
AAS 09-121

FINITE SET CONTROL TRANSCRIPTION FOR OPTIMAL
CONTROL APPLICATIONS

Stuart A. Stanton ∗† and Belinda G. Marchand ‡

Previous efforts explore an enhanced collocation method designed to treat optimal control
applications in which control variables are constrained to finite sets of values. Presently,
the method is applied to several aerospace control problems to demonstrate its utility and
capability. On-off actuation schemes are ideally represented with constrained control. The
behavior of variable-thrust actuators is modeled by limiting control change rates to a finite
space. Solutions derived are characterized as optimal switching schedules between feasible
control values. The methodology allows control switches to be determined over a continuous
spectrum, overcoming many of the limitations associated with discretized solutions.

INTRODUCTION

Prevalent in many engineering fields are systems composed of interdependent continuous and discrete com-
ponents or variables. Although processes exist in nature that are accurately modeled with only continuously-
varying dynamics, it is often the case that some level of decision-making occurs in the process. The decision
is made by any number of sources, from natural to man-made technologies, but it is clear that the selection
is among a discrete number of options. Thus, a hybrid system results, exhibiting continuously-varying and
discretely-chosen components. It is observed in the literature that this often takes on a hierachical structure,
where continuous or time-driven dynamics exist at the lower levels and discrete or event-driven dynamics
exist at the higher levels.1,2

The hybrid control problem motivates methods for determining continuous and discrete control variables
that affect a hybrid system. The challenge clearly lies in the dual structure of the problem; although strictly
continuous and strictly discrete control methods exist, there is room for developing the methods that treat
hybrid systems in the sense of stability and optimality. Existing techniques generally extend the theory of
either continuous or discrete systems, using, for example, Lyapunov theory,3,4,5 classical optimal control
theory,2,6 or combinatorial techniques.1,7

One of the common limitations in existing methods is that they are only able to consider the case of a
single discrete variable. That is, at any given time, there is only one decision to make (from some number of
options). Additionally, methods have been developed to treat special cases or specific classes of problems.
Ideally, methods may be developed that produce results for a broad range of system scenarios, with any
number of separate decision variables.

In earlier studies,8 a new method for treating a class of hybrid control problems involving discrete control
variables is introduced. The implementation for the Finite Set Control Transcription (FSCT) method is pre-
sented in detail, and its capability is sampled. The objective of the current investigation is to further explore
the capability and utility of the method by demonstrating a range of applications. In so doing, the scope
of the method is characterized, ideally inspiring additional applications outside those presented here. The
applications presented in this investigation are focused on aerospace systems, as these served to motivate the
method’s development.
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General Problem Statement

The hybrid system under consideration for this investigation is governed by the dynamics

ẏ = f(t,y,u), (1)

where the vector,y ∈ Rny , represents continuous state variables, andu consists ofnu control elements
limited to finite values as

ui ∈ Ui = {ũi,1, . . . , ũi,mi} .

The function,f , describes the continuous variation of the states in terms of time,t, and the present values for
each state and control.

At first glance, this formulation appears to limit the method to a specific class of hybrid systems: all states
are presented as continuous, all controls discrete. Thus, systems with discrete states or continuous controls
are apparently excluded. Previously, the implementation carried this limitation. However, the FSCT method
can be tailored to include continuous state and control variables withiny and, likewise, discrete states and
controls inu to allow for a more general treatment of hybrid systems. The necessary adjustments, however,
are specific to the system under consideration, and therefore that aspect is not discussed here. However, it is
observed that many control variables traditionally modeled as continuous may be more accurately described
by a combination of continuous dynamic states and discrete controls. This characteristic is demonstrated
later in this document. Thus, the formulation of Equation1 is not necessarily restrictive. For continuity and
clarity, in this study the termstateimplies a continuous variable, whilecontrol, a discrete one.

This paper is presented as a series of applications designed to demonstrate the capability of the FSCT
method. Throughout, results are compared with those produced using alternative hybrid control methods to
articulate particular advantages or ways in which multiple methods can be used in tandem.

• The stability of a switched linear system is considered. In each control mode, the system is stable,
but certain switching structures result in instability. The FSCT method is contrasted with a technique
involving Multiple Lypunov Functions.

• Minimum-time and minimum-fuel optimizations for a simple system in two dimensions is reviewed.
An FSCT optimal solution is implemented by a real-timeModel Predictive Controllaw.

• Attitude control for a small spacecraft using inexpensive cold-gas thruster technology is explored. The
FSCT method is used for trajectory tracking with fixed thrust and variable thrust dynamic schemes.

Background knowledge of the FSCT method is necessary to the following demonstration. Thus, this docu-
ment proceeds with an overview of the methodology presented previously.8

FSCT METHOD OVERVIEW

The Finite Set Control Transcription is a formulation of the hybrid optimal control problem as a parameter
optimization problem that can be solved using a standard Nonlinear Programming (NLP) algorithm, such
as SNOPT.9 The following overview is intended for the reader possessing a general understanding of direct
optimization techniques for continuously-varying parameters. Note that, although the method demonstrated
here is rooted in direct collocation, alternative formulations exist that capitalize on the structure of indirect or
direct shooting methods.

In the most basic sense, the object of a transcription formulation is to convert the optimal control problem
formulated as,

MinimizeJ = φ(t0,y0, tf ,yf ) +
∫ tf

t0

L(t,y,u) dt

subject to

ẏ = f(t,y,u),
0 = ψ0(t0,y0),
0 = ψf (tf ,yf ),
0 = β(t,y,u),



into an NLP problem of the form,
Minimize F (x) (2)

subject to

c(x) =
[
cTẏ (x) cTψ0

(x) cTψf
(x) cTβ (x)

]T
= 0. (3)

Ultimately,xmust contain the information necessary to expressy(t) andu(t) for t ∈ [t0 tf ]. In the resulting
NLP problem, an initial guess forx is iterated upon until arriving at a feasible and locally optimal set of
values. Note that each problem has a cost function to minimize as well as constraints for the dynamics, initial
and final conditions, and any path constraints imposed on the system. In the above problem definitions, all
constraints are presented as equalities, however, extensions certainly exist for inequality constraints, as well.
The nature of the transcription formulation dictates both the definition of the parameter vector,x, and the
number and forms of the constraint functions inc(x) in the resulting parameter optimization problem. The
details of how constraint functions are generated is outside the scope of the current development, although
this process is articulated in the previous investigation. Let it suffice here to present the definition ofx as
optimized in the FSCT formulation, knowing that it is possible to devise Equations2 and3 to ensure that the
original optimal control problem is well represented.

Consider the following definition of the parameter vector used for an optimization with the FSCT method.

x = [· · · yi,j,k · · · · · · ∆ti,k · · · t0 tf ]
T (4)

The vector,x, contains parameters that represent states,yi,j,k, and times∆ti,k, t0, andtf . One of the key
features of this parameterization is that control variables are not among the parameters to be optimized. This
is unusual: most collocation and direct shooting methods optimize parameters that directly represent control
variables. However, in this case, a unique parameterization is necessary since the controls are discrete vari-
ables, while the elements ofx, by the nature of nonlinear programming, are necessarily treated as continuous
variables (although perhaps bounded and subject to constraints). Demonstrated presently, a control history is
completely defined by the time elements in the parameter vector.

