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FORMATION FLIGHT NEAR L1 AND L2  

IN THE SUN-EARTH/MOON EPHEMERIS SYSTEM 

INCLUDING SOLAR RADIATION PRESSURE 

B.G. Marchand† and K.C. Howell‡  

The concept of formation flight of multiple spacecraft, near the libration points 

of the Sun-Earth/Moon (SEM) system, offers as many possibilities for space 

exploration as technical challenges. The initial phase of this research effort 

focused on the dynamics and control of formation flight in the circular restricted 

three-body problem (CR3BP). In the present phase, these results are transitioned 

into the more complete n-body ephemeris model to incorporate other 

gravitational perturbations as well as solar radiation pressure (SRP). The 

continuous control techniques previously applied in the CR3BP are successfully 

implemented in the SRP perturbed n-body ephemeris model. In addition, closer 

inspection of the flow corresponding to the stable and center manifolds near the 

reference halo orbit, reveals some potentially interesting nominal motions as 

well as some discrete control strategies for deployment. Furthermore, some of 

the control implementation issues associated with formation keeping of natural 

vs. non-natural configurations are addressed.  

INTRODUCTION 

Much of the available research on formation flight focuses on Earth orbiting configurations [1-17], where 

the influence of other gravitational perturbations can be safely ignored. However, renewed interest in 

formations that evolve near the vicinity of the Sun-Earth libration points has inspired new studies regarding 

formation keeping in the three-body problem [18-31]. Some of these investigations focus on the simplified 

circular restricted three-body problem (CR3BP) [18-22]. Howell and Marchand [18] consider linear 

optimal control, as applied to nonlinear time varying systems, as well as nonlinear control techniques, 
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including input and output feedback linearization. These control strategies are applied to a two spacecraft 

formation where the chief spacecraft evolves along a three-dimensional periodic halo orbit near the L2 

libration point. A detailed study of the nominal formation keeping costs over a 6-month period is presented 

for two types of configurations; for a constant relative separation distance, the chief-deputy line is assumed 

to remain (a) fixed relative to the rotating frame, or (b) fixed relative to the inertial frame. This particular 

effort does not constitute the only application of continuous control techniques in the CR3BP. Scheeres and 

Vinh [19] develop a non-traditional yet innovative continuous controller, based on the local eigenstructure 

of the linear system, to achieve bounded motion near the vicinity of a halo orbit. Although the latter 

approach is not suitable for precise formation keeping, nor is it necessarily the optimal way of achieving 

boundedness, it does achieve other goals that may be more important for other types of missions. In 

particular, the natural winding frequency of the spacecraft around the reference halo orbit is significantly 

increased. This is consistent with one of the stated requirements for TPF, where the formation is required to 

achieve a particular rotation rate that is not consistent with the natural dynamics near this region of space.  

Other research efforts have also focused on the effectiveness of continuous control techniques in the 

general CR3BP, though not in the vicinity of the libration points. Gurfil and Kasdin consider both LQR 

techniques [20] and adaptive neural control [21] for formation keeping in the CR3BP. The second 

approach, described in [21], incorporates uncertainties introduced by modeling errors, inaccurate 

measurements, and external disturbances. Luquette and Sanner [22] apply adaptive nonlinear control to 

address the same sources of uncertainties in the nonlinear CR3BP.  

Formations modeled in the CR3BP do represent a good starting point. However, ultimately, any definitive 

formation keeping studies must be performed in the n-body ephemeris model, where the time invariance 

properties of the CR3BP are lost and, consequently, precisely periodic orbits do not exist near the libration 

points. Hamilton [23] and Folta et al. [24] consider linear optimal control for formation flight relative to 

Lissajous trajectories, as determined in the ephemeris model. However, the evolution of the controlled 

formation is approximated from a linear dynamical model relative to the integrated reference orbit. Finally, 

Howell and Barden [25-28] also investigate formation flying near the vicinity of the libration points in the 

perturbed Sun-Earth/Moon system but their results are determined in the full nonlinear ephemeris model. 

Initially, their focus is the determination of the natural behavior on the center manifold near the libration 

points and the first step of their study captures a naturally occurring six-satellite formation near L1 or L2 

[25]. Further analysis considers strategies to maintain a planar formation of the six vehicles in an orbit 

about the Sun-Earth L1 point [26-28], that is, controlling the deviations of each spacecraft relative to the 

initial formation plane. A discrete station keeping/control approach is devised to force the orientation of the 

formation plane to remain fixed inertially. An alternate approach is also implemented by Gómez et al. [29] 
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in a study of the deployment and station keeping requirements for the TPF nominal configuration. Their 

analysis is initially performed in a simpler model but the simulation results are transitioned into the 

ephemeris model.  

In the present investigation, the effectiveness of the continuous control techniques developed in [18] is 

successfully transitioned into the perturbed n-body ephemeris model. Mathematically, this is a sound 

approach to enforce non-natural formations. However, an actual formation flight mission may be required 

to rely on discrete control. Hence, the present study also considers two types of impulsive control. The first 

is a basic targeter approach that is, in concept, similar to that implemented by Howell and Barden [26-28] 

in the ephemeris model. This particular controller is applied here to an inertially fixed non-natural 

formation. Also, the station keeping techniques previously implemented by Howell and Keeter [30] and 

Gómez et al. [31], based on a Floquet controller, are adapted here to the formation keeping problem. In 

particular, the Floquet controller is applied to study naturally existing formations near the libration points 

and the potential deployment into such configurations. 

DYNAMICAL MODEL 

Background 

In this investigation, the standard form of the relative equations of motion for the n-body problem, as 

formulated in the inertial frame ( )ˆ ˆ ˆX Y Z− − , is employed. Hence, the dynamical evolution of each vehicle 

in the formation is governed by  
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For notational purposes, let 2P  denote the central body of integration, in this case the Earth. Then, sP  

represents the spacecraft, and the sum over j  symbolizes the presence of other gravitational perturbations. 

The effects of solar radiation pressure (SRP) are also incorporated. The SRP force vector, as discussed by 

McInnes [32], can be modeled as  
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where k  denotes the absorptivity of the spacecraft surface ( 2k =  for a perfectly reflective surface), 0S  is 

the energy flux measured at the Earth’s distance from the Sun [W/m2], 0D is the mean Sun-Earth distance 
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[km], A  represents the constant spacecraft effective cross sectional area [km2], c  is the speed of light 

[km/sec], sm  is the spacecraft mass [kg], β  is the angle of incidence of the incoming photons, n̂  denotes 

the unit surface normal, and d [km] represents the Sun-spacecraft distance. The sample spacecraft 

implemented in this study is modeled after the TPF combiner spacecraft, assuming a 25-meter diameter and 

a spacecraft mass of 700 kg. The SRP force parameters are summarized in Table 1.  

