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ASPHERICAL FORMATIONS NEAR THE LIBRATION POINTS  

IN THE SUN-EARTH/MOON EPHEMERIS SYSTEM 

B.G. Marchand * and K.C. Howell † 

Multi-spacecraft formations, evolving near the vicinity of the libration points of 

the Sun-Earth/Moon system, have drawn increased interest for a variety of 

applications. This is particularly true for space based interferometry missions 

such as TPF and MAXIM. The present study considers both continuous and 

discrete control methods as applied to non-natural formation configurations. 

Continuous output feedback linearization methods are employed to enforce non-

natural configurations. The general focus is around multi-spacecraft formations 

that are constrained to evolve along an aspherical surface, such as a paraboloid, 

such that the orientation of the formation is fixed in inertial space. Also, a 

discrete Floquet controller, previously developed for the determination of 

natural formations, is further investigated. Its application to inertially fixed 

formations is of particular interest. The general development is presented in the 

Sun-Earth/Moon ephemeris model. 

INTRODUCTION 

The dynamical sensitivity that is characteristic of the region near the libration points, combined with the 

path constraints usually imposed on the envisioned nominal formation configurations, makes formation 

keeping and deployment an interesting and challenging problem. Although some preliminary analyses have 

already been completed [1-15], a better understanding of natural and controlled formations in this region of 

space is still necessary. In previous work, Howell and Marchand [13-14] consider both continuous and 

impulsive control to enforce a variety of non-natural formations. Among these, inertially fixed 

configurations are of particular interest for space based interferometry.  
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Continuous control techniques, such as Linear Quadratic Regulator (LQR), nonlinear optimal control, and 

feedback linearization methods, are successfully applied to this type of formation [13-14]. Although the 

mathematical implementation of these control laws is effective, the resulting control accelerations can be 

prohibitively small, depending on the desired configuration. For instance, near the libration points, 

formations that require the deputy vehicle to remain at a constant distance and orientation, relative to the 

chief spacecraft, are associated with thrust levels on the order of 0.81-3.21 nN, for a 10 meter separation 

and a 700 kg vehicle. Increasing the nominal separation by one order of magnitude also increases the cost 

by one order of magnitude. This indicates that a 10,000 km separation is required, for this type of 

formation, in order for the thrust level to exceed 1 µN of nominal thrust. The present state of propulsion 

technology allows for operational thrust levels on the order of 90-1000 µN via pulsed plasma thrusters, 

such as those available for attitude control onboard EO-1 [16]. Increased interest in micro- and nano-

satellites continues to motivate theoretical and experimental studies to further lower these thrust levels, as 

discussed by Mueller [17], Gonzalez [18] and Phipps [19]. Gonzalez [18] estimates that a lower bound of 

0.3 nN is possible via laser induced ablation of aluminum. Aside from their immediate application to 

micro- and nano-satellite missions, these concepts are also potentially promising for formation flight near 

the libration points. However, the presently available technology may be sufficient to pursue other types of 

formation flight configurations, such as those presented here and in previously considered sample 

formations [14]. In particular, configurations that require the deputy vehicle to spin, relative to the chief, at 

some fixed rate, such as those presently and previously considered by Marchand and Howell [14], can 

quickly drive the thrust levels into the mN range.  

Of course, continuous thruster operation may not always represent a feasible option. In such a case, the 

formation keeping task must rely on a discretized approach. Mathematically, a standard targeter approach 

[14] can accomplish the goal to within a reasonable degree of accuracy, provided the nominal vehicle 

separations are on the order of meters. However, because these configurations are not consistent with the 

natural dynamics near the libration points, the error incurred between maneuvers grows rapidly as this 

nominal separation increases. Furthermore, the size of the maneuvers can still be prohibitively small.  

The continuous control laws previously presented [13-14] and the discrete targeter approach [14] have 

something in common. Both of these methods try to force configurations that are not consistent with the 

natural dynamics and they can both require unreasonably small thrust levels, depending on the constraints 

on the configuration. This is not surprising given the highly sensitive nature of the dynamics. To 

circumvent this difficulty, it is advantageous to develop a better understanding of the natural formation 
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dynamics near the libration points and incorporate such knowledge in the design of both the nominal 

configurations and the associated control laws. In one such example, Howell and Marchand [14] 

successfully identify a series of naturally existing formations, as well as deployment into these 

configurations, through the use of a modified Floquet controller. These naturally existing formations evolve 

in the vicinity of a reference “halo” orbit near the L1 and L2 libration points of the Sun-Earth/Moon system. 

The resulting control law is based on knowledge of the linear stability of the reference orbit. In particular, 

the controller is designed to remove the unstable mode as well as two of the four center modes associated 

with the “halo” orbit.  

