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CONSTELLATION DESIGN FOR SPACE-BASED SITUATIONAL
AWARENESS APPLICATIONS: AN ANALYTICAL APPROACH

Ashley D. Biria∗ and Belinda G. Marchand†

Optimization processes rely on the availability of a pre-defined cost function. Gen-
erally, such representations are often analytically available. However, when con-
sidering optimal constellation design for space-based space situational awareness
applications, a closed-form representation of the cost index is only available under
certain assumptions. The present investigation focuses ona subset of cases that
admit exact representations. In this case, geometrical arguments are employed
to establish an analytical formulation for the coverage area provided as well as
for the coverage multiplicity. These analytical results are essential in validating
numerical approximations that are able to simulate more complex configurations.

INTRODUCTION

As presently envisioned, space-based space situational awareness (SBSSA) employs a network
of space-based sensors to supplement ground sensing capabilities in the detection, tracking, iden-
tification, and characterization (DTI&C) of active or passive resident space objects (RSOs). The
present investigation focuses specifically on a constellation of space-based sensors, uniformly dis-
tributed along a circular orbit. The work is an extension of that previously presented by Marchand
and Kobel1 for a single satellite. Consistent with the assumptions of this earlier study, the present
investigation considers only the coverage of a region that exists above the horizon of the satellites
and within a pre-specified altitude band. The objective is tomaximize the coverage provided by the
constellation sensors within the region of interest.

One of the most difficult aspects of this problem is the definition of the cost index, namely the
coverage provided by the sensors. As demonstrated by Marchand and Kobel1 in their initial study,
even under extremely simplified assumptions, such as omnidirectional sensors, obtaining a closed-
form representation of the cost index is a complex process. Figure1 illustrates some of the relevant
problem parameters in the single satellite case, as defined by Marchand and Kobel.1
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Figure 1. Shell intersections for a single satellite on a circular orbit with coverage area shaded

The three concentric circles in Figure1 represent reference boundaries; they are the tangent height
shell (THS), the lower target altitude shell (LTAS), and theupper target altitude shell (UTAS). The
tangent height shell (THS), then, is associated with a user specified reference altitude above the
surface of the Earth below which, for instance, atmosphericeffects may interfere with sensors.
A satellite’s horizon is defined as the line originating fromthe satellite and tangent to the THS.
The revolution of the TL in three dimensions traces out a cone, termed here the tangent height cone
(THC). The region of interest to the sensors lies outside theTHC, within the sensor range shell (RS),
and inside the region between the UTAS and LTAS. This region represents a three-dimensional
volume, and the constellation’s goal is to maximize coverage of this region. Due to the inherent
symmetry introduced by the omnidirectional sensor assumption, maximizing the ATH coverage
volume is equivalent to maximizing the cross-sectional coverage area.1 This cross-sectional area of
coverage appears shaded in Figure1. Under these assumptions, a nonlinear piecewise differentiable
objective function fully describes the coverage area for all possible satellite altitudes constrained
to rt ≤ rs < rs3, wherers3 is associated with the critical altitude at which no ATH coverage is
provided.1

This initial work by Marchand and Kobel1 is a powerful approach for the dual-altitude band
problem as compared to previous research on the subject. An older study by Rider2 also considered
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the dual-altitude band ATH problem for constellations in low to medium altitudes with multiple
orbital planes, where the satellites lie within or above thedual-altitude band. In his approach,
Rider uses spherical geometry and the streets-of-coveragemethod3,4 to derive formulas for coverage
multiplicity, which is the number of satellites that can simultaneously view a particular region.
Rider then relates coverage multiplicity to the required number of orbital planes, required number
of satellites per orbital plane, and latitude constraints.Thus, given a desired coverage multiplicity,
the required number of sensors for global coverage is completely determined.

The present investigation extends the results of Marchand and Kobel1 to accommodate multiple
satellites with equal omnidirectional sensors uniformly distributed along a circular orbit. An exam-
ple of such a constellation is depicted in Figure2. While a similar constellation could be designed

 

 1× Coverage
2× Coverage

Figure 2. Seven-satellite constellation on a circular orbit

for ATH coverage using Rider’s method, the goal here is to establish a foundation for an alterna-
tive analytical approach that offers much greater flexibility and the potential to carry that flexibility
through to the three-dimensional case. That is to say that inthe planar case, using constellation
coverage area as a design metric allows for the accommodation of a greater variety of problem
specifications and constraints. First, Rider2 did not consider satellites located between the THS
and LTAS. If for some reason the satellite altitude is restricted to be below the LTAS, the coverage
area approach offers a solution. Secondly, this coverage area can be used as a cost index in an
optimization process that can more clearly describe and lend insight to the quality of a solution.

Of course, there are limitations to this analytical approach. If, for example, more complex sensor
profiles are desired, the loss of symmetry makes an analytical solution especially difficult. For
such scenarios, a more suitable approach is the numerical method proposed by Takano,5,6 which
uses geometrical arguments similar to those first introduced by Marchand and Kobel1 but with
techniques from computational geometry. Therefore, his method benefits from validation by an
analytical approach, which is demonstrated in this investigation as a secondary goal.

To maintain continuity relative to the initial work of Marchand and Kobel,1 the methodology
presented is based on geometrical arguments. First, key shell intersections are determined. Then,
based on the spatial interaction of these intersections, geometrical elements are identified for a
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unique region of each coverage multiplicity. Finally, a non-unique, nonlinear piecewise differen-
tiable objective function is developed that characterizesthe coverage area forrt ≤ rs < rs3 and
maximum coverage multiplicity ofpmax = 2. This restriction is imposed for now because analysis
becomes prohibitively complex if greater coverage multiplicities are permitted.

