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System Description

» Hybrid System Dynamics

y=F(ty,u)
» Continuous States
y = [ um]”
vy € R
» Discrete Controls
w o= [ur - un,]"

u, € U;= {ﬂi,lv cee 7ﬂi»mi}

» Examples

Switched Systems

Task Scheduling and Resource Allocation Models
On-Off Control Systems

Control Systems with Saturation Limits
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Solving an Optimal Control Problem Numerically
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Minimize J = é(to, Yo, tr, Ys) + j;tof L(t,y,u) dt
subject to
y = f(tyu),
0 = o(to,yo),
0 = Btyu)
\ ?
Minimize J = F(x)
subject to
_ T T T T T _
clx) = [cy (x) Co (z) Cyp, () c5 (:l:)] =0
NLP Solver
o = = =
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FSCT Method Overview

Background
>

FSCT Method Overview

» Parameter vector consists only of states and times

» Control history is completely defined by

> Pre-specified control sequence

> Control value time durations, At; j, between switching points
» Key parameterization factors

ny Number of States

n., Number of Controls

n., Number of Nodes

ni Number of Knots

ns Number of Segments (ns = nyng + 1)

Stanton, Marchand



FSCT Method Overview

T=[ Yijh o Abig - totf]T
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Two Stable Linear Systems

¥y = fly,u)= Ay,
u € {1,2},
where
-1 10 -1 100
Al_[—lOO —1]’ A2_[—10 —1}
ot [ T e-Fosl
() u=1 (b) u =2

Figure: Individually Stable Systems
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Two Stable Linear Systems

> Several switching laws

(a) Unstable wed L 91y2<0
2, otherwise

(b) Stable w= 1L, y1>y2
2, otherwise

(c) Stable w=1 L y' Py <yPay
2, otherwise

where P, A, + AZPU =TI
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Two Stable Linear Systems

» FSCT Optimization J=F(z)=t; —to

yiy, =1

rs(;) o rs(b) o

Figure: FSCT Locally Optimal Switching Trajectories

» Optimization implies the switching law

1, —Li<<gnm
u = m =y =
2, otherwise
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2-Dimensional Lunar Lander

» Dynamics

» Controls

U1

uz

» Initial and Final

71
T2
U1
U2

€ {-50, 0, 50} m/s
€ {-20, 0, 20} m/s

Conditions

ro = [20015]" km
vo = [-1.70]" km/s
ryp = 0

vy 0
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2-Dimensional Lunar Lander

Minimum Time Minimum Fuel
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Figure: Optimal Solutions for the Minimum-Time (a) and Minimum-Fuel (b)
Lunar Lander Problem
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Small Spacecraft Attitude Control

Small Spacecraft Attitude Control: Fixed Thrust

>

>

Fixed thrust cold gas propulsion for
arbitrary attitude tracking

> Reference trajectory defined by Ty
and "w*(t)
Minimize deviations between body frame
and reference frame with minimum
propellant mass consumption

J = Pipy — Pamy;

tf . tf r b T r b
pf—po=/ pdt:/ (qv) (qv)dt-
to t

0

b wz
. _ » where u; indicates for each principal
m =ftyu . K L. .
P (ty,u) axis whether the positive-thrusting
"q" pair, the negative-thrusting pair, or
» neither is in the on position
- - =} = - = =
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Small Spacecraft Attitude Control: Fixed Thrust

——  Actual Trajectory

““““““ Desired Trajectory

Quaternions: Actual vs. Desired Angular Velocity: Actual vs. Desired




Small Spacecraft Attitude Control: Variable Thrust

. . Valve Core Momon
» Variable thrust cold gas propulsion

Valve Core Rod
> Valve rod modifies nozzle throat area
» Include additional states to model
variable thrust x
> Resulting dynamics are still hybrid

» States and Controls

- qu -
b w K Nozzl‘e_’I.‘hroat
_ sz = | w; € {0,1}
v= | a €{-1,0,1}
v
Tqi
L P

» w; indicates whether the it" thruster pair is on or off
> a; indicates the acceleration of the valve core rods of the i*! thruster pair
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Small Spacecraft Attitude Control: Variable Thrust

——  Actual Trajectory

““““““ Desired Trajectory

Quaternions: Actual vs. Desired Angular Velocity: Actual vs. Desired




Conclusions

Conclusions

» This investigation explores the range of applications of the FSCT
method

> The applicability of the method extends to all engineering disciplines
» FSCT vs. Multiple Lyapunov Functions
> Optimal control laws may be extracted whose performance exceeds
those derived using a Lyapunov argument
» Multiple independent decision inputs managed simultaneously

> Solutions derived via the FSCT method are utilized in conjunction
with a hybrid system model predictive control scheme
> Optimized control schedules can be realized in the context of potential
perturbations or other unknowns
» Some continuous control input systems may be more accurately
described as systems ultimately relying on discrete decision variables
> Continuous control variables may often be extended into a set of
continuous state variables and discrete inputs
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