In the present effort, the natural formations previously identified in the CR3BP [14], via the Floquet 

approach, are transitioned into the more complete ephemeris model. A constrained two-level differential 

corrector is then applied to these solutions to enforce periodicity in the ephemeris model via small 

impulsive maneuvers applied once a year. Further application of this methodology as a design tool to 

identify inertially fixed formations is of particular interest. Also, continuous output feedback linearization 

methods, previously considered in [14], are similarly employed. The focus is multi-spacecraft formations 

that are constrained to evolve along an aspherical surface, such as a paraboloid, fixed in inertial space. The 

development is presented in the Sun-Earth/Moon ephemeris model. Potentially, these two approaches can 

be combined into one formation keeping strategy, particularly for formations that do not require the 

nominal configuration to be enforced at all times. For instance, the Floquet controller can be used to drive 

the vehicles onto a naturally existing formation via a single impulsive maneuver until a reconfiguration, 

that requires continuous control, is necessary. 
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DYNAMICAL MODEL 

Background 

In this investigation, the standard form of the relative equations of motion for the n-body problem, as 

formulated in the inertial frame ( )I , is employed. The effects of solar radiation pressure (SRP) are also 

incorporated. Hence, the dynamical evolution of each vehicle in the formation is governed by  

 ( ) ( ) ( )2 s ss P PP PI
grav srpr f f u t= + + . (1.1) 

For notational purposes, let 2P  denote the central body of integration, in this case the Earth. Then, sP  

identifies the spacecraft, ( )sP
gravf  represents the sum of all gravitational forces acting on sP , ( )sP

srpf  is the force 

exerted on the vehicle due to solar radiation pressure, and ( )u t  is the control input vector.  

From this general expression, the equations of motion for both the chief and deputy spacecraft may be 

expressed in the following form, 

 ( ) ( ) ( ) ( ) ( )2 C C CP CI
I grav srp C Cr f f u t f u t= + + = + , (1.2) 

 ( ) ( ) ( ) ( ) ( )2 i i ii

i i

D D DP DI
I grav srp D Dr f f u t f u t= + + = + , (1.3) 

where ( )Cu t  and ( )
iDu t  denote the control accelerations required to maintain the desired nominal 

configuration, and ( )Cf  and ( )iDf  represent the net force acting on the chief spacecraft and the ith deputy 

vehicle, respectively. The numerical integration for all vehicles in the formation is performed in terms of 

inertial coordinates. Define the measure numbers of a position vector such that 2 ˆ ˆ ˆiP D
i i ir x X y Y z Z= + + . 

Hence, the vehicle velocities and accelerations are associated with the inertial frame (I) defined in terms of 

the unit vectors X̂ , Ŷ , and Ẑ .  

The chief spacecraft is assumed to evolve along a quasi-periodic Lissajous trajectory. Since this is a 

naturally existing solution in this regime, the baseline control acceleration ( )Cu t  is zero. The relative 

equations of motion for the ith deputy, then, are easily determined by subtracting Equation (1.2) from (1.3), 

 ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )i i ii

i i

D D DC CCDI
I grav grav srp srp D Dr f f f f u t f u t= − + − + = ∆ + . (1.4) 

The vector iCDr  denotes the position of the ith deputy relative to the chief spacecraft while ( )iDf∆  

represents the relative net force vector.  
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Let Iρ  represent the desired nominal path of the deputy spacecraft, then, I
Iρ designates the nominal 

velocity vector, and ( )
iDu t  denotes the associated nominal control effort such that,  

 ( )i

i

DI
I Df u tρ = ∆ + . (1.5) 

In this expression, the superscript ( )  implies evaluation on the nominal path defined by Iρ  and I
Iρ . 

SPHERICAL FORMATIONS – FIXED RADIAL DISTANCE AND ROTATION RATE 

In previous studies [14-15] the application of output feedback linearization techniques to spherical 

formation configurations is considered. In the earlier formulation, only the radial distance between the chief 

and deputy vehicles is enforced while the orientation is left unconstrained. Hence, as long as the deputy 

spacecraft evolves along the surface of a sphere, whose radius is equal to the desired nominal separation, 

the goal for the controller is satisfied. Since only one variable is tracked, and there are three control inputs, 

an infinite number of solutions are available. Subsequently, the formation keeping costs can vary 

dramatically depending on the particular solution that is selected. The difference between each solution is 

reflected in the rotation rate and the orbital plane corresponding to the converged solution. For instance, the 

second column of  Table 1 summarizes the controller formulations from the earlier analysis.  

All four controllers in Table 1 accomplish the goal in terms of formation keeping, but the dynamical 

responses and the associated costs are significantly different. To better understand these differences, as 

identified by Howell and Marchand [14-15], consider, briefly, the instantaneous rotating frame defined by 

the radial vector from the chief spacecraft to the deputy ( ˆ i iCD CDr r r= ), the angular momentum direction 

( ( )ˆ i i i iCD CD CD CDI Ih r r r r= × × ), and the corresponding tangential unit vector ( ˆˆ ˆh rθ = × ).  