COMPUTING THE TOTAL COVERAGE AREA

The computational methods employed for determining the total coverage area build upon the
work of Marchand and Kobel1 while taking advantage of the inherent symmetry in the constellation.
For the single satellite problem, the area computed forS1 was denoted asA and referred to a region
of 1-fold coverage. For a constellation, an analogous area exists for each satellitei subject to a
coverage multiplicityp ≥ 1, so the notation is modified toA1×,i and computed according to the
methods described in Marchand and Kobel.1

Next, this notation is generalized by first definingCp× as the collection of regions of coverage
multiplicity greater than or equal top that lie within the “region of interest” — that is, within the
dual-altitude band, outside the THC, and within the RS. Similarly, defineC ′

p× as the collection of
regions of coverage multiplicity strictly equal top that lie within the region of interest. Then, let
Ap× refer to the area ofCp× andA′

p× refer to the area ofC ′
p×. In fact,A1× is the desired total

area covered by the entire constellation within the region of interest, but computing it analytically
is especially challenging.

As shown by Marchand and Kobel,1 shell intersections are used to define the vertices of poly-
gons, the areas of which are computed analytically by completely surveying all possible geometries
that the intersections of shells could form. For a multi-satellite constellation, even though all shell
intersections can be analytically determined with a few equations, the polygon identification process
becomes much more cumbersome. Marchand and Kobel1 showed that it is advantageous to com-
pute the areas of complex geometries by adding up areas of elementary components — triangles,
composite triangles, circular sectors and segments — that are easily determined analytically. But
for computing coverage area, as the single satellite case requires explicit conditions and equations
for each shell configuration, the multi-satellite case requires explicit conditions and equations for
each shell configuration and for each coverage multiplicity. This reasoning suggests thatApc×,
for any coverage multiplicitypc of interest, could be expressed as a composition ofA′

k× for all
k ∈ [pc, pmax]:

Apc× ≡

pmax
∑

k=pc

A′
k× (1)

The quantityApc× actually has many uses in formulating optimization schemes. Suppose, for
example, that it is desired to have continuous 2-fold coverage of the annular region bounded by the
dual-altitude band shell, termed AS. In this case,A2× should be as close toAAS as possible. For
the scope of this paper, only the total coverage area is of interest, so Eq. (1) would be used with
pc = 1. However, Eq. (1) does not take advantage of the results of Marchand and Kobel,1 so an
alternative approach is presented here that usesA1×,i.

Consider summing allA1×,i. By this action, each regionC ′
k× would be countedk times for all

k ∈ [2, pmax]. Thus,A′
k× must be subtractedk − 1 times from the sum to obtain the actual total

coverage area:

A1× =
n
∑

i=1

A1×,i −

pmax
∑

k=2

(k − 1)A′
k× (2)
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Also, observe in Eq. (2) that in general,A1×,i could be different for eachi, but since the satellites
have equal range shells and are uniformly distributed alonga circular orbit, the areaA1×,i is equal
for each satellite:

A1×,i = A1×,1 ∀ i (3)

Recall that this paper limits the discussion of coverage area calculations to maximum coverage
multiplicity pmax = 2. LetA′

2×,ij refer to the region formed by the intersection of the range shells
of Si andSj that is also within the region of interest and subject to strictly 2-fold coverage. Then,
A′

2× is obtained from adding upA′
2×,ij for all i andj, leading to the following result:

A′
2× ≡

1

2

n
∑

i=1

n
∑

j=1
j 6=i

A′
2×,ij =

n−1
∑

i=1

n
∑

j=i+1

A′
2×,ij (4)

However, due to the significant symmetry of the problem, strictly 2-fold coverage typically only
occurs for pairs of adjacent satellites. As such, this observation is restated as a constraint for further
simplicity. Thus, Eq. (4) can be re-expressed as

A′
2× = A′

2×,1n +

n−1
∑

i=1

A′
2×,i(i+1) (5)

Notice that forn = 2 or 3, satellites are adjacent for all possible pairs. As for Eq. (3), since the
satellites have equal range shells and are uniformly distributed along a circular orbit, the overlap
areaA′

2×,ij is equal for each pair of adjacent satellites. Thus, the derivation arbitrarily focuses
on S1 andS2 without loss of generality. Furthermore, the number of satellite pairs is equal to the
number of satellites, so Eq. (5) becomes

A′
2× = nA′

2×,12 (6)

where

A′
2×,12 =

{

1
2 (A1×,1 ∩A1×,2) n = 2

A1×,1 ∩A1×,2 n > 2
(7)

The first case in Eq. (7) is degenerate and differentiated from the second in order for it to function
properly with Eq. (2). Finally, by substituting Eq. (6) and Eq. (3) into Eq. (2) and simplifying,
Eq. (2) reduces to

A1× = n
(

A1×,1 −A′
2×,12

)

(8)

which in conjunction with Eq. (7) is used to compute the total coverage area of the constellation. In
fact, much of the following discussion focuses on obtaininganalytical formulas for the area defined
by Eq. (7).

SHELL INTERSECTIONS

With the extension to satellite constellations, the original 14 key intersections defined by Marc-
hand and Kobel1 are still valid and defined by the five problem parametersrs, ru, rl, rt, andR. It
is useful to label the original 14 intersections as Type I, defined as those that are associated with
only one satellite, occurring between the range shell and a reference boundary or between a tan-
gent line and a reference boundary. However, the analysis iscomplicated by the manifestation of
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new intersection points associated with regions of coverage multiplicity p > 1. As is evident from
Figure2, when multiple satellites are introduced, each satellite has associated with it these same 14
intersection points rotated through appropriate multiples of the satellite separation angle,

θs =
2π

n
(9)

wheren, a sixth problem parameter, is the number of satellites in the constellation. In addition to
these14n Type I intersections, surfaces associated with one satellite intersecting those of another
create new intersections denoted as Type II, which are of a variety that cannot exist in the single
satellite case. These changes in geometry necessitate a modified system for labeling intersection
points that is illustrated in Figure3.
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ŷ