Let the trajectory defined from initial time,t0, to final time, tf , be broken up intons segments. The
interior separation times between segments are termedknots. These represent instances of time when the
discrete control variables switch from one feasible value to another. Suppose each control variable is allowed
nk switches betweent0 andtf . The result is thatns = nunk + 1, and each control is held constant over each
segment.

Definenn as the number of nodes per segment. Anodeis a point in time at which the values of the state
variables are contained within the parameter vector. Specifically, elementyi,j,k in Equation4 represents the
ith state at thejth node of thekth segment. Thenx containsnynnns elements pertaining to all of the states at
each node. These state values are used directly in the cost and constraint Equations2 and3.

The elements∆ti,k inx indicate the elapsed time between two control switches for a given control variable.
Specifically,∆ti,k indicates the amount of time that passes between the control switches at the(k − 1)th and
kth knots for theith control variable.

The values for eachui are pre-specifiedbetween each switching point. Thus,u∗i,k indicates the pre-
specified value of theith control variable before thekth knot. With a discrete number of feasible values,
it is possible to setnk large enough such that each possible control value is designated as the actual control
value for some duration. During the optimization, the values of∆ti,k are determined, indicating the amount
of time (possibly, zero) that each control value is maintained.

The transcription definition is best interpreted with a visualization, such as Figure1. In this conceptualiza-
tion, consider the hybrid control problem withny = 2 states andnu = 2 controls, whereU1 = {1, 2, 3} and
U2 = {−1, 1}. Next, assume the transcription is selected such thatnn = 4 nodes per segment andnk = 5
switching points per control variable. Thus, the number of segments isns = (2)(5) + 1 = 11 segments.

It is apparent from Figure1 that each control variable may take up tonk + 1 = 6 different values
over the trajectory duration. Arbitrarily, the control values are pre-specified so that each control variable
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Figure 1. The Parameters ofx

systematically switches between the feasible values for that variable. Note that some feasible control val-
ues may not be members of the optimal solution. However, through the NLP algorithm, the time durations
between switching points are optimized. If one of the pre-specified control values is unnecessary or non-
optimal, then the value of the respective time duration is reduced to zero.

Figure1 further illustrates that the node distribution is not necessarily uniform over the interval[t0 tf ].
The duration of each segment is dictated by the current values of∆ti,k. Thenn = 4 nodes per segment are
evenly distributed over a segment, but for shorter segments, this means a closer spacing between nodes. Thus,
the state values contained inx may pertain to dense or sparse regions, depending on the time parameters in
x.

It is also important to note that two nodes are associated with a given knot: the terminal node from the
preceding segment and the initial node from the following segment. Therefore, in this parameterization,
two sets of state values are contained inx for the times at each knot. For a feasible solution, continuous
state variables will have identical values at simultaneous nodes. Constraints inc(x) are included to enforce
continuity across segments. Of course, these constraints are not always satisfied on intermediate iterations of
the solution process. For example, in Figure1, the statesy2 are not continuous. Subsequently, thisx does
not represent a feasible solution. During the FSCT optimization process, elements ofx are updated to ensure
that, upon completion, the continuity constraints are satisfied.

Additional constraints are included inc(x) to ensure that

0 = tf − t0 −
nk+1∑

k=1

∆ti,k, i = 1, . . . , nu.

Also, at all times,∆ti,k ≥ 0 so that there are no negative time intervals.

By pre-specifying the control values, a collocation transcription results in which control switching times
are optimized to indicate an optimal control history over all of the feasible control values. Multiple control
variables are easily managed and treated completely independently. The control variables for a given segment
necessarily affect the hybrid system dynamics, and they are included in appropriate constraint equations for
that segment. As the NLP algorithm searches for a feasible and locally optimal set of parameters, the state
values are modified at each node so that, upon completion, the state and control histories represent a matching,
feasible trajectory.



The total number of feasible values for a control variable,mi, should have a significant effect on the
choice ofnk, the number of switching points allowed over the trajectory. Clearly, whennk À max(mi),
it is possible to pre-specify each control value over several time durations, allowing more flexibility in the
resulting NLP problem and a greater likelihood to converge on a small local minimum. However, asnk gets
larger, the sizes ofx andc(x) also increase, which may complicate, or at least slow down, the optimization
process. This characteristic indicates the primary limitation of the FSCT method. In order to perform an
optimization, a user must specifynk, thus limiting the number of control switches to some maximum value.

In practice, it is useful tooverparameterizea problem by settingnk to an arbitrarily high value, allowing for
more control switches than are ultimately necessary. Overparameterizing allows the optimizer to demonstrate
the optimal number of switches (less than the parameterized number) by driving to zero the duration of
superfluous control values. The overparameterization also allows the user additional flexibility to arbitrarily
pre-specify control values, knowing that non-optimal control values are ultimately eliminated in the final
solution. Indeed, in the examples that follow, the concept of overparameterization is employed. Consequently,
ensuing solutions may display features that are ultimately artifacts of the parameterization. For example, two
knots may occur simultaneously, appearing as though the control switches from one value to another and
then instantaneously to a third. In the parameterization, zero-duration segments are present, indicating that
particular pre-specified control values are effectively eliminated from the solution.

TWO STABLE LINEAR SYSTEMS

Although the FSCT method is especially effective for multiple control variables, consider first a system
controlled by only one decision. The system is

ẏ = f(y, u) = Auy, (5)

u ∈ {1, 2} , (6)

A1 =
[ −1 10
−100 −1

]
, A2 =

[ −1 100
−10 −1

]
.

Thus, the system is characterized by two separate dynamical modes, and the decision variable determines
which of the two is in play at any given time. Notice that individually, each mode is a linear, time-invariant
system guaranteeing exponential stability at the origin,y = 0.

This example is presented by Branicky3,4 as a classical demonstration of how multiple Lyapunov functions
can be used to develop switching laws for the system. It is intriguing in that, although individually stable,
one cannot arbitrarily switch between dynamical modes and guarantee system stability. Branicky shows, for
example, a switching law devised such thatu = 1 wheny is in Quadrants 2 and 4, andu = 2 wheny is in
Quadrants 1 and 3. From any point, the trajectory goes to infinity as illustrated in Figure2(a). However, this
is not the case for all switching functions. For example the law that switches modes wheny crosses the line
y2 = y1 results in a stable system converging on the origin (Figure2(b)).

The characteristics of the system can be explained via Lyapunov analysis, which follows. The technique of
multiple Lyapunov functions is intuitively applied since the switched system consists of multiple dynamical
modes. Subsequently, the FSCT method is applied to demonstrate an alternative analysis technique for de-
termining stable (and optimal) switching laws. This system presented in Equations5-6 serves as an excellent
example, since each method can be exercised in a graceful manner due to the inherent simplicity of the lin-
ear system. In addition, this example capitalizes on the familiarity of linear systems and Lyapunov stability
theory to the general reader.