 

Table 1- OFL Control of Spherical Formations 
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At any given time, the angular momentum vector provides information about the instantaneous relative 

orbital plane of the deputy vehicle ( ĥ ) as well as its rotation rate (θ ) about ĥ . The rate of change of the 

relative angular momentum vector can be expressed in terms of this rotating coordinate system as 

 ( ) ( )ˆ ˆi iCD CDI I
h hh r r r f u h r f uθ θ θ= × = + − + , (1.6) 

where fθ , hf , uθ , and hu  denote the components of ( )iDf∆  and 
iDu  along the θ̂  and ĥ  directions, 

respectively. The associated unit normal vector, ( ) 1 / 2ˆ Th h h h
−

= , varies with time as follows,  

 
( )ˆ ˆ

I
h hr f udh

dt h
θ

+
= − . (1.7) 

Thus, the plane of motion is preserved, and completely determined by the relative initial state, if h hu f= − .  

The last column in Table 1 summarizes the θ̂  and ĥ  components of the control inputs listed in the second 

column. It is simple to show that, for the last three entries in Table 1, the plane of motion is preserved. 

Also, since 2h h r θ= = , the rotation rate θ  is further determined by hu . For instance, for the second case 

listed in Table 1,  u f rθ θ θ+ = . While the radial distance converges to its final value, as commanded by 

the controller, the quantity 0u fθ θ+ → . Hence, ( )f f fh h t r θ→ =  and, thus, the rotation rate will 

converge on some limiting value. A similar statement can be made about the fourth entry in Table 1. Since 

the rotation rate is inversely proportional to the square of the radial distance, the formation keeping cost 

increases significantly for formations that seek to achieve nominal separations on the order of meters. The 

third entry in Table 1, however, is slightly different. In this case, it is determined that 0u fθ θ+ = . This 

leads to ( ) ( ) ( ) ( )2 0h t r t t hθ= =  and, consequently, the rotation rate along the surface of the sphere is 

completely determined by the initial relative state of the deputy at the time the controller is activated. For 

the case that employs radial axis inputs, that is, the first entry in Table 1, the θ̂  and ĥ  components of 

iDu are zero which leads to ˆ ˆI
hh rf h rfθ θ= − . This indicates that, in general, and for an arbitrary set of initial 

conditions, neither the rotation rate nor the relative orbit normal are preserved with this type of control 

approach. However, if the nominal relative separation is small, it may appear that the solution converges 

onto a plane, though small deviations are present. These deviations are most visible at larger separations, on 

the order of hundreds or thousands of kilometers. These deviations are better visualized from the sample 

cases in Figure 1. 
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The blue sphere in each subfigure represents the nominal surface. In Figure 1(a), the nominal distance is 5 

km (the radius of the nominal sphere) as compared to 5000 km for the illustration in Figure 1(b). Each 

trajectory in Figure 1(a) is associated with an initial state characterized by ( ) [ ]0 12 5 3iCDr = −  km and 

( ) [ ]0 1 1 1iCDI r = −  m/sec. The trajectories in Figure 1(b), are associated with the initial state 

( ) [ ]0 5007 5 3iCDr = −   km and ( ) [ ]0 1 1 1iCDI r = −  m/sec. Both figures depict two separate paths 

evolving onto the nominal sphere. The green path is associated with the controller in the fourth entry of 

Table 1, while the red path is associated with the controller defined by radial axis inputs only, that is, the 

first entry in Table 1. Though numerical evidence may at times appear to suggest that each controller is 

converging onto the same orbital plane, as is apparent from Figure 1(a), the theoretical proof illustrates that 

radial axis inputs alone do not allow for this type of solution. This is evident from Figure 1(b). 

Although preservation of the orbiting plane may be a desirable feature, the numerical and theoretical 

evidence clearly indicates the need to force the controller to track a particular rotation rate. Forcing a 

predetermined rotation rate prevents the dynamics from inducing a spin rate that may lead to prohibitively 

high formation keeping costs. To constrain the rate, consider an augmented formulation of the original 

control law. In the initial development, the control input is introduced into the radial dynamics through  

 2 r r r r r rr r
r r r
⋅ ⋅ ⋅= + − . (1.8) 

 

Figure 1 - Impact of Relative Orbit Size on Controlled Path of Deputy S/C 
Radial Control Only/Free Orientation

(a) (b) 

Radial Control Only 

3-Axis Control 

3-Axis Control 
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It is straightforward to demonstrate that Equation (1.8) can also be written in the more familiar form, 

 2
r rr r f uθ− = + . (1.9) 

The desired radial error dynamics are defined to follow a critically damped response, of natural frequency 

nω , such that the nominal radial response, ( ),rg r r , is determined as, 

 ( ) ( ) ( )* * 2 *, 2r n nr g r r r r r r rω ω= = − − − − . (1.10) 

Here, the superscript “* ” implies evaluation on the nominal path (i.e. the desired vehicle separation). 

