;S;|. Interpreting Fewell’§ result, the general formula for the
positive solution of the intersection of two range shellghwarbitrary radii is

2 2 2

Wy, = 5. ; YWy = %\/261%- (R? + RJQ) — (R? - R?)Z _ dglj (15)

v ©)
when viewed in a frame identical to tf1e;; frame, but with the origin placed &;. Recall that
the R;; frame is defined with equal range shells in mind, so it is kntiat a line connecting the
W intersections must pass through;;. If the range shells were to have arbitrary radii, then it
would be easier to make the coordinates offthe frame identical to those used by Fewell, but this

generalization is not presented here. For the purposessdttidy, ?; = R;, so Eq. (5) becomes

1
Rawyy, =00 Ryng, = 5\ JAR? — d; (16)

where the superscri® indicates that the coordinates are given inig frame. It is important to
note that Eq.16) is only valid if d;; < 2R so that the coordinates are real numbers. Furthermore,
symmetry implies that

R R . R _ R
':L'W47ij = ':L'Wgyija yW4,7;j - yW3,ij (17)

Transforming these intersections to theframe requires both a rotation by anglend a trans-
lation, wheren is the angle between thigandi; ;; unit vectors. Using a fundamental property of
the dot product,

n=cos™ (§ - Paij) (18)

which enforces the condition that< n < =; however, this does not distinguish between clock-
wise and counterclockwise rotations and is undesirableis;TEq. (8) is corrected by adding the
following convention:n > 0 if 5 ;; has a positivek component and < 0 if 5 ;; has a negative
% component, which determines whether the appropriateiootat clockwise or counterclockwise.
Re-expressing Eq18) with this correction gives:
—1/a =& e oA A
. i), |f . > 0
n= +COS_1 ({’ TZ,ZJ) - i( TQ,Z] (19)
—cos™ (§-To45), fX-T9; <0
Lastly, the translation, which is associated with the dispment between the origin of each frame,

must be properly handled by shifting,,; in thex direction andyyy,; in they direction. Then, the
total transformation from th&;; frame to thec; frame is

N cosn sinny R T a7
T,1J — ) T,1] _|_ i (20)
YW, s —sinn cosn YW, iz YM;;

Forn > 0, the direction cosine matrix gives a counterclockwise tiotaof the frame. Should
d;; = 2R, then the two range shells intersect at only one point.

Intersections of Two Tangent Lines

The intersections of a TL of; and a TL ofS; are denoted ab),, . ;; in the most general form.
This gives four possiblé intersections per satellite pair, collectively identifiesl (D115, D124,
Da145, D22 45). For certain geometries, it is possible that less than ifa@rsections exist, such as



when two TLs are parallel or when they diverge. First, sonselts from Marchand and Kobel
must be generalized for constellations. One result staasthe TL ofS; is tangent to the THS

when
0, = cos™* <?> (21)

which actually holds for any TL, wher& is the above-the-horizon coverage angle at the point of
tangency. The slope of each TL 8f can then be expressed in terms of the satellite locationtend t
points of tangency as follows:

Yt A Y i
my; = 22 (22)

wt/),i — Ls,

for
{rt sin[(i — )0+ 6] ifp=1
l‘tp ; .
resin((i —1)0s — 6] if p=2
esin[(i — 1) e ifp 23)
recos (1 —1)0s +6;] ifp=1
Yo = recos[(i—1)0s — 6] if p=2

Each intersection is given by the solution to the followiygtem of equations:
YDyso505 = Mpisi®Dpyps a5 T Opisis YDpipsis = Mpsi%Dpipsi5 T Dy (24)
whereb is the y-coordinate of the point at which the TL intersectsstkaxis, determined as
bpii = Ys; — Mp,iTs;; bp; i = Ys; — Mp; jTs; (25)
Using Eq. 24) to solve for:chipj’ij by substitution gives

by.i —b,. i
Tp _ Pt TPiI (26)