Table 1 – TPF Combiner S/C Parameters 

k 1.4 c 299792.458 km/sec A 4.9087×10-4 km2 

S0 1.358×103 W/m2 D0 1.49597870×108 km ms 700 kg 

Suppose that the spacecraft is modeled as a flat plate. It is immediately obvious, from Equation (1.2), that 

the highest impact due to SRP occurs when the plate is normal to the incident photons, 0β =  and 

ˆ /n d d= . In this study, it is assumed that the vehicle is always oriented such that 0β = . In general, the 

inclusion of solar radiation pressure into the model has the most noticeable effect when the spacecraft mass 

is small relative to the effective area, as deduced from Equation (1.2). For instance, suppose the chief 

spacecraft in a formation evolves along a “halo” orbit near L2, as determined in the Sun-Earth/Moon 

ephemeris model. If the mass of the spacecraft is 3500 kg, the impact of the SRP force on the path of the 

vehicle is barely noticeable, compared to the effect on a 700 kg spacecraft, as observed from Figure 1.  

To further illustrate the effects of the addition of SRP on the dynamical model, consider the TPF combiner 

spacecraft described by the parameters in Table 1. Figure 2 illustrates the impact of the choice of dynamical 

model on a “halo” orbit near the instantaneous L2 point of the Sun-Earth system, as observed in the rotating 

libration point (RLP) frame. The top left trajectory represents a halo orbit, with 200, 000zA =  km, as 

determined in the CR3BP. The top right figure depicts the same trajectory but transitioned into the 

ephemeris model (no periodicity). The orbit in the bottom left figure is also associated with the Sun-Earth 

ephemeris model but as perturbed by the Moon. Finally, the bottom right represents the same trajectory in 

the Sun-Earth/Moon system but includes SRP effects. Clearly, the dynamical model has a visible impact on 

the orbit. However, if the trajectory illustrated in the bottom right of Figure 2 represents the path of the 

chief spacecraft in a formation, the actual impact on the formation keeping cost is miniscule. For example, 

a 100-km formation of two spacecraft constrained to be aligned with the inertial y-axis ( )Ŷ , over a period 

of 180 days, requires a nominal cost of 0.3272 m/sec in the absence of SRP in the ephemeris system. 

Including SRP in the dynamical model, as described in the following discussion, increases the cost to 

0.3348 m/sec. 
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Control of Relative Motion in the Presence of SRP 

The equations of motion for both the chief and deputy spacecraft may be expressed in the following form, 

 ( ) ( ) ( ) ( ) ( )2 C C CP CI
I grav srp C Cr f f u t f u t= + + = + , (1.3) 

 ( ) ( ) ( ) ( ) ( )2 i i ii

i i

D D DP DI
I grav srp D Dr f f u t f u t= + + = + , (1.4) 

where ( )Cu t  and ( )
iDu t  denote the control accelerations required to maintain the desired nominal 

configuration, and ( )Cf  and ( )iDf  represent the net force acting on the chief spacecraft and the ith deputy 

vehicle, respectively. The numerical integration for all vehicles in the formation is performed in terms of 

inertial coordinates such that, for instance, 2 ˆ ˆ ˆiP D
i i ir x X y Y z Z= + + . Thus, the vehicle velocities and 

accelerations are associated with the inertial frame (I).  

The chief spacecraft, or center of the formation, is assumed to evolve along a quasi-periodic Lissajous 

trajectory. Since this is a naturally existing solution in this regime, the baseline control acceleration ( )Cu t  

is zero. The relative equations of motion for the ith deputy, then, are easily determined by subtracting 

Equation (1.3) from (1.4), 

 ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )i i ii

i i

D D DC CCDI
I grav grav srp srp D Dr f f f f u t f u t= − + − + = ∆ + . (1.5) 

The vector iCDr  denotes the position of the ith deputy relative to the chief spacecraft while ( )iDf∆  

represents the relative net force vector. Let ρ  represent the desired nominal path of the deputy spacecraft, 

then, ρ designates the nominal velocity vector, and ( )
iDu t  denotes the associated nominal control effort 

such that,  

 ( )i

i

D
Df u tρ = ∆ + . (1.6) 

The superscript “ ” denotes evaluation on the nominal solution ( ),ρ ρ . Then, the error dynamics are 

easily determined by subtracting the nominal motion in Equation (1.6) from (1.5),  

 { } { } ( )i i i i

i i i

CD D D DI I
I D D De r f f u u f u tρ δ δ= − = ∆ − ∆ + − = ∆ + . (1.7) 

In the above equation, the nominal solution corresponds to the zero vector, i.e., ( ) 0e t = . Howell and 

Marchand [18] establish the effectiveness of an input feedback linearization (IFL) control approach in the 

CR3BP. This continuous control technique is applied here to the ephemeris model formulation. Consistent 
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with the previous definition of the IFL controller [18], suppose that a critically damped error response, 

characterized by a natural frequency nω , is desired. Then, the differential control input, ( )
iDu tδ , measured 

relative to the nominal control acceleration ( )
iDu t , is determined as  

 ( ) 22
i

I
D n nu t f e eδ δ ω ω= − ∆ − − . (1.8) 

The total control effort is then the sum of the nominal control input, ( )
iDu t , and the differential control 

acceleration, ( )
iDu tδ .  

As an example, define a two spacecraft 100-km formation that is constrained to remain aligned with the 

inertial y-axis ( Ŷ ) at all times. That is, while the chief spacecraft evolves along the reference “halo” orbit 

represented by the bottom right trajectory in Figure 2, the deputy is always located 100 km away from the 

chief spacecraft along the inertial y-direction. For an arbitrary injection error, relative to ρ  and ρ , of the 

form ( )ˆ ˆ ˆ7 5 3.5r X Y Zδ = − +  km in position and ( )ˆ ˆ ˆI r X Y Zδ = − +  m/sec in velocity, it is clear, as 

observed from Figure 3, that the error response, based on the IFL controller, is not noticeably affected by 

the choice of model. The formation keeping cost, over 180 days, changes only slightly between models. 

Transitioning the orbit into the ephemeris model, with or without the Moon, decreased the cost from 4.00 

m/sec in the CR3BP to 3.86 m/sec. However, adding solar radiation pressure increased the net formation 

keeping cost slightly to 3.88 m/sec.  

CONTINUOUS VERSUS DISCRETE CONTROL  

Background 

Based on results from previous investigations, [18, 20-22] it appears that it is possible, at least 

computationally, to achieve precise formations in the CR3BP if continuous control is both available and 

feasible. Howell and Marchand [18] demonstrate that, to maintain two spacecraft separated by 5000 km, a 

2000 kg vehicle would nominally require thrust levels ranging between 0.86 and 2.10 mN, as determined in 

the CR3BP for a 200,000 km reference halo orbit. If the separation distance is reduced to 100 meters, that 

thrust level is reduced to 1.7×10-5 to 4×10-5 mN. The low continuous thrust levels that are required, near the 

libration points, to maintain a small formation like TPF presently represent a technical challenge. 