The equation of motion relating the rotation rate to the control input is determined by differentiating the 

angular momentum vector expression. This operation leads to one equation of constraint, 0h hu f+ = , as 

well as one additional equation of motion, 

 2r r f uθ θθ θ+ = + . (1.11) 

In this particular example, the error dynamics for the rotation rate are specified as a decaying exponential, 

( )0 nk te ωδθ δθ −= . The desired response, ( )gθ θ , is then determined as 

 ( ) ( )* *
ng kθθ θ θ ω θ θ= = − − , (1.12) 

where k  is an arbitrary scale factor and nω  is the same natural frequency as in Equation (1.10). 

Substitution of Equation (1.12) into (1.11) and of (1.10) into (1.9) leads to the following scalar control laws 

 ( ) ( ) 2,r r ru t g r r f rθ= − − , (1.13) 

 ( ) ( ) 2u t rg f rθ θ θθ θ= − + , (1.14) 

 ( ) ( )constrainth hu t f= − . (1.15) 

The control input that is actually applied to the deputy equations of motion, as listed in Equation (1.4), is 

then determined by transforming the input vector described by Equations (1.13)-(1.15) back into the 

ephemeris inertial frame,  

 [ ]
i

TI E
D r hu C u u uθ= , (1.16) 

where ˆˆˆI EC r hθ =   .  A sample implementation of this control law is illustrated in Figure 2 for a 700 

kg spacecraft targeting a 5 km radial separation and rotation rates of one revolution every six or twenty-

four hours. The initial state is the same as that in Figure 1(a). 
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Using this type of control law, it is possible to determine how the formation keeping cost varies both as a 

function of the commanded relative separation and the commanded rotation rate. As before, the equation of 

constraint guarantees that the plane of motion is entirely determined by the relative state of the deputy 

before the controller is activated. The associated trends in the cost are illustrated in Figure 3 in terms of the 

mean thrust required to enforce the formation. Note that the cost increases quadratically with increasing 

rotation rate and linearly with the separation that is commanded between the chief and deputy vehicles. 

 

Figure 2 - OFL Control of Radial Distance + Rotation Rate and Associated Thrust Profile 

1 rev/6 hrsθ =  

1 rev/dayθ =  

1 rev/dayθ =

1 rev/6 hrsθ =

Figure 3 – Impact of Commanded Radial Distance  
and Spin Rate on Formation Keeping Costs
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For a nominal separation of 50 meters, commanding the deputy to spin at one revolution per hour, about the 

chief spacecraft, requires over 100 mN of thrust, for a 700 kg vehicle. The mean thrust drops to 6.7 mN if 

the deputy vehicle is to nominally orbit the chief spacecraft once every 4 hours. The thrust levels continue 

to drop down to 0.19 mN for one revolution a day. If one revolution per day is required, a 500 meter 

separation raises the mean thrust to 18 mN.   

Though the plane of motion is not affected by this type of control approach, activating the controller at the 

appropriate time, or biasing the initial velocity, may be sufficient to achieve the desired orbital plane. 

Overall, the control strategy is conceptually simple and numerically efficient for implementation in the 

ephemeris model. A more ambitious goal involving OFL control, then, is to target aspherical formations.  

ASPHERICAL FORMATIONS 

Consider a multi-spacecraft formation where the chief vehicle evolves along a quasi-periodic Lissajous 

trajectory near L1 or L2, as determined in the ephemeris model. The deputy vehicles in the formation are to 

follow the chief such that their relative motion evolves along the surface of a paraboloid that is inertially 

fixed in orientation. The chief spacecraft and the nadir of the paraboloid define the focal line of the 

formation. Maintenance of a constant distance between the chief vehicle and the nadir of the paraboloid is 

the first objective of the controller. The second requirement is that the motion of all deputies, even during 

reconfigurations, is constrained to evolve along the surface of the paraboloid. To accomplish these goals, it 

is first necessary to define a suitable parameterization for the formation surface. To that end, consider the 

illustration in Figure 4.  

  

pa

ph

pu

ν

( )3̂ focal linee

1̂e

Nadir

Zenith

Figure 4 - Parameterization of a Paraboloid 
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The paraboloid in Figure 4 is defined in an inertial frame (E) described in terms of the unit vectors 1̂e , 2ê , 

and 3̂e . The orientation of this frame, relative to the ephemeris inertial frame (I), is defined by the azimuth 

(α ) and elevation (δ ) of the focal line relative to the inertial frame (I) unit vectors X̂ , Ŷ , and Ẑ . This is 

better visualized from Figure 5, where the unit vector 3̂e  is directed from the chief vehicle to the nadir of 

the nominal paraboloid.  