P i =y,
Then, substituting Eq26) into Eq. @4) and Eq. 26) gives

Mp;ids; — Mp;jLs; — Ys; + Ys;

xDPinvij = Mpei — My, ) pr,L-pjyij = mpi,i(xDpipj’ij - xsi) + Ys; (27)

Of course, Egs.26) and @7) are not valid ifm,, ; = m,, ; since the denominator would go to
zero. Such a scenario implies that the intersection doegxist, which makes sense physically
because two parallel lines cannot intersect, assumingaifgeyot collinear. Should two TLs happen
to be collinearD,, ,. ;; becomes meaningless and adds no new information to the ggorfrerther
observe that Eq2() assumes each TL is a line, though in reality the TL does netnexabove the
satellite from which it originates. Thus, care should bestato ignore a solution given by EQ7)

if the computed intersection is located above the satelfitem which each TL emanates.

Type Il Intersections of Tangent Lines with Range Shells

The intersection of a TL of; with the RS ofS; for i # j is a Type Il intersection denoted as
T5,;- There are at most four sudhintersections per satellite pair, collectively identifesi(l’ , ;;,
Ti,.i5, T2, 45, T2 45)- Note the application of Eq1() to Egs. 28-30). The coordinates are given
by the solution to the following system of equations:

('ng,ij - xsj)z + (y Ts,ij ys]) = Rza YT, 5 = MpilT, + bp,i (28)

10



whereb, ; is interpreted a8, ; = ys, —m, ;x5 from Eq. £5). In general, solving Eq2@) for z7,
gives

i (b — 1) — 20,] £ (M2 + DR2 — (B — s, + mpizs,)
m2 i —|— 1

xT”.j = (29)

which has at most two real solutions. Ithas no real solufiém? ;+1)R* < (bi—ys; +m,.its;)*.
However, Eq.29) has an issue analogous to that of E27)(which is that if the TL originates within
the RS, it will still give two real solutions even if one or fidintersections exist. Should only one
T intersection exist, ignore tHE, , ;; intersection. If ndl’ intersections exist, then disregard both
solutions to Eq.29); this situation arises when the entire TL is within the RS.

Determining which solution corresponds to subscrigpt and which to subscript8” is nontrivial
and is summarized as

if x5, <0
if x5, =0,y5, >0,m,; >0

P AT - (30)

if 25, = 0,1y, <0,m,; >0
if x5, =0,y <0,m,; <0

+

T

T

xh if 25, = 0,95, > 0,m,; <0
Tcr,ij’ Si 7y5i ) Py

+

T

T

T

if x5, >0

WherexT corresponds to the solution of EQ9j with the positive square root term aagt
corresponds to the solution of EQ9) with the negative square root term. Therpb ~isthe other
solution of Eq. 29) not defined by Eq.30). The complete solution to the system of equations given
in Eq. 28) is then formed by using Eqs29-30) in conjunction with the equation for the TL in
Eq. 28).

GEOMETRICAL ELEMENTS OF REGIONS SUBJECT TO 2-FOLD COVERAGE

As demonstrated by Marchand and Kdidel the single satellite case, the coverage area is at best
reduced to a continuous piecewise differentiable functéord the same holds for areas subject to
2-fold coverage in a constellation. The area of overdp ,; refers to the area of a regidr,,, ,;
between two satellites that is within view of both satetht&ecall that for 2-fold coverage restricted
to pairs of adjacent satelliteé*éX’12 can be analyzed instead without loss of generality. Thi®reg
is a polygon whose vertices are connected by lines and/oulair arcs, and which can have 16
unique shapes, categorized according to the number otesrthat the overlap area has. Table
shows the relation between the number of vertices and nuafhatique shapes.

Table 1. Relation between the Number of Vertices and NumberfdJnique Shapes forC;, ;,

Number of Vertices| Number of Unique Shapes

O~NOUTRWN
PNWWWWH
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Due to the geometry of the probler@éK12 cannot have greater than eight vertices. The follow-
ing discussion defines all of the fundamental geometrieahehts necessary for creating a piece-
wise differentiable function for the 2-fold coverage arg, ,,, using a combination of triangles,
guadrilaterals, and circular segments. The ak;ggﬂ is then computed by summing the areas of
the appropriate fundamental shapes.