Stability via Multiple Lyapunov Functions

The key feature of the switching law of Figure2(b) that guarantees stability is that the system remains in
both modes for exactly one half of a revolution between each switch. Recall that the two state linear system
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Figure 2. Three Switching Laws

with complex eigenvaluesλ1,2 = α± jω and corresponding eigenvectorsv1,2 = a± jw has solution of the
form

y(t) = eAty0 = eαt
[
a w

] [
cosωt sin ωt
− sin ωt cosωt

] [
a w

]−1

y0.

Then, one half revolution later from any point,

y
(
t +

π

ω

)
= eα(t+

π
ω )

[
a w

] [
cos ω

(
t + π

ω

)
sin ω

(
t + π

ω

)
− sin ω

(
t + π

ω

)
cos ω

(
t + π

ω

)
] [
a w

]−1

y0 = −eα
π
ω y(t),

provided that the system remains in the same mode over that time. Thus, forα < 0 (a stable system), the
functionV = yTy, which represents in a sense the energy of the system, is guaranteed to be smaller after
one half of a revolution. Consistent switching at intervals ofπ

ω ensures an incremental decrease in system
energy, resulting in convergence to the origin.

Other stable switching structures may also be obtained with a more classical Lyapunov argument. Consid-
ering each stable dynamical mode,Au, separately, there exist symmetric positive definite matrix pairs,P u

andQu, such that
P uAu +AT

uP u = −Qu. (7)

Stability for the mode is demonstrated through the Lyapunov function,

Vu = yTP uy > 0,

with negative time derivative,

V̇u = yTP uẏ + ẏTP uy = −yTQuy < 0.

This standard analysis method offers a way of defining a stable switching law according to the behavior
of the Lyapunov functions for each mode. For example, defineQ1 = Q2 = I for simplicity. Then the
Lyapunov Equation7 can be solved uniquely to yieldP 1 andP 2, corresponding to their respective modes.
In this case, it is observed that regardless of the current mode, the energy of the system decreases according
to −yTQuy = −yTy. However,V1 6= V2, and a reasonable switching law can be selected such that the
Lyapunov function is minimized.5 Thus,

u =
{

1, V1 ≤ V2

2, V1 > V2
.

A trajectory implementing this switching law is illustrated in Figure2(c).

Optimal Switching via FSCT Method

The method of multiple Lyapunov functions demonstrated above can be effective in determining switching
strategies between a finite number of system modes identified through a single decision variable. Variations



on the theme arise by choosing the minimumV̇u instead ofVu for some candidate Lyapunov functions, or by
minimizing some combination of the two.5 With an infinite set of stable switching laws, a question remains
regarding efficiency and robustness. Although many criteria may be chosen to rank the effectiveness of a
switching structure, a simple criterion is presently selected to demonstrate how the FSCT method can aid in
the realization of an appropriate switching law. For this example, consider the objective of minimizing the
time needed to move a point from its initial position to the vicinity of the origin. Naturally, the trajectory will
never go through the origin, aseαt > 0 always. However, by choosing a region near the origin, a terminal
condition for the optimal control problem is established. Let the final point be subject to

yTf yf = 1,

such that the objective is to cross the boundary of the unit circle in minimum time, starting from the initial
point, y0 = [10 10]T . The optimal control law indicates when to switch between the dynamical modes of
A1 andA2 to most efficiently guide the trajectory to the terminal manifold.

The FSCT method is well equipped to solve this optimal control problem. Actually, many of the unique
characteristics of the solution method are not exercised by this example due to the fact that the problem
consists of only one decision variable. The total number of segments is exactly the number of pre-specified
control values, and consequently, the control characteristics of each segment are known a priori. Thus, the
optimization process simply determines appropriate switching times between segments.

To begin the process, a user selects the number of knots, indicating the total allowable control switches
over the course of the trajectory. Letnk = 20 knots for an initial optimization, and pre-specify control values
such that

u∗k =
3
2

+
1
2
(−1)k,

indicating thatu begins at the value 1 and alternates between 1 and 2 over each ofnk + 1 = 21 segments.
Additionally, a user selects a node count that sufficiently captures the state dynamics between control switches
when state continuity conditions are satisfied. For this example,nn = 100. Appropriate knot conditions are
identified to ensure state continuity across segments, and the optimization function,J = F (x) = tf − t0,
completes the FSCT formulation.

A preliminary guess is necessary to conduct the nonlinear optimization. The initial point,x0, is generated
using an interpolation of the trajectory determined by the minimum Lyapunov function switching law of
Figure2(c) over the time intervalt ∈ [0 3]. Thus, the preliminary cost of the optimization is3, a reasonable
estimate considering this trajectory first crosses the unit circle at timet = 3.17. The knots (switching times)
between dynamical modes are uniformly spaced in time from0 to 3. Thus, the preliminary guess does not
satisfy the continuity constraints: the guessed control switches do not correspond to the control switches of
the interpolated states. This is acceptable, as the optimization process ensures that the final solution is feasible
as well as locally optimal.

An FSCT optimization applied for the selected initial guess leads to the trajectory illustrated in Figure
3(a). The final time istf = 0.3782, significantly smaller than the initial guess. The solution is feasible,
and three control switches are clearly observable by the corners in the trajectory. With 20 knots, then, it
is apparent that 17 possible control switches are not utilized. Indeed, the solution consists of many knots
occurring simultaneously, resulting in zero-duration segments. Thus, the transcription is overparameterized
for this solution. Observe that the control switches occur at the following states:

[
y1

y2

]

k=1

=
[ −9.3125

3.3180

]
,

[
y1

y2

]

k=2

=
[

1.5297
4.2932

]
,

[
y1

y2

]

k=3

=
[ −1.7921

0.6385

]
.

Notice that the switching points are related, as

−
(

y1

y2

)

k=1

=
(

y2

y1

)

k=2

= −
(

y1

y2

)

k=3

≡ m.
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Figure 3. FSCT Locally Optimal Switching Trajectories

This ratioimpliesthe switching law

u =
{

1, − 1
m ≤ y2

y1
≤ m

2, otherwise
(8)

wherem = 2.8067. It is important to observe that the trajectory that resulted from the FSCT optimization
shows control switches in only Quadrants 1 and 2, while the control law in Equation8 observes switches in
each of the four quadrants. The difference is explained through the realization that the solution method is
capable of determininglocally optimal solutions, most likely in the vicinity of the initial guess. Obviously,
the solution is only a local minimum, as the trajectory actually crossed the terminal radius at one point before
the final time. In this case, the initial guess and the parameterization leads to a solution with only three
observable control switches. However, the symmetry of the trajectories generated in either dynamical mode
imply that there should also exist symmetry in the switching law. This intuition leads to Equation8. To
validate this control law, a second optimization problem is solved, this time with a new initial guess. For
the second optimization, the states and control switch times of the initial guess are generated using Equation
8. Optimizing this initial guess, the trajectory of Figure3(b) is determined. Validating the control law, this
second solution corresponds perfectly to the initial guess,exceptthat in the final solution,m = 3.0979, a
slightly larger slope for the switching line. However, the cost is even further improved, withtf = 0.0870.