Furthermore, although continuous control approaches are mathematically sound, the science goals of deep 

space missions may impose a series of constraints that eliminate continuous control as a feasible option. 

Some also suggest that maintaining a precise formation is, perhaps, ultimately not as critical as generating 

precise knowledge of the relative position of each spacecraft in the formation. In these cases, a discrete 

formation keeping strategy may represent an important capability.  
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Investigation of Various Control Strategies 

In this study, three different discrete control strategies are considered for formation keeping. All of these 

rely on knowledge of the linearized dynamics associated with the reference orbit, but incorporate the 

nonlinear response of the vehicle. In this case, the reference orbit is the path of the chief spacecraft, 

assumed to evolve along a 200,000 km halo orbit. The deputy dynamics, then, are modeled as a 

perturbation relative to the reference orbit. The success of a particular control strategy depends, in part, on 

the nominal motion that is required of the deputy. 

In the first method, the nominal path of the deputy spacecraft is characterized as an inertially fixed distance 

and orientation, relative to the chief spacecraft. Since this type of motion does not exist naturally near the 

libration points, continuous control is necessary to precisely enforce the formation for the duration of the 

mission. Here, instead of applying continuous control, the path of the deputy is divided into segments. At 

the beginning of each segment, an impulsive maneuver is implemented that targets the nominal state at the 

end of the segment. If the nominal separation between the chief and deputy spacecraft is small, this 

approach proves to be effective. That is, the maximum error, as measured relative to the nominal state, 

incurred between maneuvers is only within a few centimeters.  

The remaining two controllers are derived from Floquet analysis, based on the reference orbit, and are 

designed to remove the unstable component of the relative state, as well as two of the four center subspace 

modes that are associated with the reference orbit. The path of the deputy, then, is representative of a 

synthesis between the stable and center flows. In contrast with the first method, these two controllers do not 

target a non-natural reference motion. Instead, these control schemes nominally place the deputy spacecraft 

on a naturally existing path that exhibits nearly periodic behavior, bounded motion, or quasi-periodic 

motion relative to the chief spacecraft. The control essentially seeks to return the deputy to this natural 

path. 

Continuous control is also a topic of interest in this investigation – as a step toward the ultimate goal, that 

is, the development of an effective optimal discrete controller. For instance, one aspect of the present study 

is nonlinear optimal control. The focus is not actually the controller itself, but rather the identification of 

simple and yet efficient numerical methods to solve the associated two-point boundary value problem. The 

highly nonlinear nature of the equations makes this a very difficult task and, as such, this particular phase 

of the study represents an ongoing effort. Ultimately, this undertaking is only a building block towards 

identifying an optimal nonlinear discrete controller and the numerical methods required to solve this 

problem. 
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DISCRETE CONTROL IN THE EPHEMERIS MODEL 

Driven by control and/or implementation requirements, some new consideration is warranted concerning 

the degree of accuracy to which the formation can be maintained via discrete impulses. An LQR controller, 

based on a discrete time system, yields the optimal magnitude of each differential control impulse at 

specified time intervals. However, the value of the nominal control input that must be added is still 

assumed to be continuously available. So, in a truly discrete control strategy, how often must an impulsive 

maneuver be incorporated to maintain the desired configuration to some acceptable degree of accuracy, 

even in the presence of external perturbations?  

Targeting a Nominal Relative State 

Consider the case of a formation of two spacecraft separated by 100 km, constrained to remain aligned with 

the inertial y-axis ( Ŷ ) at all times. In the absence of any external perturbations, a continuous control 

approach via IFL, as discussed by Howell and Marchand [18], requires 0.3348 m/sec of total V∆  over a 

period of 180 days. How much will the formation diverge if the control input is discretized over a period of 

hours, or even days? Consider the general form of the solution to the linear system, 

 ( )1
1

1

,k k k k k
k k

k k k k k k

r r A B r
t t

v v C D v v
δ δ δ
δ δ δ

+
+

+

       
= Φ =       + ∆       

, (1.9) 

where ( )1,k kt t+Φ  denotes the state transition matrix, from time kt  to time 1kt + , associated with the nominal 

Lissajous orbit along which the chief spacecraft is assumed to evolve. The symbol δ  denotes a 

perturbation relative to the nominal Lissajous trajectory and kv∆  represents an impulsive maneuver applied 

at the beginning of the kth segment, marked by kt . Controlling the position of the deputy spacecraft relative 

to the chief to a constant vector, as observed in the inertial frame, is equivalent to targeting a particular 

constant perturbation 1krδ +  relative to the inertial frame. An impulsive maneuver of the form  

 ( )1
1k k k k k kv B r A r vδ δ δ−
+∆ = − − , (1.10) 

will accomplish the goal in the linear system. A precise implementation of this scheme in the nonlinear 

system requires that the maneuvers be differentially corrected over each segment as discussed by Howell 

and Barden [26-28]. However, the simple expression in Equation (1.10) does accomplish the objective, 

provided the length of each segment, 1k k kt t t+∆ = − , is sufficiently small. This observation is deduced from 

Figure 4. The maneuver strategies associated with each curve in Figure 4 are illustrated in Figure 5. Not 

surprisingly, the total v∆  computed via the discrete control approach converges on the cost determined 

from the IFL continuous controller ( 0.3348v∆ =  m/sec) as the interval between maneuvers decreases.  
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Note, from Figure 4, that during the wait period between maneuvers the trajectory diverges quickly from 

the pre-specified nominal path. Naturally, the maximum error incurred during each segment decreases as 

the scheduled time between maneuvers decreases. In spite of this trend, these results indicate that, if the 

nominal radial separation is large, continuous control is still required if a good level of accuracy is desired. 

Smaller formations, on the other hand, can benefit from a discrete approach. For instance, consider a 

formation characterized by a 10-meter separation between the chief and deputy spacecraft. In particular, let 

the nominal formation be defined by ( ) ˆ10 m Yρ =  and 0ρ = . As depicted in Figure 6, the maximum 

deviation achieved between maneuvers is significantly smaller, dropping below one centimeter for 

maneuvers scheduled at least every 2 days. The maneuver history for each of the examples in Figure 6 is 

illustrated in Figure 7. Note that the magnitude of the individual maneuvers is still extremely small, which 

is consistent with the natural sensitivity to small changes in this region of space. Hence, the error 

introduced in any attempt to physically implement such a small maneuver may offset the benefits. The 

results in Figure 6 also raise another issue. In particular, for a given maneuver interval, how large can the 

nominal relative separation be such that the desired configuration is maintained within some acceptable 

tolerance (e.g., one centimeter)? As observed from Figure 8, formation separations of up to 50 meters can 

be achieved to within a centimeter at all times, if a maneuver is performed once a day. If that interval is 

doubled to once every two days, then the maximum relative separation recommended drops to 15 meters.  