For the 3-vertex cases, new composite triangles must beedef@®ase 3.i requires the definition
of a new composite trianglé,3, made up of three arcs:

A, (r,R, A1 1 A0, [A11 W3 12|, |[A22W3 12]) =
AAN(JA11 A2 0], A1, 1 W3 12|, |[A22W3 12])— (31)
Ax(r,|A11A22]) + As(R, |A11Ws12]) + A (R, [A22Ws5 12])

A, refers to the area of a triangle computed using Heron'’s ftamwhere each argument is a
side of the trianglé. Ay refers to the area of a circular segment, where the first aggtiis the
circle’s radius and the second is the associated chdrde equation forA p, adds anAy, term to
the definition ofA »,. For case 3.ii, a new composite triangle,, is defined, also made up of three
arcs but with different convexity:

A, (ry,R, |B11B22|,|B1,iWaa2l, |B22Wai12]) =
AA(|B11B22|, |B1aWaazl, | B2a2Wiyi2])+ (32)
Ay (ry,|B11B23|) + Ax(R, [B1,1Wa12|) + Ax(R, | B2 oWy 12])

The equation forA ,, is similar to that forA 5, except all circular segment areas are added to the
base triangle. A new composite triangl®;, must be defined for case 3.iii.a and 3.iii.A5 is
pie-shaped, consisting of one arc and two line segments:

A, (14,|Uz, 2U1 4 115 |U2, 2D12.12], Ut 4 1D12,12|) =
An(|Usay 2Ury 15 [U2y 2D1212], |Ury 1 D12,12]) + As (74, [U2, 2U14 1)

The equation forA 5, is similar to that forA ,, except that the circular segment area is added to the
base triangle.

(33)

For overlap areas with greater than three vertices, it ipfheto introduce the concept of a
composite quadrilateral and define an additional comptsitegle, Ag:

Apg(R,R, | To, 21Waial, [Wai2Th 4 12|, |Th 41215, 21]) =
AAN(T5, 20 Wanal, [Waa2Th 4 12l |11, 1215, 21])+ (34)
Ax(R,|T5, 21Wa12]) + As(R, |Wa12T1 4, 12])

Formulas for the areas of composite quadrilaterals arevatkfirom the general formula for the
area of a convex quadrilateral based on its diagoh&ler a convex quadrilateralbcd, define the
following diagonals:

C1 = (wc - wa)i + (yc - ya)y

. R (35)
cy = (vqg — 2p)X + (Ya — )y
The area of quadrilaterabcd can then be expressed as
1
AD = §‘C1 X CQ‘ (36)
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Six types of composite quadrilaterals are introduced. Fsed.i.a, the area of overlap can be
described as a composite quadrilateal, , defined as

An, (14,11, Ui g1, Uy 2, Log 2, Lig 1) = Ao(Uig 1, Uz 2, Lag 2, Lig 1)+

2 28,2 s T2 37)
+ As(ry, |Uip,1Uz25 2|) — As (11, [Lag 2 L1y 1)

The five remaining types of composite quadrilaterals arenddfin Egs. 88-42). They all use a
similar construction, in which circular segments are adateslibtracted from a base convex quadri-
lateral.