R

S1

S2

B1,1B2,1

A1,1A2,1

U1B ,1U2B,1

U1A,1U2A,1

L1B ,1L2B,1

L1A,1L2A,1

T1A,11

T2A,11

D12,12

T1B ,12

T2B ,21

T1A,12

T2A,21

W3,12

W4,12

THS

LTAS

UTAS

r t

r l

ru

Sensor Range Shell

Figure 3. Key shell intersections for a satellite constellation on a circular orbit
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The labels for Type I intersections are unchanged with two exceptions. First, a second subscript
is appended after a comma to denote the associated satellite. For example, pointB2,3 refers to point
B2 of S3. ForT intersections, a second and third subscript are appended after a comma. Secondly,
points involving the intersection of the TL and RS of one satellite have modified subscripts to
accommodate the complexity of Type II intersections. The following are sample transformations
from the notation of Marchand and Kobel1 for Type I intersections ofS1:

B2 −→ B2,1

T1 −→ T1A,11

Unlike pointsA, B, L, andU , pointsT can involve two satellites, thus requiring two numbers
after the comma to precisely describe which satellites are associated with that intersection. The first
number after the comma refers to the satellite from which theTL originates, and the second number
refers to the satellite whose RS intersects that TL. For subscripts before the comma, “1” and “2”
still indicate intersections to the right and left of a satellite, respectively. To be precise,n rotating
coordinate framesEi, for i = 1, . . . , n, are defined as follows:̂e2,i is the unit vector directed from
the center of the Earth toSi; ê3,i is the unit vector normal to the plane of motion of the satellite
constellation, along the angular momentum vector; andê1,i = ê2,i × ê3,i. In fact, theE1 frame is
identical to the rotating coordinate system used by Marchand and Kobel1 and all intersections are
determined relative to this coordinate system. To facilitate comparison to Marchand and Kobel,1 a
shorthand notation is therefore defined for theE1 unit vectors:x̂ = ê1,1, ŷ = ê2,1, andẑ = ê3,1.
Thus, for all intersection points, subscript “1” refers to intersections with a positivêe1,i component
and subscript “2” refers to intersections with a negativeê1,i component. The “A” and “B” subscripts
have a similar interpretation to that used by Marchand and Kobel,1 where “A” refers to intersections
between a TL ofSi and target shell that are farthest fromSi and “B” refers to intersections between
a TL of Si and target shell that are closest toSi. Mathematically, these subscripts are used to
differentiate the two solutions produced by a quadratic equation, and they are added to the subscript
of theT intersections because with the inclusion of Type II intersections, the quadratic equation
associated withT intersections can have two valid solutions. For convenience, define the following
subscripts for intersectionsA, B, L, U , T , W , andD:

ρ ∈ {1, 2}

σ ∈ {1A, 1B , 2A, 2B}

τ ∈ {3, 4}

ζ ∈ {1, 2, 1A, 1B , 2A, 2B} ≡ {ρ, σ}

(10)

Their use is described throughout the remainder of this section. Shouldρ andσ appear in the same
equation, then they must be coupled and have the following special relationship:

σ ∈ {ρA, ρB} (11)

In the single satellite case, the onlyT intersections are the result of the satellite’s TL intersecting
its own RS; the TL can only exit the RS because the satellite from which the TL originates is within
the RS. However, with Type II intersections in a constellation, a satellite’s TL can both enter and
exit another’s RS. Observe in Figure3 that if R is increased untilS1 is within the RS ofS2, point
T1B ,12 disappears while pointT1A,12 remains. This is a concrete scenario showing that if only one
T intersection truly exists, it must have subscript “A”. From this result, a convention for ambiguous
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cases is defined. For example, if the intersection of a TL emanating fromSi intersects its own RS,
that intersection must beT1A,ii or T2A,ii.

There are two other intersection points to define: intersections of two range shells and intersec-
tions of two tangent lines. The former is indicated with aW and three numbers in the subscript. If
theWτ,ij intersection is farthest from the origin, thenτ = 3; if the Wτ,ij intersection is closest to
the origin, thenτ = 4. The two subscripts after the comma indicate the satellitesassociated with
the intersection, wherei < j by convention. The intersection of two tangent lines is marked with
Dρiρj ,ij . Theρi andρj subscripts are equal to1 or 2 and respectively indicate which TL of satellite
i andj is associated with the intersection. For example, the intersection of the left TL ofS1 with
the right TL ofS3 would be denoted asD21,13. Again, a convention is imposed such thati < j.

As in the single satellite case, the locations of these intersection points are integral to the compu-
tation of satellite coverage area. To simplify the determination of intersection points, this approach
uses the same rotating coordinate system as implemented by Marchand and Kobel.1 As depicted in
Figure3, theŷ-axis extends from the Earth toS1, and thêx-axis is perpendicular to thêy-axis and
in the plane of the orbit. This rotating coordinate system gives a simple formula for the location of
theith satellite in Cartesian coordinates as

(xsi , ysi) = (rs sin(i− 1)θs, rs cos(i− 1)θs) (12)

where the satellites are numbered clockwise in increasing order. Thus, for a constellation with
positive angular momentum,S1 can be viewed as the leading satellite.

Type I Intersections

Let Z be an auxiliary Type I intersection point equal to any ofA, B, L, U , or T , which together
were used to identify the original 14 intersections published by Marchand and Kobel.1 Since the
original 14 intersections were defined relative toS1, the correct rotation that gives the remaining
14(n− 1) Type I intersections is analogous to that used in Eq. (12), which describes the location of
each satellite. Thus, all Type I intersections of the constellation can be identified in theE1 frame as

[

xZζ,i

yZζ,i

]

=

[

cos(i− 1)θs sin(i− 1)θs
− sin(i− 1)θs cos(i− 1)θs

] [

xZζ,1

yZζ,1

]

(13)

which is essentially a clockwise rotation of the input vector. In fact, Eq. (12) is absorbed by Eq. (13)
by lettingZ = S and disregarding theζ subscript.