The fact that the slope value,m, changes between the two optimizations is not overly surprising. One
reason for this is simply that, in each case, the solution is a local, not global, minimum. Through further
analysis, it is apparent thatm is a factor of the initial point and the size of the terminal radius, as well.
Indeed, a change to the terminal radius such thatyTf yf = 0.5 yieldsm = 3.7786 in the optimal solution.

The intent of this example is to demonstrate how a classical problem, which can be solved using traditional
control techniques, can also be analyzed using the FSCT method. One advantage of the latter is the ability
to optimize a control solution or control law according to a specified objective. In this case, the final time
is minimized, however it might be equally useful to minimize the integral of the system energy over a fixed
time, for example. Both costs capture, in a sense, the sentiment to drive a trajectory to the origin in an efficient
manner, although both undoubtedly yield different solutions. It is observed, after all, that the trajectories of
Figure3 reach the unit circle quickly, but their control law does not guarantee that the trajectory will remain
within that circle for all future time (it may escape the region and re-enter). Thus, the FSCT method can only
guarantee optimality over the range of time considered, not beyond.

LUNAR LANDER

In a second example, it is useful to revisit the classical Lunar Lander problem explored in the prequel and
in many sources on optimal control theory.10,11,12 The system has 4 states and 2 control variables, in a sense
doubling the complexity of the previous example. Specifically, by implementing multiple control values, the
unique segment-switching characteristics of the FSCT method can be observed while maintaining problem
simplicity and familiarity. The objective of the problem is to transfer a rocket from a lunar orbit to the lunar



surface in minimum time or by using minimum fuel. The dynamics are constructed in two dimensions, where
separate fixed-magnitude thrusters are pointed in the principal directions. The dynamics are described by

ẏ =




ṙ1

ṙ2

v̇1

v̇2


 =




v1

v2

u1

−g + u2


 ,

wherer, v, andu represent position, velocity, and control acceleration, respectively, and the subscripts indi-
cate the horizontal and vertical dimensions. A gravitational constant ofg = 1.6231 m/s2 is utilized. With
initial conditions,r0 = [200 15]T km andv0 = [−1.7 0]T km/s and final conditionsrf = vf = 0, the lander
must achieve a soft landing on a specified target from a completely specified initial state. Both minimum-time
and minimum-fuel optimizations are realized with the finite set control constraints,u1 ∈ {−ũ1, 0, ũ1} and
u2 ∈ {−ũ2, 0, ũ2}, whereũ1 = 50 m/s2 andũ2 = 20 m/s2. The control constraints ensure constant thrust
acceleration during thrusting arcs.

Optimal Minimum-Time and Minimum-Fuel Solutions

Optimal solutions are now demonstrated via the FSCT method. For this example, letnn = 5 nodes per
segment andnk = 14 knots per control axis. In addition, let the pre-specified controls be identified as

u∗i,k = ũi cos
(π

2
(k − 1)

)
.

Thus, it is assumed in the control sequence that the vehicle thrusts initially in the positive directions (uprange
and up), then coasts, then thrusts in the negative directions (downrange and down). The resulting optimiza-
tions determine the appropriate times for all control switches, indicating the durations for each thrusting and
coasting arc.

An initial guess is devised witht0 = 0, tf = 300 seconds, and all knot times are evenly distributed over
the interval such that each segment duration is identical. The state parameters inx are constructed to create
a linear progression in each state from its initial value to its final value. Initial, final, and knot condition
constraints are satisfied by thex supplied to the optimizer before the first iteration, but continuity constraints
are not immediately satisfied. During the optimization process,x is improved such thatall constraints are
satisfied. In addition, the finalx minimizes the objective function, representingJ = tf − t0 for minimum
time orJ =

∫ tf
t0
uTu dt for minimum fuel.

Figure4 displays the solutions of both the minimum-time and minimum-fuel problem. Vehicle positions,
velocities, and controls are plotted for both minimizations. Notice the control historyu1 for the minimum-
time solution. In essence, this solution represents bang-bang control in the first axis, withu1(t) = −ũ1

on t ∈ [0 33.66] seconds, andu1(t) = ũ1 for the remaining time untiltf , at 101.32 seconds. Of course,
this control behavior is expected for a minimum-time optimization. Recall, however, that the pre-specified
initial value foru1 is ũ1. As the illustration demonstrates, there is an instantaneous switch in the control at
t0 = 0 from ũ1 to 0 and then from0 to −ũ1. The solution exhibits that∆t1,1 = ∆t1,2 = 0 in order to
accomplish this. In addition, there are instantaneous switches att = 34.06, 68.65, and 101.32 seconds. At
each of these times there exist time durations∆t1,k for coasting and negative-direction thrusting, and each
has been optimized to be identically zero. This behavior is a common artifact of the FSCT formulation. It
does not indicate that control switches should occur at these times; rather it indicates that the problem has
beenoverparameterizedwith more knots than necessary. However, since control values are pre-specified
in the optimization, it is useful to overparameterize the problem, allowing for more control switches than
needed. Overparameterizing allows the optimizer to demonstrate the optimal number of switches (less than
the parameterized number) by driving to zero superfluous control axis durations. The overparameterization
also allows the user additional flexibility to arbitrarily pre-specify control values, knowing that non-optimal
control values are eliminated in the final solution.

This same behavior is observed for the minimum-fuel optimization displayed in Figure4(b). One may
easily observe that most thrusting arcs are reduced exactly to zero by the optimizer for both control axes.
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Figure 4 Lunar Lander Problem: Minimum-Time (a) and Minimum-Fuel (b) FSCT
Solutions; Model Predictive Controller Simulation (c)

This indicates that far fewer switches were necessary to identify this local minimum, and it provides confi-
dence that the formulation has not underparameterized the problem by providing too few control switching
opportunities.

An important discovery from the Lunar Lander example is the extent by which the FSCT method results in
implementable control solutions. First, it is clear that the solution requires some “interpretation.” Superfluous
control switches must be discounted before implementing the control history. Actuators with minimum on-
times do not support thrust durations approaching zero; however, within the tolerance of the optimization,
zero or near-zero burn durations actually indicate that the respective actuation is not desirable. Clearly, an
optimization must be scaled properly in time to differentiate short actuation times from non-optimal control
sequences. Secondly, once a control solution is adequately interpreted, the performance of the solution
in a continuous time setting can be nearly identical. Although this collocation technique does rely on a
time discretization along each segment, the switching times between control values are optimized over a
continuous spectrum. Therefore, the control solution represents exact switching times within the tolerance of
the optimization.