 

This direction is representative of the focal line of the formation. The “height” of any given deputy vehicle 

along this surface, measured relative to the nadir point, is defined by pu  where 0 p pu h≤ ≤  and ph  denotes 

the maximum allowable height along the paraboloid. The radius at the zenith of the paraboloid ( p pu h= ) is 

denoted by the variable pa . The unit vector 1̂e , defined as 1 3 3
ˆ ˆˆ ˆ ˆe Z e Z e= × × , is simply a reference 

direction for the measurement of the angular position (ν ) along the surface in Figure 1. Of course, 

2 3 1ˆ ˆ ˆe e e= ×  completes the right handed inertial triad. The variables ν  and pu  completely specify the 

position of a deputy vehicle along the formation surface in Figure 4. In the focal frame (E), the position 

vector from the nadir to any given deputy vehicle along the surface of the paraboloid is defined as 

 ( ) ( ) ( )1 2 3ˆ ˆ ˆ, cos sinp p p p p p p pp u a u h e a u h e u eν ν ν= + + . (1.17) 

The desired position of the nadir, relative to the chief spacecraft, is specified as 3ˆq qe= . The equation of 

motion in (1.5) is associated with the inertial frame (I). The nominal relative position vector can also be 

written in terms of E-frame coordinates as ( ),E pq p uρ ν= + . In this alternate inertial frame, the nominal 

relative acceleration vector, E
Eρ , can be expressed as 

 ( ) ( )p p p p p

E E
E u u p u p u p u pq p u p v u p u p u p pν ν νν νρ ν ν ν= + + + + + + , (1.18) 

δ

α
X̂

Ẑ

Ŷ

( )3̂ focal linee
1̂e

1 2 3

ˆ ˆ ˆ :  Ephemeris Inertial Frame ( )
ˆ ˆ ˆ : Paraboloid Inertial Frame ( )
X Y Z I
e e e E

− −
− −

Figure 5 - Formation Focal Line Orientation 



   

 12  

where 
pup , 

p pu up , 
pup ν , 

pupν , pν , and pνν  denote the first and second partial derivatives of p  with 

respect to pu  and ν , respectively. The scalar rates pu  and ν  represent the climb rate and the rotation rate 

along the nominal surface. Since both the E and I frames are inertial, the accelerations in Equations (1.5) 

and (1.18) are related through the orientation matrix I EC  such that { }I I E E
I ECρ ρ= . The jth column of the 

matrix I EC  corresponds to the unit vector ˆ je , for 1 3j = − , defined in Figure 5. 

In order for the nominal motion to satisfy Equation (1.18) precisely, the control law must be applied 

continuously and is determined as  

 ( ) { } ( ) ( ) ( )2 22
i p p p p

i e e
D u p u u p u p Iu t C q p u p p u p u p f rν ν ννν ν ν = + + + + + − ∆  . (1.19) 

Consider a formation characterized by ( ) 3ˆ10 kmq e= , 500 mph = , 500 mpa = . Let the focal line be 

oriented such that  0α = , and 45δ = . Each vehicle in the formation is to complete one revolution along 

the surface once a day, 1 rev/dayν = . The nominal motion of one of the vehicles is initially described by 

200 meterspu =  such that 0p pu u= =  and 0ν = . After 5 days, the vehicle’s nominal path must be 

reconfigured, along the paraboloid, such that ν  and pu  remain constant. The climb rate, pu , is specified 

such that, after 1 day, the vehicle has raised it’s “height” to 500 meters relative to the nadir of the 

paraboloid, a 300 meter climb relative to the initial orbit. The nominal control law in Equation (1.19) leads 

to the desired motion as illustrated in Figure 6.  

 

 

Figure 6 – Nominal Geometry and Thrust Requirements for a Sample Parabolic Formation 
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In this Figure, the off-center circular orbit closest to the nadir (red) represents the initial nominal motion 

over a span of 5 days. The green spiral defines the reconfiguration segment over the next day while the 

highest circular orbit (blue) denotes the converged solution over the remaining 5 days. The associated 

nominal thrust profile reveals that a range of 1.4 to 2.0 mN of thrust is required to enforce the formation, 

including the reconfiguration, in the absence of external perturbations. 

Output Feedback Linearization: Application to Parabolic Formations 

The control design presented above is associated with nominal formation keeping. That is, assuming the 

vehicles are already in the desired configuration, Equation (1.19) establishes the thrust profile necessary to 

enforce the desired formation continuously. In the example illustrated in Figure 6, each phase is computed 

separately and independently from the other. For instance, the end-state of Phase I, plus the necessary 

impulsive ∆V, is used as the initial state to compute the trajectory associated with Phase II. A similar 

approach is employed to determine the trajectory associated with Phase III. Hence, the above solution 

addresses neither the deployment nor the reconfiguration of an actual continuous solution.  To address this 

aspect, output feedback linearization techniques are applied. 