Intersections of Two Range Shells

The intersections of the RS ofSi with the RS ofSj (W3,ij ,W4,ij) are denoted asWτ,ij, and are
most easily computed via the use of coordinate transformations. First, note that the midpoint of a
line connectingSi andSj is

Mij =

(

xsi + xsj
2

,
ysi + ysj

2

)

(14)

The midpoint is used in the definition of a new reference frameRij: r̂2,ij is the unit vector parallel
to OMij ; r̂3,ij is the unit vector normal to the plane of motion of the satellite constellation, along
the angular momentum vector; andr̂1,ij = r̂2,ij × r̂3,ij . The origin ofRij is chosen to be atMij

because this greatly simplifies the math. ForW intersections,Si has a negativêr1,ij component
andSj has a positivêr1,ij component by convention. A shorthand for the distance between two
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satellites is also defined asdij = |SiSj |. Interpreting Fewell’s7 result, the general formula for the
positive solution of the intersection of two range shells with arbitrary radii is

xW3,ij
=

R2
i −R2

j + d2ij
2dij

; yW3,ij
=

1

2dij

√

2d2ij(R
2
i +R2

j )− (R2
i −R2

j )
2 − d4ij (15)

when viewed in a frame identical to theRij frame, but with the origin placed atSi. Recall that
theRij frame is defined with equal range shells in mind, so it is knownthat a line connecting the
W intersections must pass throughMij . If the range shells were to have arbitrary radii, then it
would be easier to make the coordinates of theRij frame identical to those used by Fewell, but this
generalization is not presented here. For the purposes of this study,Ri = Rj , so Eq. (15) becomes

RxW3,ij
= 0; RyW3,ij

=
1

2

√

4R2 − d2ij (16)

where the superscriptR indicates that the coordinates are given in theRij frame. It is important to
note that Eq. (16) is only valid if dij ≤ 2R so that the coordinates are real numbers. Furthermore,
symmetry implies that

RxW4,ij
= RxW3,ij

; RyW4,ij
= −RyW3,ij

(17)

Transforming these intersections to theE1 frame requires both a rotation by angleη and a trans-
lation, whereη is the angle between thêy andr̂2,ij unit vectors. Using a fundamental property of
the dot product,

η = cos−1 (ŷ · r̂2,ij) (18)

which enforces the condition that0 ≤ η ≤ π; however, this does not distinguish between clock-
wise and counterclockwise rotations and is undesirable. Thus, Eq. (18) is corrected by adding the
following convention:η > 0 if r̂2,ij has a positivêx component andη < 0 if r̂2,ij has a negative
x̂ component, which determines whether the appropriate rotation is clockwise or counterclockwise.
Re-expressing Eq. (18) with this correction gives:

η =

{

+cos−1 (ŷ · r̂2,ij) , if x̂ · r̂2,ij > 0

− cos−1 (ŷ · r̂2,ij) , if x̂ · r̂2,ij < 0
(19)

Lastly, the translation, which is associated with the displacement between the origin of each frame,
must be properly handled by shiftingxMij

in the x̂ direction andyMij
in the ŷ direction. Then, the

total transformation from theRij frame to theE1 frame is

E1[ xWτ,ij

yWτ,ij

]

=

[

cos η sin η
− sin η cos η

]Rij
[

xWτ,ij

yWτ,ij

]

+
E1[ xMij

yMij

]

(20)

For η > 0, the direction cosine matrix gives a counterclockwise rotation of the frame. Should
dij = 2R, then the two range shells intersect at only one point.

Intersections of Two Tangent Lines

The intersections of a TL ofSi and a TL ofSj are denoted asDρiρj ,ij in the most general form.
This gives four possibleD intersections per satellite pair, collectively identifiedas (D11,ij , D12,ij ,
D21,ij , D22,ij). For certain geometries, it is possible that less than fourintersections exist, such as

9



when two TLs are parallel or when they diverge. First, some results from Marchand and Kobel1

must be generalized for constellations. One result states that the TL ofS1 is tangent to the THS
when

θt = cos−1

(

rt
rs

)

(21)

which actually holds for any TL, whereθt is the above-the-horizon coverage angle at the point of
tangency. The slope of each TL ofSi can then be expressed in terms of the satellite location and the
points of tangency as follows:

mρ,i =
ytρ,i − ysi
xtρ,i − xsi

(22)

for

xtρ,i =

{

rt sin [(i− 1)θs + θt] if ρ = 1

rt sin [(i− 1)θs − θt] if ρ = 2

ytρ,i =

{

rt cos [(i− 1)θs + θt] if ρ = 1

rt cos [(i− 1)θs − θt] if ρ = 2

(23)

Each intersection is given by the solution to the following system of equations:

yDρiρj ,ij
= mρi,ixDρiρj,ij

+ bρi,i; yDρiρj ,ij
= mρj ,jxDρiρj ,ij

+ bρj ,j (24)

whereb is the y-coordinate of the point at which the TL intersects the ŷ-axis, determined as

bρi,i = ysi −mρi,ixsi ; bρj ,j = ysj −mρj ,jxsj (25)

Using Eq. (24) to solve forxDρiρj,ij
by substitution gives

xDρiρj ,ij
=

bρi,i − bρj ,j

mρi,i −mρj ,j
(26)

Then, substituting Eq. (25) into Eq. (24) and Eq. (26) gives

xDρiρj,ij
=

mρi,ixsi −mρj ,jxsj − ysi + ysj
mρi,i −mρj ,j

; yDρiρj,ij
= mρi,i(xDρiρj ,ij

− xsi) + ysi (27)

Of course, Eqs. (26) and (27) are not valid ifmρi,i = mρj ,j since the denominator would go to
zero. Such a scenario implies that the intersection does notexist, which makes sense physically
because two parallel lines cannot intersect, assuming theyare not collinear. Should two TLs happen
to be collinear,Dρiρj ,ij becomes meaningless and adds no new information to the geometry. Further
observe that Eq. (27) assumes each TL is a line, though in reality the TL does not extend above the
satellite from which it originates. Thus, care should be taken to ignore a solution given by Eq. (27)
if the computed intersection is located above the satellites from which each TL emanates.