A Model Predictive Controller for Real-Time Implementation

One potential drawback of the FSCT method is that, while capable of producing optimal control histories
for the finite set control problem, optimal control laws for real-time implementation are not immediately
available. For the general dynamical problem, there is no guarantee that an optimal control solution will
imply a real-time law,u = u(t,y). To compensate for this limitation, a process is now considered by
which FSCT solutions may be implemented in conjunction with a model predictive control design for real-
time implementation of finite control. To begin, a simple model predictive controller is introduced. More
complicated, and perhaps more robust, control designs are beyond the scope of this work, although developed
in the theory on Model Predictive Control.13

Linear Discrete-Time Model.Model Predictive Control (MPC) offers a method for tracking an arbitrary
reference trajectory while optimizing a performance index over a finite time horizon. Specifically, MPC
techniques can be used for tracking (i.e. implementing) an a priori discovered FSCT solution. A basic model
predictive controller is derived using a discrete-time, linear dynamic model of the form,

y(t + ∆t) = A(t)y(t) +B(t)u(t), (9)

z(t) = Cy(t). (10)

Here,z(t) is the measured output from the linear system. In general, then, the nonlinear continuous dynamics
of Equation1 must be transformed into the form of Equations9-10 through appropriate definitions ofA(t),
B(t), andC. It is beyond the scope of this document to demonstrate this transformation.

MPC Control Law. The MPC law exploits the linear discrete-time model to develop estimates for the
observation variables,z(t), at future time intervals, given the current state values. The outputpredictions



are determined for a finite horizon of future times, and current control values are chosen so that these output
estimates are as close as possible to desired values of the nominal trajectory (the FSCT solution). In the
traditional sense, the linear discrete formulation allows controls to be determined by solving a linear equation,
holding constant the control values over the increment∆t. The finite set control nature of the hybrid system
motivates a minor modification to this design, featured presently.

Let the estimate on the output at timet + j∆t, given the states at timet, be denoted aŝz(t + j∆t|t) such
that

ẑ(t + j∆t|t) = Cŷ(t + j∆t|t) (11)

= C
[
Â(t + (j − 1)∆t|t)ŷ(t + (j − 1)∆t|t) + B̂(t + (j − 1)∆t|t)u(t + (j − 1)∆t|t)

]

In this notation, the symbol,̂·, indicates that the variable is estimated for a future time value. Equation11can
be manipulated to show that any future estimate may be expressed as a function ofy(t), the controlsu(t)
throughu(t + (j − 1)∆t), and the estimated values of theA andB matrices through timet + (j − 1)∆t.
Let the predicted future outputs at discrete time intervals be stored in the vector,Z, where

Z =
[
ẑT (t + ∆t|t) · · · ẑT (t + j∆t|t) · · · ẑT (t + p∆t|t)

]T
,

andp is theprediction intervalover which observation variables are stored. Using the simplifying assumption
thatu(t + j∆t) = u(t) over the entire prediction interval, the output can be expressed as

Z = Gy(t) +Ku(t) (12)

with appropriate definitions for the matricesG andK. In Equation12, a linear relationship is defined
between the current states, the current control values, and estimates of the future output. Let the nominal
output (corresponding to the FSCT trajectory) be expressed at the same discrete time intervals in the vector,
Zn. A cost function of the form

J =
1
2
(Zn −Z)TQ(Zn −Z) +

1
2
(un − u)TR(un − u) (13)

may be employed to penalize deviations in both states and controls away from the nominal. Thus,J can then
be minimized according to user defined weight matricesQ andR to produce a tracking trajectory that also
minimizes control over the prediction interval. IfJ is minimized at each interval, thenu may still take on
different values at each interval, even though the prediction equation assumes otherwise. A model predictive
control law for the hybrid system is defined according to

u = arg min
u∈Unu

J .

Simply stated, the implemented control at the current time is the feasible control combination that minimizes
the cost function. Thus, if each control variable,ui, may assumemi possible values, then the control must
consider each of thēm possible control combinations, implementing the minimizing choice. Notice that
m̄ =

∏nu

i=1 mi, and the control law is most effective fornu andmi (and thereforēm) reasonably small to
reduce the number of computations per interval.

A Comparison of MPC Performance.The hybrid system model predictive controller is easily demon-
strated in conjunction with the FSCT method using the minimum-fuel solution of the lunar lander problem.
With m̄ = (3)(3) = 9 possible control combinations, it is reasonable to assume that there exists a time
interval,∆t, such that̄m evaluations ofJ can be compared to determine the minimizing control per interval.
For this simulation,∆t is chosen such that there are 500 intervals betweent0 andtf (less that four intervals
per second for the minimum-fuel trajectory). In addition, a prediction horizon is selected wherep = 10,
indicating that the controller calculates the estimates for the next 10 intervals of the output at each time step.
Using Equation13, the objective is to mimic the FSCT solution as close as possible via a real-time imple-
mentation. Since the a priori discovered optimal solution includes state and control values, it is logical to



Table 1. Relevant Quantities for a Micro-Satellite

Assumed Quantities

Dimensions l1 1.00 m
l2 1.25 m
l3 1.50 m
r 0.25 m

Masses Dry Mass md 15.00 kg
Propellant Mass (att0) mp 5.00 kg

Cold Gas Propulsion Specific Gas Constant (N2 ) R 296.80 N· m/(kg · K)
Specific Heat (N2) γ 1.4
Storage Temperature T 298.15 K
Maximum Thrust Ft 2.00 N
Nozzle Throat Radius rt 2.50 mm

Derived Quantities

Volumes Cuboid Volume Vc l1l2l3
Propellant Volume Vp

4
3 πr3

Dry Volume Vd Vc − Vp
Masses Total Mass mt md + mp

Cuboid Mass mc md

ţ
Vc
Vd

ű

Extra Sphere Mass ms mt −mc
Cold Gas Propulsion Characteristic Velocity c∗ 434.439 m/s

Exhaust Velocity c 787.042 m/s

Throat Density× Velocity ρtvt 129.42 kg/(m2s)

use all of this information in the controller. The weight matrices,Q andR, are proportioned, however, to
emphasize position state tracking over velocity or control tracking.

The results of a simulation implementing the real-time controller are depicted in Figure4(c), displaying
positions, velocities, and control values of the lunar lander. For positions and velocities, both FSCT solution
and MPC simulation states are plotted to demonstrate minimal deviations between the two. It is especially
interesting to compare the control histories of Figure4(b) and Figure4(c): they are nearly identical. The
primary observable difference between the MPC simulation and the FSCT solution is that the simulation has
removed the instantaneous control switches that resulted from overparameterization in the FSCT formulation.
Thus, with the FSCT solution in hand, it is possible to derive a real-time control law that very closely recreates
the optimal trajectory.

The consistency between the FSCT minimum-fuel solution and the hybrid system MPC simulation suggest
the effectiveness of using the two methodologies in tandem. It is observed that the FSCT method offers
control histories instead of implementable control laws. On the other hand, an MPC-derived controller may
only be as good as the nominal trajectory selected for tracking. As a pair, however, it is possible to derive
optimal trajectories and control histories,and implement them in a real-time context, where perturbations,
modeling errors, and other unknowns are likely to arise. This example is intended to further illustrate the
utility of the FSCT method when a control law, rather than a control history, is desired.