Clearly, achieving the desired nominal configuration to extreme accuracy requires maneuvers that are fairly 

close to each other. However, this fact introduces yet another difficulty. As the maneuvers become more 

closely spaced they also decrease in size. The magnitude of the maneuvers illustrated in Figure 7 is already 

extremely small (10-6 m/sec). So, regardless of whether continuous or discrete control is available, 

accurately maintaining a non-natural nominal configuration, with small relative separations, is apparently 

not achievable with the technology presently available. Since the natural flow in this region of space is 

constantly acting against these non-natural configurations, the relative error increases rapidly if these small 

maneuvers are not accurately implemented. Conversely, formations that take advantage of the natural flow 

near the reference orbit require minimal station keeping beyond the initial injection maneuver.  

Formations that Exploit the Center + Stable Manifolds 

The center manifold that exists in the immediate vicinity of the reference halo orbit allows for a variety of 

natural motions that could prove beneficial for formation flight missions. To numerically identify these 

regions, it is necessary to understand the eigenstructure associated with the reference orbit. To that end, the 

analysis of the center manifold as presented here employs the CR3BP, where the reference orbit is defined 

as a three-dimensional, periodic halo orbit. The natural formation dynamics in the vicinity of the reference 
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orbit are studied in detail. Once a suitable set of nominal configurations is identified, the results are easily 

transitioned into the ephemeris model previously described via a differential corrections process. 

Floquet Analysis 

Let ( )*x t  denote the state vector, at time t, along a reference halo orbit near L1 or L2 in the CR3BP and let 

( )x tδ  denote a perturbation relative to ( )*x t . Since the following analysis is performed in the CR3BP, 

these vectors are both expressed in terms of rotating coordinates consistent with the standard definition of 

the synodic rotating frame. In this frame, x̂  is directed from the Sun to the Earth/Moon barycenter, ẑ  is 

normal to the plane of motion of the primaries, and ŷ  completes the right handed triad. The velocity 

elements of the vectors ( )*x t  and ( )x tδ  are both associated with an observer fixed in the rotating frame.  

In terms of the linearized dynamics, the evolution of the perturbation vector ( )x tδ  is governed by the state 

transition matrix, ( ),0tΦ , such that 

 ( ) ( ) ( ),0 0x t t xδ δ= Φ . (1.11) 

Since the reference orbit is T-periodic, the state transition matrix admits a Floquet decomposition [30-31] 

of the form 

 ( ) ( ) ( ) 1,0 0Btt P t e P −Φ = , (1.12) 

where ( ) ( )P t P t T= + is a periodic matrix, ( )0P  is the identity matrix, and B  is a constant matrix. The 

matrix B  is easily evaluated from the monodromy matrix, ( ),0TΦ , as 

 ( )1 log ,0B T
T

= Φ . (1.13) 

To develop a better understanding of the dynamics near the reference orbit, it is useful to express B  in 

terms of its real Jordan form such that  

 1B SJS −= , (1.14) 

where J  is a block diagonal matrix formed by the real and imaginary parts of the eigenvalues of B , and 

the columns of S  represent the real and imaginary parts of the associated eigenvectors. By substituting 

Equation (1.14) into (1.12), and properly rearranging the resulting terms, it is clear that 

 ( ) ( ){ } ( ){ },0 0 Jtt P S P t S eΦ = . (1.15) 
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This leads to the definition of the Floquet Modal matrix, 

 ( ) ( ) ( ) ( ),0 0 JtE t P t S t E e−= = Φ . (1.16) 

Note that, since ( )P t  is periodic, and S  is a constant matrix, the modal matrix is also periodic 

with ( )0E S= .  

The reference halo orbits of interest in this study are inherently unstable. The six-dimensional 

eigenstructure of the B  matrix is thus characterized by one unstable eigenvalue ( 1γ ), one stable eigenvalue 

( 2γ ), and four eigenvalues associated with the center subspace. Two of these neutrally stable eigenvalues 

are purely imaginary ( 3γ  and 4γ ) and the remaining two are exactly equal to zero ( 5γ  and 6γ ). The 

eigenvalues of the B matrix are commonly denoted the Floquet exponents. The eigenvectors, or modes, 

associated with these eigenvalues are here defined as js . Once these eigenvalues and eigenvectors are 

identified, the Floquet modes at each point along the orbit can be computed from Equation (1.16).  

Now, at a point in time, the perturbation ( )x tδ  can be expressed in terms of any six-dimensional basis. 

The Floquet modes ( je ), defined by the columns of ( )E t , form a non-orthogonal six-dimensional basis. 

Hence, ( )x tδ  can be expressed as 

 ( ) ( ) ( ) ( )
6 6

1 1
j j j

j j
x t x t c t e tδ δ

= =

= =∑ ∑ , (1.17) 

where ( )jx tδ  denotes the component of ( )x tδ  along the jth mode, ( )je t , and the coefficients ( )jc t  are 

easily determined as the elements of the vector ( )c t  defined by  

 ( ) ( ) ( )1c t E t x tδ−= . (1.18) 

The Floquet analysis presented above is implemented by Howell and Keeter [30] and Gómez et al. [31] as 

the basis of a station keeping strategy for a single spacecraft evolving along a halo orbit. In their study, 

Howell and Keeter (following Gómez et al.) determine the impulsive maneuver scheme that is required to 

periodically remove the unstable component, 1xδ , of the perturbation, ( )x tδ . For instance, let  

 ( ) ( )( )
6

2

1n j j
j

x t t xδ α δ
=

= +∑ , (1.19) 

denote the desired perturbation relative to the reference orbit, where the ( )j tα ’s denotes some, yet to be 

determined, coefficients. Note that the limits of the summation range from 2 through 6 which implies that 

the unstable mode, 1e , has been removed. The control problem, then, reduces to finding the impulsive 

maneuver, ( )v t∆ , such that 
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 ( )( ) ( )
6 6

3

2 1

0
1 j j j

j j
t x t x

v
α δ δ

= =

 
+ = +  ∆ 

∑ ∑ . (1.20) 

After some reduction, Equation (1.20) can be rewritten in matrix form as 

 2 3 4 5 6 3 * *
1

2 3 4 5 6 3

0r r r r r

v v v v v

x x x x x
E x

x x x x x I v
δ δ δ δ δ α

α δ
δ δ δ δ δ
   

= =   − ∆  
, (1.21) 

where jrxδ  refers to the first three elements of the vector jxδ , jvxδ  denotes the last three elements of 

jxδ , and α  represents a 5 1×  vector formed by the jα  coefficients in Equation (1.20). Howell and Keeter 

[30] identify the required v∆  via a minimum norm solution. An exact solution is also considered in both 

[30] and [31] by constraining the maneuver to be performed along the Sun-Earth line ( )x̂ . Although this 

approach was originally devised for station keeping of the reference orbit, in this study, a modified version 

of the methodology provides much insight for formation keeping in the three-body problem. In particular, a 

discrete three-axis control is implemented that removes the components of xδ associated with the unstable 

mode ( 1xδ ) and two of the four center modes ( 3 4and x xδ δ  or 5 6and x xδ δ ). The particular set of two 

center modes that is removed depends on the kind of formation that is sought.  