Type II Intersections of Tangent Lines with Range Shells

The intersection of a TL ofSi with the RS ofSj for i 6= j is a Type II intersection denoted as
Tσ,ij . There are at most four suchT intersections per satellite pair, collectively identifiedas (T1A,ij,
T1B ,ij, T2A,ij, T2B ,ij). Note the application of Eq. (11) to Eqs. (28–30). The coordinates are given
by the solution to the following system of equations:

(

xTσ,ij
− xsj

)2
+

(

yTσ,ij
− ysj

)2
= R2; yTσ,ij

= mρ,ixTσ,ij
+ bρ,i (28)
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wherebρ,i is interpreted asbρ,i = ysi−mρ,ixsi from Eq. (25). In general, solving Eq. (28) for xTσ,ij

gives

xTσ,ij
=

−
[

mρ,i

(

bρ,i − ysj
)

− xsj
]

±
√

(m2
ρ,i + 1)R2 −

(

bρ,i − ysj +mρ,ixsj
)2

m2
ρ,i + 1

(29)

which has at most two real solutions. It has no real solution if (m2
ρ,i+1)R2 < (bρ,i−ysj+mρ,ixsj)

2.
However, Eq. (29) has an issue analogous to that of Eq. (27), which is that if the TL originates within
the RS, it will still give two real solutions even if one or noT intersections exist. Should only one
T intersection exist, ignore theTρB ,ij intersection. If noT intersections exist, then disregard both
solutions to Eq. (29); this situation arises when the entire TL is within the RS.

Determining which solution corresponds to subscript “A” and which to subscript “B” is nontrivial
and is summarized as

xTρA,ij
=











































x+Tσ,ij
, if xsi < 0

x−Tσ,ij
, if xsi = 0, ysi > 0,mρ,i > 0

x+Tσ,ij
, if xsi = 0, ysi > 0,mρ,i < 0

x+Tσ,ij
, if xsi = 0, ysi < 0,mρ,i > 0

x−Tσ,ij
, if xsi = 0, ysi < 0,mρ,i < 0

x−Tσ,ij
, if xsi > 0

(30)

wherex+Tσ,ij
corresponds to the solution of Eq. (29) with the positive square root term andx−Tσ,ij

corresponds to the solution of Eq. (29) with the negative square root term. Then,xTρB,ij
is the other

solution of Eq. (29) not defined by Eq. (30). The complete solution to the system of equations given
in Eq. (28) is then formed by using Eqs. (29–30) in conjunction with the equation for the TL in
Eq. (28).

GEOMETRICAL ELEMENTS OF REGIONS SUBJECT TO 2-FOLD COVERAGE

As demonstrated by Marchand and Kobel1 for the single satellite case, the coverage area is at best
reduced to a continuous piecewise differentiable function, and the same holds for areas subject to
2-fold coverage in a constellation. The area of overlapA′

2×,ij refers to the area of a regionC ′
2×,ij

between two satellites that is within view of both satellites. Recall that for 2-fold coverage restricted
to pairs of adjacent satellites,C ′

2×,12 can be analyzed instead without loss of generality. This region
is a polygon whose vertices are connected by lines and/or circular arcs, and which can have 16
unique shapes, categorized according to the number of vertices that the overlap area has. Table1
shows the relation between the number of vertices and numberof unique shapes.

Table 1. Relation between the Number of Vertices and Number of Unique Shapes forC′
2×,12

Number of Vertices Number of Unique Shapes
2 1
3 3
4 3
5 3
6 3
7 2
8 1
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Due to the geometry of the problem,C ′
2×,12 cannot have greater than eight vertices. The follow-

ing discussion defines all of the fundamental geometrical elements necessary for creating a piece-
wise differentiable function for the 2-fold coverage areaA′

2×,12, using a combination of triangles,
quadrilaterals, and circular segments. The areaA′

2×,12 is then computed by summing the areas of
the appropriate fundamental shapes.

For the 3-vertex cases, new composite triangles must be defined. Case 3.i requires the definition
of a new composite triangle,Λ3, made up of three arcs:

AΛ3
(rl,R, |A1,1A2,2|, |A1,1W3,12|, |A2,2W3,12|) =

A△(|A1,1A2,2|, |A1,1W3,12|, |A2,2W3,12|)−

AΣ(rl, |A1,1A2,2|) +AΣ(R, |A1,1W3,12|) +AΣ(R, |A2,2W3,12|)

(31)

A△ refers to the area of a triangle computed using Heron’s formula, where each argument is a
side of the triangle.1 AΣ refers to the area of a circular segment, where the first argument is the
circle’s radius and the second is the associated chord.1 The equation forAΛ3

adds anAΣ term to
the definition ofAΛ1

. For case 3.ii, a new composite triangle,Λ4, is defined, also made up of three
arcs but with different convexity:

AΛ4
(ru,R, |B1,1B2,2|, |B1,1W4,12|, |B2,2W4,12|) =

A△(|B1,1B2,2|, |B1,1W4,12|, |B2,2W4,12|)+

AΣ(ru, |B1,1B2,2|) +AΣ(R, |B1,1W4,12|) +AΣ(R, |B2,2W4,12|)

(32)

The equation forAΛ4
is similar to that forAΛ3

except all circular segment areas are added to the
base triangle. A new composite triangle,Λ5, must be defined for case 3.iii.a and 3.iii.b.Λ5 is
pie-shaped, consisting of one arc and two line segments:

AΛ5
(ru,|U2A,2U1A,1|, |U2A,2D12,12|, |U1A ,1D12,12|) =

A△(|U2A,2U1A,1|, |U2A ,2D12,12|, |U1A,1D12,12|) +AΣ(ru, |U2A,2U1A,1|)
(33)

The equation forAΛ5
is similar to that forAΛ2

except that the circular segment area is added to the
base triangle.