SMALL SPACECRAFT ATTITUDE CONTROL

In a final example, the FSCT method is applied to determine finite set control schedules for tracking an
arbitary spacecraft orientation. The FSCT method is well-suited for the problem when only on-off actuation
is available. This example is specifically motivated by spacecraft limited to commercial off-the-shelf actuator
technologies that are inexpensive and readily available. The available literature14,15,16 indicates a range of new
thruster technologies for small spacecraft that are currently under development. Although these may offer
wide ranges of thrust magnitudes and performance efficiencies, it is interesting to explore how the capability
of traditional technologies can be stretched to maximize performance. The attitude control problem offers
an exciting dynamic environment along with conceivable control limitations which make the FSCT method
quite relevant.

Consider a low-cost micro-satellite employing a basic nitrogen cold gas propulsion system17,18 for attitude
control. Two scenarios are now investigated for this small spacecraft attitude control problem. In both of the
scenarios, the spacecraft is equipped with six thruster-pairs situated on a cuboid spacecraft body to provide
purely rotational control in each of the body’s principal directions, positive and negative. The propulsion sys-
tem is supplied by a single N2 propellant tank, centrally located in the spacecraft for simplicity. Temperature
and pressure are regulated at each thruster nozzle to allow for constant thrust of 2 N. Pertinent statistics for
the spacecraft and propulsion system are listed in Table1.

The first scenario demonstrates the simplest control system to conceive. Each thruster pair is controlled
by an on/off valve, and thrust magnitudes are limited to two values (2 N when on, 0 N when off). The
second scenario explores a variable-thrust cold gas propulsion system in which the effective throat size of
each thruster nozzle varies to alter propellant mass flow. However, the new problem can still be modeled in a



finite set control formulation so that the FSCT method can be used. In transitioning between the two scenario
formulations, it is suggested thatmanyvariable control problems are actually, at some level, finite control
problems with an extended dynamic description.

For the dynamical relations that follow, it is necessary to identify the principal moments of inertia for the
spacecraft. Assume a constant mass density within the propellant tank, and further assume a constant mass
density in the remaining dry space of volumeVd. Using the quantities derived in Table1, the spacecraft
moment in the first principal direction is

J1 =
1
12

mc

(
l22 + l23

)
+

2
5
msr

2,

with similar definitions for the second and third.

In each scenario, the dynamics are described using quaternion elements. Recall that the quaternion,q =[
q0 q

T
v

]T
, is a 4-dimensional quantity, consisting of one scalar element and one 3-dimensional vector, that

describes the rotation between two coordinate frames. The3 × 3 coordinate transformation matrix used to
rotate between two frames may be written as a function of the quaternion, as

C(q) = (q2
0 − qTv qv)I + 2qvq

T
v − 2q0[qv×]

where [qv×] is the skew-symmetric cross product matrix that operates on a vector in the same way as a
cross product. Thus, the quaternion and the coordinate transformation matrix are directly linked to describe
the relationship between two reference frames. With no singularities, the quaternion is an effective means
of representing attitude dynamics. For clarity, superscripts are used to describe the reference frames that a
quaternion relates. For example, for the reference frames{â} and{b̂}, the relating quaternion isbqa, and

{b̂} = C(bqa){â}.

Low-Cost Cold Gas Thrusters: Fixed Thrust Attitude Control

Consider a micro-satellite with on-off actuation for its six attitude control thruster pairs. Each thruster
delivers either 0 N or 2 N of thrust, depending on the state of each on/off valve. Using the existing propulsion
system, the objective in this scenario is totrack an arbitrary reference trajectory as well as possible, while
minimizing fuel expenditure.

Let the reference trajectory be described by the reference quaternion,rqi, relating the inertial{î} frame to
the reference{r̂} frame, whilerωi indicates the angular velocity vector between the same frames, written in
the reference frame. With the initial quaternion,rqi0 = [1 0 0 0]T , and angular velocity explicitly defined
with respect to time as

rωi(t) =




0.3 cos t
(
1− e−0.01t2

)
+ (0.08π + 0.006 sin t) te−0.01t2

0.3 sin t
(
1− e−0.01t2

)
+ (0.08π + 0.006 cos t) te−0.01t2

1


 rad/s, (14)

the reference trajectory is completely specified, indicating the ideal attitude for the spacecraft at all timest.
The reference angular velocity description is purely arbitrary, but it is observed that this reference trajectory
offers interesting movement in position and velocity states over the fixed timet ∈ [0 20] seconds and is an
excellent test case for an FSCT optimization.

Define the state vector for this dynamical system according to

y =
[

(bqi)T (bωi)T mp (rqi)T p
]T

,

where bqi indicates the quaternion relating the inertial frame and the spacecraft body frame,bωi is the
corresponding angular velocity vector, andmp is the depleting propellant mass when thrusters are activated.



These first three components ofy completely define the relevant states of the spacecraft. The remaining
elements included in the state vector are strictly for computational convenience as these are useful for cost
evaluation and control determination. The formulation allows the reference quaternion,rqi, to be determined
at each relevant instant in time by the FSCT method. The scalar state,p, measures an integral cost for
deviations between reference and actual trajectories.

In the next step, the control vector is defined. Ultimately,umust indicate the position of the on/off valve for
each of the twelve thrusters. Since thrusters, at a minimum, are assumed to act in pairs, it is logical to allow
each control variable to indicate the valve position for at least two thrusters. However, it is also observed that
each thruster pair has a corresponding thruster pair which acts in an opposing fashion such that their effects
are cancelled when both pairs are on. Thus, consider the contol vector,u ∈ U3 whereU = {−1, 0, 1}. Thus,
nu = 3, and each control variable is limited to three values, indicating for each principal axis, whether the
positive-thrusting pair, the negative-thrusting pair, or neither is in the on position.

The state dynamics for the system are described by the following relations,

ẏ =




bq̇i

bω̇i

ṁp

rq̇i

ṗ




= f(t,y,u) =




1
2E(bqi)bωi

− J−1 bωi × Jbωi + FtJ
−1Lu

− 2Ft

c

∑3
i=1 |ui|

1
2E(rqi)rωi(t)

(
bqi

)T
HT

(
rqi

)
H

(
rqi

) (
bqi

)




,

whereJ = diag(J1, J2, J3) is the inertia tensor,L = diag(l1, l2, l3) contains the spacecraft dimensions, and

E(q) =




−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0


 , H(q) =




q1 −q0 −q3 q2

q2 q3 −q0 −q1

q3 −q2 q1 −q0


 = −ET (q).

First, note that the quaternion dynamics,q̇, are a function of bothq andω. When relating{î} to {b̂}, both
vectors are contained withiny. When relating{î} to {r̂}, however, the angular velocities are evaluated
using Equation14. Next, observe that the dynamics,bω̇i, are dramatically simplified by expressing angular
velocities in the principal body frame, where the inertia tensor is an easily invertible diagonal matrix. In
addition, one may see that the mass flow dynamic,ṁp, is nonzero only when one or more thruster pairs is on.

The cost dynamics,̇p, are used for evaluating an integral cost. Here, it is desired to minimize deviations
between the actual and reference coordinate frames. Consider the following relations:

C(rqb) = C(rqi)CT (bqi),
rqv

b = H
(
rqi

) (
bqi

)
.