In prior investigations, input/output feedback linearization (IFL/OFL) is successfully applied to achieve the 

desired formation keeping goals. The earlier OFL examples are based on a tracking scheme involving 

relative distance and rotation rate. Hence, the number of variables to track is less than the number of 

available control inputs. As such, there are an infinite number of solutions available that satisfy the goals of 

the controller. In the present case, a parabolic configuration requires the tracking of three variables: ( )pu t , 

( )q t , and ( )tν . That is, the distance to the nadir, the height of the vehicle along the paraboloid surface 

and the orientation time history along the surface. To illustrate how an OFL controller may be applied to 

this type of configuration, it is necessary to establish a set of expressions relating the state variables (and 

control inputs) to the tracked quantities. For instance, recall that 

 [ ]TI E
I EC x y zρ ρ= = , (1.20) 

where the symbol ‘~’ above each variable indicates that the measure numbers are associated with the focal 

frame (E) of the paraboloid. 
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These measure numbers are related to the paraboloid parameters in Figure 4 as follows, 

 / cosp p px a u h ν= , (1.21) 

 / sinp p py a u h ν= , (1.22) 

 pz q u= + . (1.23) 

Squaring and then adding Equations (1.21)-(1.22) reveals that  

 ( )2 2 2/p p pu h a x y = +  , (1.24) 

while dividing Equation (1.22) by Equation (1.21) yields 

 ( )tan /y xν = . (1.25) 

Furthermore, Equation (1.23) indicates that  

 ( )2 2 2/p pq z h a x y = − +  . (1.26) 

The associated rates are defined by differentiating Equations (1.24)-(1.26) with respect to time, i.e.,  

 ( )2

2 p
p

p

h
u xx yy

a
= + , (1.27) 

 ( )2

2 p

p

h
q z xx yy

a
= − + , (1.28) 

 ( )2 2

xy yx
x y

ν −=
+

. (1.29) 

With these expressions, it is possible to identify relationships between the control inputs and the tracked 

variables. These relationships are obtained by differentiating Equations (1.24)-(1.26) twice with respect to 

time. Differentiation is straightforward  and ultimately suggests that, 

 ( ) ( )2 2
2 2 2

2 2 2
,

p

p p p
u p p x y x y

p p p

h h h
g u u x y x f y f xu yu

a a a
− + + ∆ + ∆ = + . (1.30) 

 ( ) ( )2 2
2 2 2

2 2 2
, p p p

q x y z x y z
p p p

h h h
g q q x y x f y f f xu yu u

a a a
+ + + ∆ + ∆ − ∆ = − − +  (1.31) 

 ( ) ( ) ( )
( )

( )
( ) ( ) ( )2 2 2 2 2 2 22 2

2 x y
y x

y f x fxx yy xy yx x yg u u
x y x y x yx y

ν ν
∆ − ∆+ −

+ + = −
+ + ++

 (1.32) 
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In Equations (1.30)-(1.32), recall that the ‘~’ represents quantities associated with the focal frame (E) of the 

paraboloid. Hence, 
TE I

x y zu C u u u u = =    represents the transformed control input vector. Similarly, 
( )i

TDE I
x y zf C f f f f ∆ = ∆ = ∆ ∆ ∆   and [ ]TE Ir C r x y z= =  denote the differential force and the 

radial distance to the chief spacecraft, in terms of focal frame coordinates, respectively. The scalar 

functions ( ),
pu p pg u u , ( ),qg q q  and ( )gν ν reflect the desired dynamical response for the variables pu , 

q , and ν . As an example, critically damped error dynamics are desired for the distance elements pu  and 

q  while an exponentially decaying error response is sought for ν . 

An exact solution is available for Equations (1.30)-(1.32). To simplify the form of the solution, let 
22 /x p ph x aα = , 22 /y p ph y aα = , ( )2 2/x x x yβ = + , and ( )2 2/y y x yβ = + . Furthermore, let the left hand 

side of Equations (1.30)-(1.32) be summarized by 
puG , qG , and Gν , respectively. Then, the commanded 

control input is expressed 

 
( )
( )

px u y

x
x x y y

G G
u

νβ α

α β α β

−
=

+
, (1.33) 

 
( )
( )

py u x

y
x x y y

G G
u

νβ α

β α β α

+
=

+
, (1.34) 

 
pz u qu G G= + . (1.35) 

Note, the above control law is singular if the deputy crosses the focal line ( 3ê ), 0x y= = . This does not 

present a significant issue, however, because once the deputy is on the surface of the paraboloid this 

condition is never met. This singularity can only occur while the deputy is being driven onto the surface 

during the injection phase. To circumvent this difficulty, it is only necessary to allow the vehicle to coast 

away from this point before reactivating the controller.  

For implementation of this approach in the ephemeris model, the integration of each vehicle proceeds 

separately in an Earth centered inertial frame (I). The relative state of the deputy with respect to the chief is 

computed from these Earth centered states. These quantities are then transformed into the focal frame (E) 

via E Ir C r=  and E Ir C r= . The results of this transformation are substituted into Equations (1.24)- 

(1.29) to determine the values of the quantities to be tracked as well as the necessary control accelerations, 

as computed from Equations (1.33)-(1.35).  
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To illustrate the application of this approach, consider the nominal sample scenario previously introduced 

and depicted in Figure 6. An injection error is introduced such that the initial relative state of the deputy, 

with respect to the chief spacecraft, is characterized by ( )ˆ ˆ ˆ4.6 4.3 6.934r X Y Z= + +  km with a relative 

velocity defined by ˆ ˆ ˆ0.05 0.05 0.05r X Y Z= − −  m/sec. This particular initial state is arbitrarily selected to 

facilitate the visualization process. For any arbitrary initial state, the controller should drive the vehicles in 

the formation to the initial configuration, then reconfigure at the appropriate time. Once deployed, this 

evolution is to proceed along the surface of the paraboloid. Application of this controller results in the 

trajectory illustrated in Figure 7.  