For overlap areas with greater than three vertices, it is helpful to introduce the concept of a
composite quadrilateral and define an additional compositetriangle,Λ6:

AΛ6
(R,R, |T2A,21W4,12|, |W4,12T1A,12|, |T1A ,12T2A,21|) =

A△(|T2A,21W4,12|, |W4,12T1A,12|, |T1A ,12T2A,21|)+

AΣ(R, |T2A,21W4,12|) +AΣ(R, |W4,12T1A,12|)

(34)

Formulas for the areas of composite quadrilaterals are derived from the general formula for the
area of a convex quadrilateral based on its diagonals.8 For a convex quadrilateralabcd, define the
following diagonals:

c1 = (xc − xa)x̂+ (yc − ya)ŷ

c2 = (xd − xb)x̂+ (yd − yb)ŷ
(35)

The area of quadrilateralabcd can then be expressed as

A� =
1

2
|c1 × c2| (36)
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Six types of composite quadrilaterals are introduced. For case 4.i.a, the area of overlap can be
described as a composite quadrilateralAΠ1

, defined as

AΠ1
(ru,rl, U1B ,1, U2B ,2, L2B ,2, L1B ,1) = A�(U1B ,1, U2B ,2, L2B ,2, L1B ,1)+

+AΣ(ru, |U1B ,1U2B ,2|)−AΣ(rl, |L2B ,2L1B ,1|)
(37)

The five remaining types of composite quadrilaterals are defined in Eqs. (38–42). They all use a
similar construction, in which circular segments are addedor subtracted from a base convex quadri-
lateral.

AΠ2
(ru,rl, R,B2,2, B1,1, A1,1, A2,2) = A�(B2,2, B1,1, A1,1, A2,2)+

AΣ(ru, |B2,2B1,1|)−AΣ(rl, |A1,1A2,2|)+

AΣ(R, |B1,1A1,1|) +AΣ(R, |A2,2B2,2|)

(38)

AΠ3
(R,R,W3,12, T2B ,21,D12,12, T1B ,12) = A�(W3,12, T2B ,21,D12,12, T1B ,12)+

AΣ(R, |W3,12T2B ,21|) +AΣ(R, |T1B ,12W3,12|)
(39)

AΠ4
(ru,R,R,B2,2, B1,1, T2B ,21, T1B ,12) = A�(B2,2, B1,1, T2B ,21, T1B ,12)+

AΣ(ru, |B2,2B1,1|) +AΣ(R, |B1,1T2B ,21|) +AΣ(R, |T1B ,12B2,2|)
(40)

AΠ5
(ru,U1B ,1, U2B ,2, T2A,21, T1A,12) = A�(U1B ,1, U2B ,2, T2A,21, T1A,12)+

AΣ(ru, |U1B ,1U2B ,2|)
(41)

AΠ6
(rl,R,R,A1,1, A2,2, T1A,12, T2A,21) = A�(A1,1, A2,2, T1A,12, T2A,21)−

AΣ(rl, |A1,1, A2,2|) +AΣ(R, |A2,2, T1A,12|) +AΣ(R, |T2A ,21A1,1|)
(42)

ABOVE-THE-HORIZON 2-FOLD COVERAGE AREA FOR A CONSTELLATIO N IN A
CIRCULAR ORBIT

The 2-fold area computations are organized in a way that emphasizes the relationship expressed
in Table1. Table2 identifies the conditions that must be satisfied for each of 22possible cases
and outlines the naming convention used. The first number denotes the number of vertices and
the second number denotes the type. Thus, shape 3.ii is a 3-vertex overlap area of type II. Cases
are labeled with an “a” or “b” when the shape is the same but some of the vertices are different
intersection points. This is why there are 22 cases for only 16 unique shapes.

Once the case is identified from Table2, the appropriate formula for computing the 2-fold cover-
age area is found in Table3. As mentioned previously, the way that each complex shape isdivided
into more fundamental shapes is not unique, and Table3 merely shows one possible scheme. Effort
is also made to describe the geometry in a systematic way. Forexample, quadrilaterals are labeled
clockwise from the top-left corner, and fundamental areas are summed in the order in which they
are stacked within the complex shape. Figure4 contains clear examples of each of the 22 cases,
zoomed in on the regionC ′

2×,12.
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Table 2. Conditions for Identifying the Overlap Area Polygon C′
2×,12

Conditions Shape Type
rl < |OW4,12| < |OM12| , |OD12,12| < |OW4,12| < |OM12| , |OW3,12| < ru,
|OT1B ,12| < |OW4,12| < |OM12| 2
|OD12,12| < rl , xW4,12

< rl sin(θs/2) , rl < |OW3,12| ≤ ru, |OT1B ,12| < rl 3.i
rl < |OW4,12| < |OM12|, |OD12,12| < |OW4,12| < |OM12| , ru < |OW3,12|,
|D12,12S1| < |T1A,12S1|, |D12,12S1| < |T1B ,12S1| 3.ii
rl ≤ rs, |D12,12S1| < |L1B ,1S1|, xW4,12

< xD12,12
, ru ≤ |OT1B ,12| 3.iii.a

|L1A,1S1| < |D12,12S1|, xW4,12
< xD12,12

, ru ≤ |OT1A,11| 3.iii.b
rl ≤ rs, |OD12,12| < rl, xW4,12

< rl sin(θs/2), ru ≤ |OT1B ,12|, |L1B ,1S1| < |T1A,12S1| 4.i.a
|OD12,12| < rl, xW4,12

< rl sin(θs/2), ru ≤ |OT1A,11|, |OT1B ,12| < |OT1A,11| 4.i.b
|OD12,12| < rl, xW4,12

< rl sin(θs/2), ru < |OW3,12|, |OT1B ,12| < rl 4.ii
rl ≤ rs, |D12,12S1| < |L1B ,1S1|, xW4,12