In general, the center modes point towards other bounded solutions that exist in the vicinity of the reference 

halo orbit. For instance, modes ( )3e t  and ( )4e t  point towards a torus that is known to envelop the halo 

orbit, as illustrated in Figure 9. This two-dimensional torus exists both in the CR3BP and in the ephemeris 

model and represents a natural (unforced) solution to the nonlinear equations of motion. In fact, the surface 

illustrated in Figure 9 is associated with the ephemeris model. Hence, if the initial perturbation, ( )0xδ , is 

entirely contained within the subspace spanned by 3e  and 4e , then the perturbed path, relative to the halo 

orbit, is bounded and evolves along a torus such as that illustrated in Figure 9. Now, suppose that ( )x tδ  

represents the relative dynamics of a deputy spacecraft. This implies that the chief S/C is assumed to evolve 

along the halo orbit. The relative path that defines the motion of the deputy is best visualized from the 

Figures 10 and 11. Relative to the chief spacecraft, Figure 10 depicts the surface along which the deputy 

evolves, while Figure 11 details the exact manner in which the evolution proceeds. In these figures, the 

chief S/C is always located at the origin. Note that the surface in Figure 10 self-intersects several times, but 

that is merely a product of the projection of the six-dimensional states onto three-dimensional configuration 

space. Furthermore, although the surface illustrated in Figure 10 is generated in the linear system, it is 

known to represent a natural solution to the nonlinear equations both in the CR3BP and in the ephemeris 

model, as illustrated in Figure 9. 
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If, instead, the initial state is entirely contained within the subspace spanned by 5e  and 6e , then the 

perturbed path corresponds to a neighboring halo orbit. A blend of subspaces reveals some interesting 

possible motion, however. The controller developed by Howell and Keeter is modified such that, at 

periodic time intervals, the unstable component of ( )x tδ  is removed, along with two of the center modes. 

For instance, the v∆  required to remove modes 1e , 3e , and 4e  can be determined exactly from 

 ( )
1

2 5 6 3
1 3 4

2 5 6 3

0r r r

v v v

x x x
x x x

x x x Iv
δ δ δα

δ δ δ
δ δ δ

−
  

= + +   −∆   
. (1.22) 

Similarly, the v∆  required to remove modes 1e , 5e , and 6e  is exactly determined from 

 ( )
1

2 3 4 3
1 5 6

2 3 4 3

0r r r

v v v

x x x
x x x

x x x Iv
δ δ δα

δ δ δ
δ δ δ

−
  

= + +   −∆   
. (1.23) 

Either one of these controllers leads to motion that exhibits not only the overall features of the associated 

center subspaces, but also of the stable manifold that converges onto that region of space. As a direct result, 

the controllers described by Equations (1.22) and (1.23) not only define other potential nominal 

configurations, but also deployment into these configurations, as is demonstrated below.  

Application: Floquet Controller to Deploy Into Quasi-Periodic Torus Formation 

Consider a two-spacecraft formation where the chief spacecraft is assumed to evolve along a 200,000 km 

halo orbit near the Sun-Earth/Moon L1 point. Both spacecraft are deployed and arrive simultaneously at 

different points along the xz-plane. Let the “arrival” point for both spacecraft be defined as the point where 

they cross the xz-plane near the reference orbit. The position of the deputy spacecraft upon arrival is similar 

to the chief but 50 meters off along the + x̂  direction. The relative velocity of the deputy is not important, 

only the relative orientation of the two spacecraft is relevant. Once at the arrival point, the deputy 

spacecraft performs its first formation keeping maneuver, as determined from Equation (1.23). This 

maneuver is the largest and is meant to place the spacecraft state into the desired subspaces. The magnitude 

of the maneuver is approximately equal to the magnitude of the relative velocity of the deputy with respect 

to the chief. For this particular example, the initial relative velocity of the deputy is selected as 

( )ˆ ˆ ˆv x y z= − +  m/sec. Thus, the deputy’s first maneuver is 1 1.73ν∆ =  m/sec. Thereafter, the trajectory of 

both the chief and deputy spacecraft requires a small deterministic v∆  every 180 days (1 orbital period 

along the halo orbit). For the chief spacecraft, these are necessary to enforce the periodicity condition over 

100 orbital periods (and may simply be a numerical artifact). All of these corrections – both for the chief 

and deputy – are on the order of 810−  m/sec.  
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The resulting path is illustrated in Figure 12. The first leg of the path is characteristic of motion along the 

stable manifold, associated with mode 2, while the converged path is consistent with the motion associated 

with modes 5 and 6, previously illustrated in Figure 10. 

Application: Floquet Controller to Deploy Into Nearly Periodic Formations 

For the same reference halo orbit employed in the previous example, consider three deputies deployed 

along with the chief spacecraft. Each deputy spacecraft arrives simultaneously at a different location 

relative to the chief. In particular, the relative position vectors are 50 meters, 100 meters, and 140 meters 

along the +x-direction. Application of the Floquet controller described by Equation (1.22) leads to a nearly 

periodic formation. Once again, the first leg along the path of each deputy resembles motion along the 

stable manifold associated with the reference halo orbit. However, the converged path is nearly periodic, as 

observed from Figure 13. The resulting path is propagated for 10 revolutions of the reference halo orbit 

(1800 days). Beyond the initial injection maneuver, numerical corrections are implemented once every 180 

days, although the magnitude is small ( 810−  m/sec).  