An, (ry,ri, R, Bojo, Bi1, A1, A2p) = Ag(Bag, Bi, Ai1, Aso)+
As(ry,[Ba2B11]) — As(r, |[A11A22])+ (38)
Ax(R,|B11A11]) + Ax(R,|A22B23|)

A, (R,R, W3 12,15, 21, Di12,12, T1 5.12) = An(W3.12, oy 21, Di2,12, T 512)+

2>~ 25,21, 7L _ SOV (39)
Ax (R, [W312T5, 01]) + As (R, |T15,12W3,12|)
An, (ru.R, R, Bao,B11,To, 21, Ti 5 12) = An(Ba2, Bi,1, Tog 21, Tig12)+ (40)
Ax(ry,|B22Bi11|) + Ax(R, |B1113, 21|) + Ax(R, |11, 12B2,2])
Any (1, Ui g1, Uap 2, To, 21, T 4 12) = A (Uig.1,Usp 2, To, 21, T, 12)+ 1)
Ax(ry, |Uiy,1Uz2; 2])
Ang(r,R, R, A11,A22,T1,.12, T2, 21) = An(Ai11,A22,T1 412, T2, 21)— 42)

Ayx(r,|A11,A22]) + Ax(R,|A22,T1 , 12|) + As(R, T2, 2141.1])

ABOVE-THE-HORIZON 2-FOLD COVERAGE AREA FOR A CONSTELLATIO NIN A
CIRCULAR ORBIT

The 2-fold area computations are organized in a way that asipés the relationship expressed
in Table1l. Table2 identifies the conditions that must be satisfied for each op@ible cases
and outlines the naming convention used. The first numbeotderthe number of vertices and
the second number denotes the type. Thus, shape 3.ii is He8«wwverlap area of type Il. Cases
are labeled with an “a” or “b” when the shape is the same butesofrthe vertices are different
intersection points. This is why there are 22 cases for o6lyriique shapes.

Once the case is identified from Taldgthe appropriate formula for computing the 2-fold cover-
age area is found in TabR: As mentioned previously, the way that each complex shagided
into more fundamental shapes is not unique, and Taibterely shows one possible scheme. Effort
is also made to describe the geometry in a systematic wayexeonple, quadrilaterals are labeled
clockwise from the top-left corner, and fundamental areassammed in the order in which they
are stacked within the complex shape. Figdreontains clear examples of each of the 22 cases,
zoomed in on the regio€y, ;.
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Table 2. Conditions for Identifying the Overlap Area Polygon C5,,

Conditions Shape Type
1 < |OWy 12| < |OMial|, |OD1212] < |OWy 12| < |OMiz|, |OWs 12| < 14,

|OT' 5 12| < [OWy 12| < [OM2] 2
|OD12712| <n v TWy 10 <n sin(95/2) < |OW3712| < Tu, |OT13_’12| <n 3.
r < |OW4712| < |OM12|, |OD12712| < |OW4_’12| < |OM12| YT < |OW3712|,

|D12,1251] < |T1,,1251], [D12,1251] < [T15,1251] 3.ii
r <7, [Di2,1251] < [Lig151], w10 < TDyy 10y Tu < |OT14 12| 3.iii.a
|L1,4,151] < |D12,1251] Zwy 1o < TD1g g Tu < [OT1 4 11] 3.iii.b
m < rs, |OD12712| <TLTW, 45 < T sin(95/2), ry < |OT13)12|, |L137151| < |T1A71251| 4.i.a
|OD12712| <TLIW, 4, < T sin(95/2), Ty < |OT1A)11|, |OT13)12| < |OT1A711| 4.i.b
|OD12712| < T TW, 4 < T sin(95/2), Ty < |OW3)12|, |OT13712| <7r 4.
r < rs, |D12)1251| < |L13)151|, TWy 1o < TDys 1o |OD12712| < |OW3)12| <7ru 4 jii.a
|L1A)151| < |D1271251|, TWy 12 < LDy 19 |OD12712| < |OW3)12| <7ru 4.iii.b
r <1, |OD12712| < T TW, 10 < T sin(95/2), |OW3712| < Ty T < |OT13712|,

|OT1, 11| < |OT1p 12|, [L1g1S1] < [T1,,125] 5.i.a
|OD12712| < T IW, 10 < T sin(95/2), |OW3712| LTy, T < |OT1A711|,

|OTy , 12] < |OTY , 11] 5.i.b
r <1, |D12,12S1| < |L131181|, TWyio < TDygos Tu < |OW3712|, |OT13_’12| < Ty 5.i.a
|L1,,151] < |D12,1251] 2w, 1n < TD1o s Tu < [OW312], [T1,,1151] < |U1,,151] 5.ii.b
1y < |OWy 2] < |OMial, |OD1212| < [OWy 12| < |OMia|, 7y < [OW3 12|,