< xD12,12
, |OD12,12| < |OW3,12| ≤ ru 4.iii.a

|L1A,1S1| < |D12,12S1|, xW4,12
< xD12,12

, |OD12,12| < |OW3,12| ≤ ru 4.iii.b
rl ≤ rs, |OD12,12| < rl, xW4,12

< rl sin(θs/2), |OW3,12| < ru, rl < |OT1B ,12|,
|OT1A,11| < |OT1B ,12|, |L1B,1S1| < |T1A,12S1| 5.i.a
|OD12,12| < rl, xW4,12

< rl sin(θs/2), |OW3,12| < ru, rl < |OT1A,11|,
|OT1B ,12| < |OT1A,11| 5.i.b
rl ≤ rs, |D12,12S1| < |L1B ,1S1|, xW4,12

< xD12,12
, ru < |OW3,12|, |OT1B ,12| < ru 5.ii.a

|L1A,1S1| < |D12,12S1|, xW4,12
< xD12,12

, ru < |OW3,12|, |T1A,11S1| < |U1A,1S1| 5.ii.b
rl < |OW4,12| < |OM12|, |OD12,12| < |OW4,12| < |OM12|, ru < |OW3,12|,
rl < |OT1A,12| < ru, rl < |OT1B ,12| < ru 5.iii
|OD12,12| < rl, xW4,12

< rl sin(θs/2), ru < |OW3,12|, rl < |OT1B ,12| < ru,
|OT1A,11| < |OT1B ,12| 6.i.a
|OD12,12| < rl, xW4,12

< rl sin(θs/2), ru < |OW3,12|, rl < |OT1A,11| < ru,
|OT1B ,12| < |OT1A,11| 6.i.b
|OD12,12| < |OW4,12| < |OM12|, xW4,12

< rl sin(θs/2), ru < |OW3,12|,
rl < |OT1A,12| < ru, ru < |OT1B ,12| 6.ii
rl < |OW4,12| < |OM12| , |OD12,12| < |OW4,12| < |OM12| , |OW3,12| < ru,
|OM12| < |OT1B ,12| 6.iii
rl < |OW4,12| < |OM12|, |OD12,12| < |OW4,12| < |OM12|, ru < |OW3,12|,
rl < |OT1A,12| < ru, rl < |OT1B ,12| < ru 7.i
xW4,12

< rl sin(θs/2) , |OD12,12| < |OW4,12| < |OM12| , |OW3,12| < ru,
|OM12| < |OT1B ,12| 7.ii
xW4,12

< rl sin(θs/2), |OD12,12| < |OW4,12| < |OM12|, ru < |OW3,12|,
rl < |OT1A,12| < ru, rl < |OT1B ,12| < ru 8
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Table 3. Piecewise Formulation for 2-fold Coverage AreaA′
2×,12

Shape Type 2-fold Coverage AreaA′
2×,12

2 2AΣ(R, |W3,12W4,12|)
3.i AΛ3

(rl, R, |A1,1A2,2|, |A1,1W3,12|, |A2,2W3,12|)
3.ii AΛ4

(ru, R, |B1,1B2,2|, |B1,1W4,12|, |B2,2W4,12|)
3.iii.a AΛ5

(ru, |U1B ,1U2B ,2|, |U1B ,1D12,12|, |U2B ,2D12,12|)
3.iii.b AΛ5

(ru, |U2A,2U1A,1|, |U2A,2D12,12|, |U1A,1D12,12|)
4.i.a AΠ1

(ru, rl, U1B ,1, U2B ,2, L2B ,2, L1B,1)
4.i.b AΠ1

(ru, rl, U2A,2, U1A,1, L1A,1, L2A,2)
4.ii AΠ2

(ru, rl, R,B2,2, B1,1, A1,1, A2,2)
4.iii.a AΠ3

(R,R,W3,12, T2B ,21, D12,12, T1B,12)
4.iii.b AΠ3

(R,R,W3,12, T1A,11, D12,12, T2A,22)
5.i.a AΠ1

(R, rl,W3,12, T2B,21, L2B ,2, L1B ,1)+
AΛ5

(R, |T1B ,12W3,12|, |W3,12L1B ,1|, |L1B,1T1B ,12|)
5.i.b AΠ1

(R, rl,W3,12, T1A,11, L1A,1, L2A,2)+
AΛ5

(R, |T2A,22W3,12|, |W3,12L2A,2|, |L2A,2T2A,22|)
5.ii.a AΠ4

(ru, R,R,B2,2, B1,1, T2B ,21, T1B ,12)+
A△(|T2B ,21D12,12|, |D12,12T1B ,12|, |T1B ,12T2B ,21|)

5.ii.b AΠ4
(ru, R,R,B2,2, B1,1, T1A,11, T2A,22)+

A△(|T1A,11D12,12|, |D12,12T2A,22|, |T2A,22T1A,11|)
5.iii AΠ5

(ru, U1B ,1, U2B ,2, T2A,21, T1A,12)+
AΛ6

(R,R, |T2A,21W4,12|, |W4,12T1A,12|, |T1A,12T2A,21|)
6.i.a AΠ1

(ru, rl, B2,2, B1,1, L2B ,2, L1B ,1)+
AΛ5

(R, |B1,1T2A,21|, |T2A,21L2B ,2|, |L2B,2B1,1|)+
AΛ5

(R, |T1B,12B2,2|, |B2,2L1B ,1|, |L1B ,1T1B,12|)
6.i.b AΠ1

(ru, rl, B2,2, B1,1, L1A,1, L2A,2)+
AΛ5

(R, |B1,1T1A,11|, |T1A,11L1A,1|, |L1A,1B1,1|)+
AΛ5

(R, |T2A,22B2,2|, |B2,2L2A,2|, |L2A,2T2A,22|)
6.ii AΠ5

(ru, U1B,1, U2B ,2, T2A,21, T1A,12) +AΠ6
(rl, R,R,A1,1, A2,2, T1A,12, T2A,21)