The converged segment of the path in Figure 13 reveals a variety of very nearly periodic solutions in the 

vicinity of the chief spacecraft. Since the controller forces these solutions to remain within a subspace 

spanned by 2e , 5e , and 6e , the resulting path is not evolving solely along the halo family but rather along 

another type of nearly periodic motion in the vicinity of the reference halo orbit. To better visualize the 

potential configurations, Figure 14 illustrates eight deputies evolving along nearly periodic orbits. The 

actual path of each is expanding, but it does so very slowly. So, the individual orbits can be propagated for 

100 revolutions of the reference halo and will still appear periodic. Let ( )r t  denote the vector formed by 

the position elements of ( )x tδ . The orbits depicted in Figure 14 are obtained by applying the controller to 

a relative position vector of the form 0 ˆr r y= , where 0r  denotes some initial separation between the chief 

and deputy spacecraft. The rate of expansion of these orbits is more noticeable if the initial position vector 

originates anywhere else in the yz-plane. In fact, the rate of expansion reaches a maximum if the initial 

relative position vector is of the form 0 ˆr r z= . In this case, the resulting orbits appear nearly vertical and 

are illustrated in Figure 15 using a four spacecraft formation as an example. In the yz-projection, it is 

apparent that the expansion proceeds clockwise since, in this case, the reference orbit is a northern L1 halo 

orbit. This is consistent with the direction of motion both along the halo family and the stable manifold in 

this region of space. Figure 16 further illustrates how the rate of expansion changes as the initial state is 

shifted throughout the yz-plane. The sphere at the origin (the location of the chief) is included only to aid in 

visualizing the path of the deputy. Note that with no initial z-component, the orbit of the vehicle appears 

periodic.  
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As an out-of-plane component is introduced into the initial state, the resulting trajectory blends the 

characteristics of the orbits in both Figures 14 and 15. Further propagating a nearly vertical orbit, 

characterized by ( ) 0 ˆ0r r z= , over a period of 100 revolutions (49.2 years) yields the surface illustrated in 

Figure 17. 

Natural String of Pearls Formation 

Another natural formation that exists in the three-body problem (CR3BP or ephemeris model) is analogous 

to the “string of pearls” formation and is illustrated in Figure 18. The surface illustrated in Figure 18 is 

traced by a quasi-periodic Lissajous trajectory near the Sun-Earth/Moon L2 point, as determined in the SRP 

perturbed n-body ephemeris model. By properly phasing each vehicle, it is possible for the formation to 

naturally evolve along this surface such that the relative positions of each spacecraft in the formation are 

unaltered and the relative distances are closely bounded. That is, if the formation originates as a string of 

pearls, the orientation of the string is relatively unaffected in time, the lead vehicle always remains in the 

lead and the order of each subsequent vehicle along the “string of pearls” remains unchanged. Since each 

spacecraft in this formation evolves along a naturally existing Lissajous trajectory, maintaining this type of 

formation can be achieved with a standard station keeping approach. 

CONTINUOUS CONTROL IN THE EPHEMERIS MODEL 

Previous studies by Howell and Marchand [18] demonstrate the efficiency and cost effectiveness of both 

input feedback linearization (IFL) and output feedback linearization (OFL) methods for continuous 

formation control in the CR3BP. The IFL controller is designed to force the error dynamics of each state 

variable to follow a critically damped response. The OFL controller, on the other hand, is applied only to 

force the radial separation between the spacecraft to track some specific value. Hence, no relative 

orientation requirements are imposed on the formation. The initial investigation [18] also demonstrates that 

a linear quadratic regulator (LQR), derived from optimal control theory, yields essentially an identical error 

response and control acceleration history as the input feedback linearization approach. However, the IFL 

controller is computationally much less intensive and, by comparison, conceptually simple. This particular 

characteristic makes the IFL controller more suitable for implementation in the ephemeris model than LQR. 

In general, solving for the LQR gain matrix, over the duration of the mission, requires the solution of a two 

point boundary value problem. That is, the nonlinear equations of motion are subject to an initial boundary 

condition while the differential Riccatti equation is subject to a terminal boundary condition. In the CR3BP, 

the equations of motion are invariant under time transformation. Hence, it is possible to reduce the two-

point boundary value problem to an initial value problem by appropriate choice of time transformation. 
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However, this property is not applicable to the ephemeris model and so, once again, solving the formation 

keeping problem via LQR techniques requires the solution of a two-point boundary value problem. The 

simplest way to accomplish this task requires that the nominal solution be stored and approximated on 

demand while solving the differential Riccatti equation. This process is extremely computationally 

intensive, particularly when multiple spacecraft are to be considered. Furthermore, there is a certain degree 

of error introduced by the interpolating polynomials. Reducing this error requires small integration step 

sizes which further decrease the integration speed.  

Although LQR techniques are not easily implemented in the ephemeris model, both LQR and feedback 

linearization methods are still effective in achieving the formation keeping goals set forth in this 

investigation, as previously demonstrated. However, continued analysis of the OFL controller reveals some 

interesting features that were not apparent in the initial investigation. This analysis motivated the 

development of an optimal nonlinear controller, based on the OFL formulation. The solution to the 

resulting two point boundary value problem is obtained through a collocation method. To simplify the 

computational implementation of this method, the numerical results here are determined in the CR3BP. The 

various formulations of the OFL controller, however, are still applicable to the ephemeris model. 

An example of continuous control, as applied here in the CR3BP model, is discussed from the perspective 

of a non-natural spherical formation. Because the formation of interest is now spherical, OFL is initially 

employed for control. Since an OFL controller tracks radial separation distances, this type of control may, 

in fact, be best suited for multi-spacecraft formations where each vehicle is constrained to evolve along the 

surface of a sphere centered on the chief spacecraft. However, a more detailed analysis of such controlled 

dynamics, beyond the scope of this paper, is necessary to assess if collisions between the vehicles in the 

formation arise. 

Output Feedback Linearization  

Previously [18], examination of the OFL controller focused on large formations characterized by relative 

separations of 5000 km. In terms of cost, and for this particular example, the resulting control effort that is 

required to achieve the goal is comparable to that of the input feedback linearization approach. However, 

the OFL controller has an added advantage in the sense that only radial distance needs to be controlled 

rather than the complete state vector, although naturally orientation control is lost. However, further 

analysis reveals that, as the nominal radial distance between the spacecraft decreases, the OFL controller 

can yield a significantly higher cost than that determined from IFL. Whether this increase is significant or 

not depends on the initial relative velocity of the deputy spacecraft.  
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In the three-body problem, recall that the equations of motion that govern the deputy dynamics can be 

represented as ( ) ( )( ) ( )r t f r t u t= ∆ + , where ( )( )f r t∆  denotes the net forces acting on the deputy, and 

( )u t  is the control input. If this general equation is associated with the CR3BP, r  represents the radial 

vector, measured relative to the chief spacecraft, in terms of rotating coordinates. The corresponding 

velocity and acceleration vectors, associated with the rotating frame, are denoted r  and r , respectively. 

The OFL controller, originally formulated in [18], seeks to identify the control input ( )u t  such that 

( ),r g r r= , where ( ),g r r  is representative of the desired critically damped radial error response. This 

leads to a single scalar constraint that can be represented in the form 

 ( ) ( )( ) ( ) ( ), Th r t r t u t r t= . (1.24) 

where ( ),h r r  is some nonlinear function of r  and r . The expression in Equation (1.24) represents one 

equation in three unknowns, the three control accelerations in the input vector ( )u t . Since no additional 

constraint equations are imposed, there are an infinite number of solutions that satisfy Equation (1.24). An 

immediately obvious solution to Equation (1.24) corresponds to a control history based solely on radial-

axis inputs, termed here the “geometric” approach. That is, since cosTu r ru θ= , where θ  represents the 

angle between u  and r , it is obvious that ( ){ } ˆ,u h r r r r=  satisfies the constraint in (1.24). However, if 

the initial relative velocity, r , is large, this control law leads to absurdly high costs (16.3924 km/sec ) and 

is therefore immediately disqualified as a viable option.  