11 < |OTy 12| <1y < |OT1g 02| <7u 5.ii
|OD12712| <71, TWy 12 <7 sin(95/2), T < |OW3)12|, r < |OT13712| < Tu,

|OT 4 11| < |OT' 12 6.i.a
|OD12712| < T, TWy 1o < sin(95/2), Tu < |OW3_]12|, r < |OT1A711| < Ty

|OT' ;12| < |OT'1 4 11 6.i.b
|OD12712| < |OW4712| < |OM12|, TWy 10 < TI sin(95/2), Ty < |OW3712|,

r < |OT1A712| < Ty T < |OT13712| 6.ii
1 < |OWa 2] < |OMia], |OD1g12] < |OWy 12| < |OMia|, |OWs 12| < 74,

|OM 2| < |OTy, 12| 6.iii
1 < |OWy12] < |OMial, |OD12,12| < |OWy 12| < |OMaal, ry < |OWs 12|,

11 < |OT 12| <71y <|OT1g 12| <1u 7.
TWy 12 <7 sin(95/2) s |OD12712| < |OW4)12| < |OM12| , |OW3712| < Tu,

|OM 2| < |OTy, 12| 7.ii
TWy 1o <" sin(95/2), |OD12_’12| < |OW4_’12| < |OM12|, Tu < |OW3712|,

1 < |OT1 02| < 7w, 11 < |OT1p 2] <74 8
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Table 3. Piecewise Formulation for 2-fold Coverage Area\,, ;,

Shape Type 2-fold Coverage Aréd, , ,
2 2A5 (R, W3 12Wy 12])
3. Ap,(ri, R, [AL 1 Ao, | A 1 W3 12], [ A2 2 W3 12])
3.ii An,(ru, R, |B11B2gl, |B1,1Wa 12|, |B2,2W412])
3.ii.a Ay (Tu, Ui g 1Uszp 2], U1 5,1 D122, U2y 2D12,12])
3.iii.b A, (ru, [Uzy 2Ur, 105 |Uz2 4 2D12,12], Ut 4,1 D12,12])
4.i.a 1&1’11 Tu;’rlvUlB,laUQB,QvLQB,Q;LIB,l
4.i.b An, (ru, 1, Uz 2, U1, Liy 1, Loy 2)
4.ii Anz (Tuﬂ’hR,B2,2,Bl,1,A1,17A2,2)
4.iii.a An, (R, R,W312,T2, 21, D12,12,T15,12)
4.iii.b An, (R, R, Ws12,T1, 11, D12,12, T2, 22
5.i.a A, (R, 11, W312,Toy 21, Loy 2, L1, 1)+
An (R T 12Wa 2|, Wa a2l als [LigaThp 12])
5.i.b m (R, Wa a9, Ty 11, Ly iy Loy o)+
A (R, T2, ,22W312|, (Wa12L2, 2|, | Loy 2T, 22])
5.i.a 1, (Tu, R, R, B2.2, B11, T2 21, Th 5 12)+
AA(|Top 21 D12,12], | Di2,12T1 5 12, [Ti g 1272, ,21])
5||b AH4(7’u,R7R,B2_’27Blyl,TlA_’:[l,TQA_’QQ)—"
AA(|Th 411 D12,12], [Di2,12T0 4 225 | T24,22T0 4 11])
5.1ii s (T U1, Uz 2, T2 4 21, T 4 12) +
Ap, (R R, |To, 21 Waal, [Wa 12T 4 12]5 | T 41272 4 21])
6.i.a A, (ry,r1,Ba2,Bi1,Lag 20, L1y 1)+
A (R, |B11Ts, 21]| T2 21025 2, |Lop 2B1a|)+
Ap, (R, |Thp12B2 2|, [BaoLigal, [ Lig T 12])
6.i.b 1, (7w, 71, Ba2, Bia, L1, 1, Loy 2)+
Ar (R, [BiaTy, 1l | T Luaal [LiaaBial)+
A (R, |Ts, 22B2 2|, | Ba2 Loy 2|, | Loy 215 4 22])
6.ii A, (ru,Uig1,Usg 2,10, 21, T1 4 12) + Ang (11, R, R, Av 1, Ag 2, T, 12, T, 21)
6.iii Ag(Toy 21, T2, 21, T1 412, Thip12)+
Ap (R, R, [T, 10Ws 12|, | Wa,12To, 21|, [T 21T 5 12] )+
Any (R, R, |T5, 21Wa 2|, [Wai2T1 4 12], [ Tha12T24 21])
7. A, (ry, R,R,B22,B11,T2, .21, T1512) + Ag(Top 21, T, 21, Ti 412, Thp,12)+
Ap, (R R, |To, 21 Waal, [Wa2Th 4 12]s | T 4122 4 21])
7.ii Ap (R, R, [T 12Ws 12|, [ Wa 1215, 21|, [T2p,21 T 5 12] )+
An(Tog 01, T, 21, T 412, Thpa2) + Arg (11, R, R, Av1, Ao2, Th 4 12, To, 21)
8 An,(ru,R,R,B22,B1.1,T2, 21, Ti5,12) + Ao(Tay 21, T2y 21, Ti 412, Th g 12)+