6.iii A�(T2B ,21, T2A,21, T1A,12, T1B,12)+
AΛ6

(R,R, |T1B ,12W3,12|, |W3,12T2B ,21|, |T2B,21T1B ,12|)+
AΛ6

(R,R, |T2A,21W4,12|, |W4,12T1A,12|, |T1A,12T2A,21|)
7.i AΠ4

(ru, R,R,B2,2, B1,1, T2B ,21, T1B ,12) +A�(T2B ,21, T2A,21, T1A,12, T1B ,12)+
AΛ6

(R,R, |T2A,21W4,12|, |W4,12T1A,12|, |T1A,12T2A,21|)
7.ii AΛ6

(R,R, |T1B ,12W3,12|, |W3,12T2B ,21|, |T2B,21T1B ,12|)+
A�(T2B ,21, T2A,21, T1A,12, T1B ,12) +AΠ6

(rl, R,R,A1,1, A2,2, T1A,12, T2A,21)
8 AΠ4

(ru, R,R,B2,2, B1,1, T2B ,21, T1B ,12) +A�(T2B ,21, T2A,21, T1A,12, T1B ,12)+
AΠ6

(rl, R,R,A1,1, A2,2, T1A,12, T2A,21)
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2 3.i 3.ii 3.iii.a 3.iii.b

4.i.a 4.i.b 4.ii 4.iii.a 4.iii.b

5.i.a 5.i.b 5.ii.a 5.ii.b 5.iii

6.i.a 6.i.b 6.ii 6.iii 7.i

7.ii 8

Figure 4. Taxonomy of Overlap AreasA′
2×,12 (shaded black)

PARTIAL CONDITIONS ON THE EXISTENCE OF 2-FOLD COVERAGE

This section aims to determine explicitly the coverage multiplicities present for a given constel-
lation at an instant in time using arguments based on shell intersections. Due to the complexity of
this endeavor, exhaustive conditions are outside the scopeof this paper. However, partial conditions
are provided to illustrate a basic approach that could be used to derive the remaining conditions.

In a sense, coverage multiplicities are created and destroyed systematically. There are several
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ways in which this can occur, but to adhere to previously madeassumptions, the conditions pre-
sented here focus on one of these ways in which coverage multiplicities are manifested. Necessary
conditions for the existence of 2-fold coverage (or less) for adjacent satellites are

m1,1 6= m2,2

d12 < 2R

‖OD12,12‖ < ru

(43)

Sufficient conditions are
|HS2| < R (44)

whereH is an auxiliary point defined in Table4, covering all possible parameter configurations. A
detailed derivation of these results is omitted, but a briefexplanation follows. Notice in Figure3
that a line drawn from the origin toW3,12 bisects the regionC ′

2×,12. By definition, 2-fold coverage
is created at a pointH on this bisector and within the region of interest. In the absence of altitude
shells, 2-fold coverage would be created at the midpointH = M12, but when altitude shells are
taken into account, the location ofH depends on the satellite altitude and other factors. Also, note in
Table4 the modified notation(D12,12)y = yD12,12 . To ensure that no coverage multiplicities greater
than two exist, a condition is imposed stating that tripletsof adjacent satellites cannot intersect:

d2n ≥ 2R (45)

which precludes the existence of coverage multiplicitiesp ≥ 3.

Table 4. Sufficient Condition Flow Chart for Existence of Coverage Multiplicity p = 2

Conditions H
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≤
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PARAMETER SPACE AND VALIDATION OF NUMERICAL METHODS

With the preceding analysis complete, initial explorationof the parameter space can be per-
formed. Figures5-7 show three possible types of behavior for how the total coverage area varies
with satellite altitude,hs, when all other parameters are held fixed. Figure5 shows a case where
there is a clear optimal satellite altitude corresponding to a maximum coverage area provided by the
constellation. Under other conditions, as shown in Figure6, saturation can occur at low satellite alti-
tudes; these are regimes in which varyinghs offers no coverage benefit. Another interesting artifact
of total coverage area is observed in Figure7, where a sharp corner is apparent nearhs ≈ 10, 820
km. The explanation for this is that the overlap area shapeC ′

2×,12 changes type rapidly over a small
range — approximately 70 km — of satellite altitude.

Another purpose of this analysis is to provide an analyticalmeans of validating the numerical
process proposed by Takano.5,6 The numerical algorithm employed by Takano is generally applica-
ble to the time-varying and the time-invariant case, with generalized sensor profiles. However, since
closed form solutions are not available in the generalized case, an intermediate step is to validate
a set of simplified cases, such as those discussed here. For example, the simulation results pre-
sented in Figures5-7 do not encompass all possible scenarios, but do validate a subset of satellite
configurations in a single circular orbit against the numerical model derived by Takano.5,6
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Figure 5. Total coverage area vs. satellite altitude (Example 1) is a continuous smooth
curve: Optimal altitude corresponds to maximum coverage area

Figures5-7 compare analytical and numerical results for continuous coverage area by fixing
all parameters and then increasing the satellite altitude.Further notice that the fixed parameter
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Figure 6. Total coverage area vs. satellite altitude (Example 2) is a continuous smooth
curve: Maximum coverage area saturation observed at low altitudes

values are different in each simulation. The present study seeks to provide complete validation of
the numerical process under the stated simplified set of assumptions, including the constellation
coverage area calculation and the 2-fold coverage constraint. The numerical approach5,6 considers
a cost index determined numerically through the synthesis of computer graphics methods. The
process employed here, in contrast, provides validation with an analytically determined cost index.

CONCLUSION

The problem of constellation design for space-based space situational awareness applications is
considered from an analytical perspective. First, geometrical arguments are employed to establish
an analytical formulation for coverage area provided by a planar constellation of equally spaced
satellites with omnidirectional sensors. This leads to a piecewise differentiable exact representation
for the coverage area provided by the constellation above the horizon of each satellite. Analyti-
cal conditions for coverage multiplicity are also established. The results of this investigation are
successfully validated against a generalized numerical algorithm developed under a parallel study.
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