In the initial investigation into the OFL controller [18], the left side of Equation (1.24) is factored in terms 

of ( )r t  to allow for an explicit solution for ( )u t . Although this particular solution also satisfies the 

control goal, there are no guarantees or expectations of optimality. This formulation is based on the 

assumption that the measured output, 1y , is defined as [ ]1
Ty r r= . In the present study, two alternate 

output vectors are also considered, 2
2 2

T
y r rr =    and 1 2

3

T
y r r r− − = −  . Each of these output vectors 

leads to a different control law, as listed in Table 2. Furthermore, although all the resulting control laws 

achieve the formation goal, as specified, the associated formation keeping costs can be dramatically 

different, as previously noted. The controlled dynamics associated with each of these output vectors can 

also be very different, as deduced from Figure 19.  

Clearly, the deputy spacecraft still evolves onto and along the surface of a sphere, but the manner in which 

this is accomplished varies according to the control law. For the OFL controllers, the dynamic response 

seems to always converge onto the same orbiting plane on the sphere. The motion of the deputy in response 

to the geometric controller (radial inputs only), on the other hand, eventually fills an entire region on the 

sphere. However, each controller leads to a different rotation rate about the chief spacecraft. That is, the 
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time to complete one orbital period on the surface of the formation sphere varies significantly with the 

controller, as illustrated in Figure 20. This is the reason why the associated formation keeping costs are so 

dramatically different across the four methods previously described. Since the controller only targets radial 

distance, the initial relative velocity of the deputy spacecraft, along with the choice of controller, essentially 

sets the rotation rate on the nominal formation sphere. For the controller formulations listed in Table 2, the 

orbital period can range between hours and days, as deduced from Figure 20. In contrast, a deputy 

spacecraft evolving along the natural formation surface illustrated in Figure 10 requires 180 days to 

complete one revolution. 

Table 2 – Summary of Control Laws and Formation Keeping Costs (Over 180 days) 

 for Various Output Vector Definitions  

Output Vector Control Law 
Total Cost (m/sec) 

(180 Days) 

1

r
y

r
 

=  
 

 ( ) ( ) ( )2

, Tg r r r r ru t r r f r
r rr

    = − + −   
   

 2,310.5  

2

2 2
r

y
rr

 
=  
 

 ( ) ( ) ( )2 2

,1
2

Tg r r r ru t r f r
r r

  = − − 
  

 16,442.2  

1

3 2

r
y

r r

−

−

 
=  − 

 ( ) ( ) ( )2, 3
Tr r ru t rg r r r r f r

rr
   = − − + −   

  
 49.8  

To illustrate the impact that the relative velocity of the deputy has on the formation keeping cost, consider a 

nominal spherical formation characterized by a 5-km radial distance. Let ( )0r  and ( )0r  denote the initial 

relative position and velocity vectors, respectively. For ( ) ˆ ˆ ˆ0 12 5 3r x y z= − +  km and ( )0 0r =  m/sec the 

net formation keeping cost required to drive the deputy onto the surface of the nominal sphere is miniscule. 

However, as the relative velocity of the deputy increases, the OFL controller yields significantly higher 

costs. That is because the controller is trying to maintain a rotation rate specified by the initial velocity 

injection error, which is not consistent with the natural dynamics in the vicinity of the reference orbit. For 

the three output vectors defined in this study, the associated control inputs are summarized in Table 2. Also 

listed in Table 2 are the correction costs that correspond to an initial relative state defined by 

( ) ˆ ˆ ˆ0 12 5 3r x y z= − +  km and ( ) ˆ ˆ ˆ0r x y z= − +  m/sec. The associated nominal formation in this case is 

defined by a constant relative separation of 5 km. 
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The total formation keeping cost listed in Table 2 is determined by numerically integrating the net control 

acceleration over one orbital period of the reference halo orbit (180 days). Although the costs listed in 

Table 2 are unacceptable, they do indicate that, among the infinite number of control time histories that 

satisfy Equation (1.24), there likely is an optimal solution that is yet to be identified. The results presented 

in Table 2 motivate the development of an optimal nonlinear controller that accomplishes the goal of the 

OFL controller as previously defined. 

Nonlinear Optimal Control Subject To Path and Control Input Constraints 

Since the third case in Table 2 yields the lowest cost, this formulation is adopted as the basis for the 

derivation of a nonlinear quadratic regulator. As previously established with the OFL controller [18], the 

desired output dynamics correspond to a critically damped response of natural frequency nω ,  

 
( )

( )

2
2

2

2
3

1 1 1 1, 2 ,

1 1, 2 .

n n
n

T

n n
n

d dg r r
r dt r r rdt

r rg r r
r rr

ω ω

ω ω

    = = − − −     
     

  
= − −   

   

 (1.25) 

Evaluation of the second derivative on the left side of Equation (1.25) leads to  

 
( ) ( )

2
2

2 5 3 3 3

1 3 ,
T T T Tr r f rd u r r r g r r

rdt r r r r
  = − − − = 
 

. (1.26) 

Rearranging Equation (1.26) to isolate the control input u  yields the a constraint of the form 

 ( ) ( )( ) ( ) ( ), 0Th r t r t u t r t− = , (1.27) 

as appeared previously where 

 ( ) ( )( ) ( ) ( )
2

3, 3 ,
T

T Tr rh r t r t f r r r r r g r r
r

 
= − − − 

 
. (1.28) 

Note that this constraint is imposed on both the path and the control input. 

Identifying an optimal nonlinear controller requires that the Euler-Lagrange theorem be applied to the 

nonlinear system with the addition of the constraint outlined by Equations (1.27)-(1.28). Since the path 

response is dictated by the expression in Equation (1.27), the cost function is simply given as  
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 ( ) ( )
0

1min
2

ft
T

t

J u t u t dt= ∫ . (1.29) 

In this case, the Hamiltonian is defined as 

 ( ) ( ) ( )( )1 ,
2

T T
r vH u u r f r u t h r r r uλ λ µ = + + + + −  . (1.30) 

The three-dimensional vectors rλ  and vλ  represent the co-states and the associated dynamics are governed 

by 

 
( )

T

v
r

v
r

H h fu t
r r r
H h
r r

µ µ λλ

λ
λ µ

  ∂ ∂ ∂ −  − −     ∂ ∂ ∂    = =   ∂    ∂  −  − − ∂   ∂ 

. (1.31) 

The optimal control law is then determined from  

 ( )0 v
H u t r
u

λ µ∂
= = + −

∂
, (1.32) 

thus, 

 ( ) vu t rµ λ= − . (1.33) 

Note that Equations (1.27) and (1.33) represent four equations in four unknowns, ( )u t  and µ . From these 

expressions it is determined that 

 
( )( )

2

, T
vh r r r

r

λ
µ

+
= . (1.34) 

Finally, from the transversality condition, it is determined that the co-states must satisfy a zero terminal 

boundary condition. Since the equations of motion are subject to an initial condition, solving these 

equations and the co-state equations simultaneously requires the solution of a two-point boundary value 

problem (TPBVP). This implies that a solution must be iteratively determined based on some initial guess. 