 

The resulting path is divided into three segments. The segment highlighted in orange represents the 

injection phase as well as the initial orbit phase, for 200pu =  m. The green segment denotes the 

reconfiguration phase, characterized by 300 meters/daypu = . The last segment, in blue, is the final phase 

associated with 500pu =  m. The thrust profile associated with this solution appears in Figure 8.  Note that, 

at the present stage of development, each vehicle is controlled separately. Future studies must incorporate 

relative information between deputies to assess the probability of collisions.  

 

Ẑ  

X̂  Ŷ  

0t  

0 1.6 hrst +  

0 3.8 hrst +

0 8 hrst +

0 5 dayst +  

0 6 dayst +  →

→
→Phase 2

Phase 1  
  1 day

4 days + 15 hrs.

Phase 3  5 day
 

3ê

Figure 7 – OFL Controlled Parabolic Formation 
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Comparing Figure 6 to Figure 8, it is clear that the OFL controller converges to the nominal control except 

for the initial correction that is necessary for injection into the nominal configuration. The thrust levels 

range from 25mN during injection to 1-2 mN for orbit maintenance. Note that the maximum thrust 

amplitude will vary according to the response frequency that is specified. Also, though both the nominal 

and actual thrust profiles, appear to converge onto constant segments, there is an oscillation on the order of 

0.003 mN during the orbit phase at 200pu =  (last part of Phase 1) m and 500pu =  m (Phase 3). Unlike 

the configurations previously considered, the chief spacecraft, in this case, is not the center of the 

formation. 

NATURAL AND NON-NATURAL FORMATIONS IN THE EPHEMERIS MODEL 

Besides the non-natural formations identified in the previous discussion, there exist some natural relative 

behaviors that can be exposed and potentially exploited for formations. For example, a variety of natural 

formations can be isolated through knowledge of the dynamical flow near a “halo” orbit. Howell and 

Barden [6-7] identify a planar formation in which individual vehicles evolve along the surface of a two-

dimensional hollow torus. The vehicles always remain in a plane although the formation expands and 

contracts and the plane changes orientation.  

Figure 8 - Thrust Profile for OFL Controlled Parabolic Formation 
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This torus is known to envelop the reference “halo” orbit in the CR3BP. This type of solution also exists in 

the ephemeris model and can be identified, numerically, via a two-level differential correction process, 

such as that developed by Howell and Pernicka [20].  

The relative dynamics associated with the torus are determined from a center manifold analysis, based on 

the linear stability properties of the reference solution, that is, the reference halo orbit. The reference halo 

orbits that are of interest for spacecraft missions are usually unstable.  The stability of such an orbit is 

characterized by one stable and one unstable mode, as well as four center modes. The torus formation 

identified by Howell and Barden [6-7], appearing in Figure 9(a), is associated with two of these center 

modes.  

 

The reference halo orbit evolves along the interior (center) of this two-dimensional hollow torus. Relative 

to the chief spacecraft, evolving along this reference halo orbit, the deputy motion is constrained to evolve 

along the surface depicted in Figure 9(b).  The surfaces in Figure 9(a-b) are representative of the same 

motion as seen by different observers. Figure 9(a), for instance, is indicative of the motion of the deputy 

vehicle (D) as seen by an observer fixed at the libration point (Li), iL Dr . Figure 9(b), then, is representative 

of the motion of the deputy vehicle (D), as observed by the chief spacecraft (C) as it evolves along the 

reference halo orbit, i iL D L Cr r− .  

x̂
ẑ

x̂
ŷ

x̂

ŷ ẑ

ŷ

ẑ

x̂

ŷ

ẑ

(a) (b) 

Figure 9 - Natural Quasi-periodic Formation Associated with Reference Halo Orbit 
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The remaining two center modes lead to nearby periodic halo orbits. The relative motion associated with 

these two center modes reveals the existence of periodic and slowly expanding relative orbits, depending 

on the target state within the new subspace, as demonstrated by Marchand and Howell [14]. The 

approximate period of these relative solutions is close to that of the reference halo (~180 days). Figure 10 

illustrates the projection onto the rotating yz-plane of a sample set of these solutions, as determined in the 

CR3BP. Note, the blue sphere in Figure 10 represents the chief spacecraft but is greatly enlarged for ease of 

visualization. 

 

In Figure 9(b) and Figure 10, the chief spacecraft is located at the origin. The methodology implemented by 

Marchand and Howell [14], based on Floquet theory, is used to numerically identify these relative orbits in 

the CR3BP. The same procedure is used as an impulsive control scheme to deploy spacecraft into these 

natural solutions through a single injection maneuver. In the current work, these solutions are transitioned 

into the ephemeris model using a two-level corrector [20]. For the nearly periodic solutions, the resulting 

motion is essentially unchanged by the transition, as seen from Figure 11(a).  Even the addition of solar 

radiation pressure does not appear to have a significant impact, depending on the spacecraft mass and 

effective area, of course. However, as the orientation of the relative orbit is shifted towards the vertical 

orbits, Figure 11(b-c), the impact of SRP is much more visible.  