A, (r, RR, A1, A29,T1, 12,15, 21)
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6.i.a 6.i.b 6.ii 6.iii 7.i

7.ii 8

Figure 4. Taxonomy of Overlap AreasA’,,, ,, (shaded black)

PARTIAL CONDITIONS ON THE EXISTENCE OF 2-FOLD COVERAGE

This section aims to determine explicitly the coverage iplidities present for a given constel-
lation at an instant in time using arguments based on shelisections. Due to the complexity of
this endeavor, exhaustive conditions are outside the safdpés paper. However, partial conditions
are provided to illustrate a basic approach that could bé tesderive the remaining conditions.

In a sense, coverage multiplicities are created and desireystematically. There are several
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ways in which this can occur, but to adhere to previously massimptions, the conditions pre-
sented here focus on one of these ways in which coveragepiiuilies are manifested. Necessary
conditions for the existence of 2-fold coverage (or lessqftjacent satellites are

mi,1 7# M22
d12 < 2R (43)
|OD1212|| < 74

Sufficient conditions are
|HS>| < R (44)

whereH is an auxiliary point defined in Tablg covering all possible parameter configurations. A
detailed derivation of these results is omitted, but a keigflanation follows. Notice in Figurg
that a line drawn from the origin t4/3 12 bisects the region’y, ;,. By definition, 2-fold coverage

is created at a pointl on this bisector and within the region of interest. In theesilgg of altitude
shells, 2-fold coverage would be created at the midpfine M5, but when altitude shells are
taken into account, the location &f depends on the satellite altitude and other factors. Alst im
Table4 the modified notatioriD1212), = yp,,,,- TO €nsure that no coverage multiplicities greater
than two exist, a condition is imposed stating that triptdtadjacent satellites cannot intersect:

doy > 2R (45)

which precludes the existence of coverage multiplicities 3.