Then if {b̂} and{r̂} are identical,rqv
b = 0. A cost function that penalizes

(
rqv

b
)T (

rqv
b
)

> 0 ensures
minimal deviations between body and reference coordinate frames. This is equivalent to settingp0 = 0 and
minimizingpf since

pf − p0 =
∫ tf

t0

ṗ dt =
∫ tf

t0

(
rqv

b
)T (

rqv
b
)

dt.

The complete cost function weighs penalties on trajectory tracking deviations with the amount of propellant
mass expelled in tracking the reference. Minimizing the total cost function,

J = β1pf − β2mpf
(15)

is equivalent to minimizing tracking deviations and maximizing the final propellant mass whenβ1 > 0 and
β2 > 0.
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Figure 5. Fixed Thrust Attitude Control

The problem is completely defined by identifying the remaining initial states for the optimization. Let the
spacecraft begin along the reference trajectory. In this case,bqi0 = rqi0 = [1 0 0 0]T andbωi0 = rωi(t0).
In addition, assume the initial propellant mass ismp0 = 5 kg. These assumptions imply there is sufficient
propellant available to achieve reasonable trajectory tracking for the interval fromt0 = 0 to tf = 20 seconds.

FSCT Solution. The fixed time optimal control problem detailed above is solved using the FSCT method
to yield a feasible and locally optimal trajectory and control switching schedule. For this sample solution,
the selected transcription parameters arenn = 5 nodes per segment andnk = 20 knots, allowing 20 control
switches in eachui over the time interval fromt0 to tf . The pre-specified control values are selected based
on the following law:

u∗i,k = cos
(π

2
(k − 1)

)
.

This control law alternates between positive-, zero- and negative-torque for each control variable. Clearly,
the control sequence selection resembles that of the Lunar Lander problem, as this seems to allow substantial
flexibility to solve the underlying NLP problem.

The FSCT solution is depicted in Figure5 when the cost function is set with equal penalty weights,β1 =
β2. In Figure5(a), the trajectory position (quaternion) histories forbqi and rqi are shown as the ‘actual’
and ‘desired’ trajectories, respectively. This illustration gives a visual sense of how well the trajectory can be
tracked given finite value control limitations. In Figure5(b), the resulting control history (switching schedule)
is depicted. For each control variable, note that the durations of arcs associated with bothui = 1 andui = −1
are reduced to zero. This indicates that the transcription formulation is not underparameterized.

Finally, Figure5(c) depicts the actual and desired angular velocities,bωi andrωi. It is not unexpected that
significantly more deviation is observable in this plot. Control restrictions clearly reduce the way in which
velocity variables can change with time. More importantly, deviations in angular velocities are not penalized
in the cost function, so the FSCT method does not attempt directly to drive velocities to match.

Low-Cost Cold Gas Thrusters: Variable Thrust Attitude Control

The performance of the system above is clearly limited by on-off control actuation. Of course, fixed thrust
control is an obvious choice when the intent is to apply the FSCT method to a real example. Indeed, the
simplest, and perhaps least expensive, propulsion systems can benefit from the methodology for determining
control strategies for reference tracking. A hybrid system model predictive controller, used in conjunction
with FSCT solutions may be as successful in this case as it was for the Lunar Lander presented earlier. Here,
however, another scenario is presented to expand the class of applications available to the FSCT methodology.

The most straightforward way of improving upon the solutions of the first attitude control scenario is to
expand the solution space to include variable magnitude control inputs. This improves performance through
better tracking, less fuel expenditure, or both. Thus, this scenario explores the possibility of a variable
amplitude controller with a modified cold gas propulsion system. The purpose of the development that
follows is to demonstrate that the variable control problem canstill be interpreted, on a higher level, as a
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Figure 6. A Variable Amplitude Thruster Nozzle

finite set control problem. Extrapolating further, many, if not most, dynamical systems with variable control
inputs can be extended to reveal discrete components. Consider, for example, a control system whose varying
inputs are determined by a digital computer. At the highest level, everything is reduced to a binary description,
‘0’s and ‘1’s, not unlike the discrete control inputs shown in the examples so far.

A previously developed variable amplitude cold gas propulsion system19 serves as the inspiration for the
following development. Here, the nitrogen propellant system is modified to allow variation in the effective
dimension of the nozzle throat and, subsequently, the propellant mass flow. Consider the illustration of Figure
6. A valve core rod lies near the throat of the thruster nozzle, and has controlled motion up and down. Let the
variable,di, indicate the position of the valve core rod for theith thruster. In addition, definert as the radius
of the nozzle throat. The effective throat area is a function of the rod position, expressed as

At(di) = πr2
t − π

(
rt − 1

2
di

)2

, (16)

where0 ≤ di ≤ 2rt. Note that if the rod position is such thatdi > 2rt, no effect is expected on thruster
performance, and(At)max = πr2

t . Because the throat area directly affects the mass flow through the noz-
zle (assuming constant propellant density and velocity), it has a direct effect on the magnitude of thrust.
Assuming, as before, that the maximum thrust available is(Ft)max = 2 N, then

ρtvt =
(Ft)max

(At)max c
,

which can be evaluated using the constants in Table1. Now, the amplitude of control for each thruster is
a function of one discrete variable, indicating the position of the on/off valve, and one continuous variable,
indicating the valve core rod position. To describe the dynamical system, it is necessary to understand how
the rod position,di, is controlled. Surely, there are many ways of doing this, all affecting the nature of the
dynamics. Assume then, for the sake of this argument, that each rod is driven by a constant-acceleration
motor. Thus, the rod position and its velocity,vi, are continuous variables, while its acceleration,ai, may
take only a discrete number of values.

If the valve core rod positions and velocities are included as state variables, a hybrid system ensues con-
sistent with the formulation in Equation1, with only continuous states and discrete controls. While this is
not the only formulation for the variable amplitude control problem, this formulation demonstrates that it is
possible to extend a variable amplitude control device into a combination of continuous states and discrete
decision variables. In this case, states are defined for the physical elements that allow for thrust amplitude
variations.



The state vector for this scenario, then, includes the same quantities as the previous scenario, now adding
core rod positions and velocities to the set. Recall that, at a minimum, the twelve thrusters of the micro-
satellite are combined into six thruster pairs. In the first scenario, two pairs providing torque along the
same axis of rotation were considered together. In this scenario, the dynamic relations dictate that only
thruster pairs can be considered to act in harmony. Let the vectors,d andv, which contain the individual rod
dynamics, have six components each. Thus, a thruster pair shares the same rod positions and velocities to
ensure that translational accelerations cancel at all times. The state vector for the dynamical system takes the
form,

y =
[

(bqi)T (bωi)T mT
p dT vT (rqi)T pT

]T
.