These naturally existing motions can be used as initial guesses to compute non-natural formations. In this 

initial investigation, assume that only impulsive control is available to achieve the objective. For instance, 

consider the orbit in Figure 11(c). The relative path is clearly not periodic but, the initial guess is 

sufficiently close to periodic if the effects of SRP are small. 

Figure 10 - Periodic and Slowly Expanding Relative Orbits in the CR3BP 
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In this case, a differential corrector can be applied to enforce periodicity if impulsive maneuvers are 

allowed. The process is similar to a method commonly used to transition halo orbits into the ephemeris 

model. Consider the first two revolutions of the path (without SRP) in Figure 11(b). A two-level 

differential corrections process, in this case with initial- and end-point constraints, determines the maneuver 

necessary to close the orbit over this time period. The patch points associated with the converged solution 

are then shifted forward in time to add N additional revolutions. The complete solution is then differentially 

corrected while allowing maneuvers at the intersections between revolutions. A sample solution, over six 

revolutions, is illustrated in Figure 0 and is obtained by applying two impulsive maneuvers ranging in size 

from 2.5 m/sec to 5 m/sec at the specified locations.  

A similar approach can be applied to the nearly vertical trajectory in Figure 11(c) to obtain vertical periodic 

relative orbits, as illustrated in Figure 13. This particular approach works very well if periodicity is 

enforced in the rotating frame, as opposed to the inertial frame. Relative to an observer fixed in the rotating 

frame, these solutions appear to be sufficiently close to periodic and are, subsequently, a suitable initial 

guess for the differential corrector. However, the associated inertial perspectives, illustrated in Figure 14, 

are quite different. Thus far, these do not appear to provide a sufficiently accurate initial guess if periodicity 

is required. That is because of the natural geometry of the solution and the fact that the Earth is at a 

different location every time a revolution is completed, as opposed to a perspective originating in the 

rotating frame. At the present time, however, no conclusive statements can be made since this is still a 

subject of ongoing study. 

 

 

Figure 11 – Natural Formations in the Ephemeris Model 
Impact of Solar Radiation Pressure (SRP)
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V∆

Figure 12 – Controlled Periodic Orbit in the Ephemeris Model (w/o SRP) 

Figure 13 – Controlled Vertical Orbits in the Ephemeris Model (w/o SRP) 

V∆  
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CONCLUSIONS 

In the present investigation, output feedback linearization (OFL) techniques are successfully applied to 

deploy, enforce, and reconfigure spherical and aspherical formations near the vicinity of the libration points 

of the Sun-Earth/Moon system. All the control laws considered are developed and implemented in the full 

ephemeris model including solar radiation pressure and any number of desired gravitational perturbations. 

Depending on the constraints imposed on the formation, the results presented in this study often require 

thrust levels on the order of milli-Newton’s for a 700 kg spacecraft. In contrast, the deployment phase can 

require thrust levels in the Newton range, depending on when the controller is activated. This range of 

thrust levels appears to be achievable with presently available technology. However, currently, these 

technologies are mostly devoted to station keeping and attitude control, which does not often require long 

term operation. Hence, the lifetime of the propulsion system, within the context of the configurations 

defined here, may require further enhancements. Even if the formation constraints can be met, theoretically, 

the sensitivity of these methods to modeling and thruster implementation errors must be addressed. This is 

of particular importance for libration point missions given the associated dynamical sensitivities to small 

perturbations. Certainly, on any of the examples presented here, discontinuing the thrust input at any time, 

or placing bounds on its amplitude, leads to divergence from the desired nominal, especially with the 

higher rates of rotation that induce higher tangential speeds.  

Another area of interest in this study is the use of naturally existing configurations to construct non-natural 

formations via impulsive control. The methods associated with the determination of these natural solutions 

are determined from center manifold analysis and the application of a previously developed Floquet 

controller to deploy into these configurations. Thus far, the method presented is only applied to establish 

periodic vertical relative orbits in the ephemeris model. These and other techniques are still under study 

regarding configurations that are, in some general sense, fixed relative to the inertial frame.  

Figure 14 – Natural Formations in the Ephemeris Model 
Inertial Frame Perspective of Figures 11(a-c) (w/ SRP)
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The knowledge gained from the application of the continuous (OFL Controller) and impulsive techniques 

(Floquet Controller) can potentially, be applied as a combined formation keeping strategy. That is, if the 

formation goals only require the nominal configuration to be maintained over a predetermined time 

interval, the Floquet controller can be used to place the vehicles into natural formations until the next 

reconfiguration is necessary. At this point, the continuous controller can once again be activated to return 

the vehicles into the desired configuration. 
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