Table 4. Sufficient Condition Flow Chart for Existence of Cowerage Multiplicity p = 2

Conditions H
< _
v |OD1212| <1 (rysinZ,rpcos )
&
VI oy o
> 11 < |OD12,12| D112
= |OD1212] <1 (rysin X, rycos )
V (Mi2)y <1y cos T
& 11 < |OD12,12| D112
VI
< D < (M M
& ry cos% < (Mlz)y ( 12,12)y < 12)y 12
(Mi2)y < (D12,12)y D1212
|OD1212] <1 (rysin %, rycos T
< (Mi2)y <rpcos ™
\{,J 1 < |OD12,12| D132
~
VI
D < (M M
S | mcos T < (Myg), <rycos (D1212)y < (Mia)y 12
(Mi2), < (D12,12)y D12 12
rycos T < (M), (rysinZ,r, cos T)
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PARAMETER SPACE AND VALIDATION OF NUMERICAL METHODS

With the preceding analysis complete, initial exploratiminthe parameter space can be per-
formed. Figures-7 show three possible types of behavior for how the total Goyerarea varies
with satellite altitude 5, when all other parameters are held fixed. Figbighows a case where
there is a clear optimal satellite altitude correspondmg tmaximum coverage area provided by the
constellation. Under other conditions, as shown in Figiisaturation can occur at low satellite alti-
tudes; these are regimes in which varyigoffers no coverage benefit. Another interesting artifact
of total coverage area is observed in Figdrevhere a sharp corner is apparent nears 10, 820
km. The explanation for this is that the overlap area sf@p@m changes type rapidly over a small
range — approximately 70 km — of satellite altitude.

Another purpose of this analysis is to provide an analytmakns of validating the numerical
process proposed by Takah®.The numerical algorithm employed by Takano is generallyieap
ble to the time-varying and the time-invariant case, withegalized sensor profiles. However, since
closed form solutions are not available in the generalizgkcan intermediate step is to validate
a set of simplified cases, such as those discussed here. &opkx the simulation results pre-
sented in Figure5-7 do not encompass all possible scenarios, but do validatesesof satellite
configurations in a single circular orbit against the nucenmodel derived by Takarno®

Coverage Area Varying with Satellite Altitude, n = 3
w10 Dt =100, hy = 1200, hy = 5000, R = 10650 (km)
T T

= Analytical
= = = Numerical|

25

1.5F q

Total Coverage Area, Ay (km?)

% 5000 10000 15000
Satellite Altitude, hs (km)

Figure 5. Total coverage area vs. satellite altitude (Examip 1) is a continuous smooth
curve: Optimal altitude corresponds to maximum coverage aea

Figures5-7 compare analytical and numerical results for continuougei@ge area by fixing
all parameters and then increasing the satellite altitugiecther notice that the fixed parameter
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Coverage Area Varying with Satellite Altitude, n = 6

1 he =100, by = 1400, h, = 5000, R = 7000 (km)
25 T T T T

= Analytical

= = = Numerical|

Total Coverage Area, Ay, (km?)

L L L L L
0 2000 4000 6000 8000 10000 12000
Satellite Altitude, hs (km)

Figure 6. Total coverage area vs. satellite altitude (Examp 2) is a continuous smooth
curve: Maximum coverage area saturation observed at low aitudes

values are different in each simulation. The present stegksto provide complete validation of
the numerical process under the stated simplified set ofhgssans, including the constellation
coverage area calculation and the 2-fold coverage constrBile numerical approa2hi considers

a cost index determined numerically through the synthesisomputer graphics methods. The
process employed here, in contrast, provides validatidh &an analytically determined cost index.

CONCLUSION

The problem of constellation design for space-based spaisnal awareness applications is
considered from an analytical perspective. First, gedoadtarguments are employed to establish
an analytical formulation for coverage area provided byamai constellation of equally spaced
satellites with omnidirectional sensors. This leads tceg@ivise differentiable exact representation
for the coverage area provided by the constellation abogenhtnizon of each satellite. Analyti-
cal conditions for coverage multiplicity are also estdi#id. The results of this investigation are
successfully validated against a generalized numerigakiéhm developed under a parallel study.
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Coverage Area Varying with Satellite Altitude, n = 12

« 107 hy = 100, h; = 5500, h, = 6300, R = 7100 (km)
6 T T T T
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Figure 7. Total coverage area vs. satellite altitude (Exanlp 3) is a continuous non-

smooth curve: Global maximum exists only at the start of the #&itude range consid-
ered
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