The control vector is now
u =

[
wT aT

]T
,

wherew anda are each vectors composed of 6 elements (corresponding to the number of thruster pairs),
wi ∈ {0, 1} indicates whether theith thruster pair is on or off, andai ∈ {−1, 0, 1} indicates the acceleration
of the valve core rods of theith thruster pair, which can be negative, zero, or positive. The dynamics of the
system are described by

ẏ =




bq̇i

bω̇i

ṁp

ḋ

v̇

rq̇i

ṗ




= f(t,y,u) =




1
2E(bqi)bωi

− J−1 bωi × Jbωi + ρtvtcJ
−1LA(d)w

− 2ρtvtÃ
T
(d)w

α2v

α3a

1
2E(rqi)rωi(t)

(
bqi

)T
HT

(
rqi

)
H

(
rqi

) (
bqi

)




,

where the previously defined quantitiesJ ,L,E, andH are unchanged, and

A(d) =




At(d1) −At(d2) 0 0 0 0
0 0 At(d3) −At(d4) 0 0
0 0 0 0 At(d5) −At(d6)


 ,

Ã(d) =
[

At(d1) At(d2) At(d3) At(d4) At(d5) At(d6)
]T

,

At(di) =
1
α2

1

[
πr2

t − π

(
rt − 1

2
di

)2
]

. (17)

Notice immediately that Equation17 differs from Equation16 by the scaling factor,α1. Additional scaling
factors,α2 andα3, are present in the valve core rod dynamics, as well, so that all state variables remain
O(100) to improve the convergence of the underlying NLP problem. In this case,α1 = 103 so thatrt anddi
are presented in mm. Likewise,α2 = 101 sov is in 10−4 m/s, andα3 = 100 so thatai = 1 indicates that the
ith rod is accelerating by10−4 m/s2.

Clearly,A(d) andÃ(d) represent the effective throat cross-sectional area for each thruster pair, listed in
matrix form and vector form, respectively. These facilitate the new definitions forbω̇i andṁp. Thus, the
effective control torque, evaluated byρtvtcJ

−1LA(d)w and measured in rad/s2, as well as the total mass
flow defined byṁp, are determined by the current throat area and the state of the on/off valve.

FSCT Solution. In as many ways as possible, the optimization of the variable-thrust attitude control sce-
nario is set up identically to the fixed-thrust scenario. The cost function is that of Equation15. Again,
β1 = β2 to allow for a direct comparison between results. In this transcription formulation,nn = 5 and
nk = 20 again, but with additional control variables (nu = 12, instead of 3), the total number of segments,
and thereby nodes, is significantly increased.
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Figure 7. Variable Thrust Attitude Control

The pre-specified controls for the formulation follow a standard structure.

w∗i,k =
1
2

+
1
2
(−1)k−1,

a∗i,k = cos
(π

2
(k − 1)

)

Notice that eachwi alternates between the values 1 and 0, whileai alternates between1, 0, and−1.

The results of the FSCT optimization are presented in full in Figures7 and8. Immediately, Figure7(a-b)
can be compared to Figure5 to show how quaternions and angular velocities match the reference trajectories
in each scenario. As expected, the variable thrust formulation offers more flexibility, and consequently better
tracking, for the attitude control problem.

Figure7(c-d) record the control histories that produce this trajectory. For each thruster pair, the controls
indicate whether the thruster switch is on or off, and whether the motors driving the valve core rod are
accelerating the rod. For completeness, Figure7(e) shows the position history of the valve core rods for each
thruster pair. Notice that the positions remain within the bounds0 ≤ di ≤ 5 mm, where the rod position has
an effect on the resulting mass flow through the nozzle.

Figure8 examines the effective control torque history for the system. When the effects of all of the finite
value control variables are considered along with new dynamic states (d andv), one can extract the actual
control torque, measured in rad/s2, that is applied to the spacecraft at any time. Figure8 (a) illustrates this.
Note that the zero-duration ‘dots’ contained in the figure are artifacts of zero-duration segments that naturally
result in an FSCT solution. For the sake of this discussion, they can effectively be ignored. As a comparison
to this solution, Figure8 (b) illustrates the control torque for anunconstrained controlsystem which tracks
the reference trajectory perfectly. The unconstrained control torque is derived using a continuous Lyapunov-
based control law which guarantees perfect tracking of quaternions and angular velocities (since initial states
are along the reference). Some distinct similarities are easy to observe by looking at the plots together.
Certainly, control torque magnitudes are similar, but there are also points at which the derived control torque
from the finite set formulation very closely mimics the behavior of the purely continuous control.
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Figure 8 FSCT Variable Thrust Attitude Control Torque vs. Unconstrained Attitude
Control Torque

This is viewed as a significant result which demonstrates how a detailed hybrid system formulation can
approach a continuous formulation. While it is a step backwards to use a finite control formulation if control
inputs are truly continuous, perhaps it is reasonable to argue thatmanysystems, if not most, are truly hybrid
systems, modeled as continuous. Often, it is easier to model the continuous system, as numerous methodolo-
gies exist for treating such systems. However, if a system has discrete components, it is ideal to treat them as
such. Thus, the FSCT method offers an avenue for modeling maybe inevitably present discrete components,
at whatever level they appear in the dynamics.

CONCLUSIONS

The Finite Set Control Transcription method is demonstrated for the determination of optimal solutions to
hybrid control problems. The intent of the present investigation is to explore the range of applications of the
FSCT method. Although many of the applications in this investigation are particularly relevant to aerospace
engineering, the applicability of the method extends to all engineering disciplines.

Three example applications are used to provide context for the method. First, the FSCT method is used on
a simple two-state system with two individually-stable dynamical modes. In a number of different sources,
the method of multiple Lyapunov functions is utilized to treat the hybrid system with one decision variable.
Here, results from the FSCT method are analyzed to demonstrate how optimal control laws may be extracted
whose performance exceeds those derived using a Lyapunov argument.

Next a simple lunar lander problem is addressed by the FSCT method. A primary feature of the FSCT
method is its ability to manage multiple independent decision inputs simultaneously. In this two-dimensional
example, two control variables are included in the optimal control formulation to illustrate how the FSCT
method can be applied when multiple independent control variables are considered. Solutions derived via the
FSCT method are further utilized in conjunction with a hybrid system model predictive control scheme. For
the hybrid system with a reasonable number of possible decision inputs at any given time, the MPC formu-
lation offers real-time decision-making for the hybrid system. When the two methods are used in tandem,
optimized control schedules can be realized in the context of potential perturbations or other unknowns.

Finally, the FSCT method tackles an attitude control problem presented in two different formulations. In
the first, a small spacecraft is assumed to be limited to finite thrust magnitudes for a cold gas propulsion
attitude control system. The second scenario explores a variable-thrust propulsion system, still modeled
as a hybrid system. This investigation argues that even a system traditionally modeled with continuous
control inputs may be more accurately described as a system ultimately relying on discrete decision variables.
Continuous control variables may often be extended into a set of continuous state variables and discrete
inputs. The scenario considershow an actuator may actually vary the control magnitude it applies. This
process generates additional dynamics that can be modeled within the system. It is conceivable that, at some
level, many systems can be thought of as hybrid systems with completely continuous states, and completely
discrete control variables.
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