Since the Euler-Lagrange theorem is based on the calculus of variations, it is assumed that the optimal 

solution is in the neighborhood of the initial guess and so, a good initial guess is critical in identifying the 

optimal solution to this problem. In this case, an initial guess is determined by numerically integrating the 
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state and co-state equations backwards from some pre-specified final time (12 hours). The co-states are 

defined as the elements of a zero vector at the beginning of the integration. The state vector, on the other 

hand, is assumed to have converged to the desired nominal, ˆ5r x=  km and 0r = . The disadvantage of 

this approach is that the user has no control as to what particular initial state perturbs the response, but it at 

least provides a starting point. Using the collocation approach described by Shampine [33] and Kierzenka 

[33-34] all 12 equations are solved simultaneously, the converged solution is illustrated in Figure 21. The 

solid line represents the converged integrated trajectory while the circles denote the final converged 

location of the nodes used for the collocation method. Not surprisingly, the converged solution is consistent 

with one that is fixed in the rotating frame, since the specified final relative velocity is zero.  

Although the collocation method worked well with the approach described above, it is extremely sensitive 

to changes in the initial conditions. This is not surprising considering the sensitivity to small perturbations 

characteristic in the n-body problem. So, identifying more efficient numerical methods to solve the 

nonlinear optimal control problem becomes a topic of interest during this investigation and is still under 

study. It is worth noting, however, that, in the n-body problem, these methods are computationally more 

suitable for the discrete control approach. 

CONCLUSIONS 

Previous studies demonstrate the efficiency of input and output feedback linearization in the continuous 

control of non-natural formations in the CR3BP. In the present analysis, these techniques prove to be 

equally effective in the more complete n-body ephemeris model, even in the presence of solar radiation 

pressure. Although the results here include only the gravitational effects of the Sun, the Earth, and the 

Moon, it is important to note that the influence of the remaining planets is easily incorporated into this 

model. The addition of these perturbations, however, has an insignificant impact on the formation keeping 

problem near the libration points, L1 and L2, of the Sun-Earth/Moon system.  

Based on the available literature on continuous control, it is clear that linear and nonlinear techniques, such 

as LQR and feedback linearization, can mathematically enforce a non-natural configuration in the n-body 

problem. However, continuous thruster operation does not always represent a desirable option. The 

accelerations levels required to maintain a non-natural configuration are extremely small. Even with 

improved technology, the implementation error may be on the same order of magnitude as the thrust level, 

a potentially significant problem given the dynamical sensitivity to small perturbations. Precise formations, 

in fact, may not even be required, given a possible shift to improved navigation and relative position 

information. Hence, it is useful to explore the effectiveness of discrete control. 
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For non-natural formations, a basic targeter approach is implemented here to maintain the desired 

configuration within an acceptable level of accuracy. Not surprisingly, tightly spaced maneuvers are 

required to closely maintain a desired configuration. The frequency of the maneuver interval depends on 

the desired nominal separation between each spacecraft. Achieving the desired accuracy, and the physical 

requirements to do so, present yet another dilemma. As previously stated, if maintaining a tight non-natural 

formation is desired, frequent maneuvers are necessary. However, smaller maneuver intervals require 

smaller maneuvers. The magnitude of these maneuvers, individually, is still extremely small which, once 

again, raises an implementation issue. 

The difficulties encountered with non-natural configurations may be overcome by developing a better 

understanding of the naturally existing formations. Although a nominal configuration completely consistent 

with the natural flow near the reference orbit is unlikely, understanding these naturally existing behaviors 

can lead to the development of techniques to construct formations to meet mission objectives that exploit 

the natural structure. To that end, a modified Floquet based controller is successfully applied here that 

reveals some interesting natural formations as well as deployment into these configurations. 
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Figure 1 – Impact of S/C Mass and SRP Force  
on a Halo Orbit near L2 in the Sun-Earth Ephemeris Model 

 

 

 

Figure 2 – Gravitational and Solar Radiation Pressure Effects 
on a Halo Orbit Near the Sun-Earth L2 Point 
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Figure 3 – IFL Response to Injection Error for Various Dynamical Models 

 

 

 

Figure 4 – Position Error Relative to the Nominal Path  
as a Function of the Length of the Maneuver Interval 
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Figure 5 – SK Maneuver Strategy  
(100-km 2-S/C Formation Aligned with Inertial y-axis) 

 

 

 

Figure 6 – Position Error Relative to the Nominal Path  
as a Function of the Length of the Maneuver Interval 
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Figure 7 – SK Maneuver Strategy  
(100-km 2-S/C Formation Aligned with Inertial y-axis) 

 

 

 

Figure 8 – Maximum Radial Deviation  
as a Function of Nominal Formation Distance and Maneuver Time Interval 
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Figure 9 – Six Spacecraft Formation Evolving along Two-Dimensional Torus  
Near the Sun-Earth/Moon L1. Point 

 

 

 

FIGURE 10 – Relative Deputy Motion along Center Manifold 
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FIGURE 11 – Deputy S/C Location on Natural Formation Surface 
Sampled at Specific Locations along the Halo Orbit of the Chief S/C 

 

 

 

Figure 12 – Deployment into Toroidal Formation 
(Initial State Excites Only Modes 5 & 6) 
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Figure 13 – Deployment into Nearly Periodic Formation 
 

 
 

Figure 14 – Natural Eight Spacecraft Formation About a Single Chief S/C 
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Figure 15 – Nearly Vertical Relative Orbits  (4 S/C Formation) 
 

 
 

Figure 16 – Variation in Relative Orbit Expansion Rate Along the yz-plane 
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Figure 17 – Evolution of Nearly Vertical Orbit Over 100 Revolutions ( 49.2 Years) 
 

 
 

Figure 18 – Natural “String of Pearls” Formation in the Ephemeris Model 
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FIGURE 19 – Controlled Response of Deputy Path for PFL 

 

 
 

FIGURE 20 – Converged Rotation Rate for Spherical Formation 
Based on Four Different PFL Controller Formulations 
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FIGURE 21 – Converged Optimal Response for OFL Controller 
 


