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TEMPORARY SATELLITE CAPTURE  
OF SHORT-PERIOD JUPITER FAMILY COMETS  

FROM THE PERSPECTIVE OF DYNAMICAL SYSTEMS 
K.C. Howell,1 B.G. Marchand,2 and M.W. Lo3 

The Temporary Satellite Capture (TSC) of short-period comets, such as Oterma 
and Helin-Roman-Crockett, by Jupiter has intrigued astronomers for many 
years. A widely accepted approach to study TSC is to numerically integrate the 
equations of motion for the n-body problem using a wide range of initial 
conditions obtained from the heliocentric two-body problem; then, a search 
ensues for instances when the Joviocentric energy becomes negative. More 
recently, a preliminary analysis involving the application of Dynamical Systems 
Theory (DST) to the Sun-Jupiter-comet three-body problem has provided 
significant insight into the motion in the Sun-Jupiter system and offered a simple 
model to account for the TSC phenomena observed in Jupiter family short-
period comets. The accuracy of this model can be immediately verified since 
ephemeris data is available for comet trajectories.  

INTRODUCTION 

In July 1943, L.E. Cunningham and R.N. Thomas1 published data that revealed, among other things, 
that the recently discovered comet 39P/Oterma had passed close to Jupiter in 1938. Astronomers 
subsequently noted that the orbit of the comet was “not particularly stable” due to close approaches of 
Jupiter. It is a generally accepted practice in astronomy to explain the erratic behavior of short-period 
comets such as Oterma in the context of a heliocentric two-body problem where perturbations from the 
outer planets result in significant changes to the orbital parameters of a given comet. However, evaluating 
this issue from the perspective of Dynamical Systems Theory (DST) has offered new insight into the erratic 
dynamical behavior of this and other comets.  

Comets like 39P/Oterma (OTR) and 111P/Helin-Roman-Crockett  (HRC) are classified as Jupiter 
family short-period comets. These comets share at least one significant orbital characteristic: at some time 
during their dynamical evolution each experiences a low-velocity close encounter with Jupiter such that the 
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Joviocentric energy becomes negative. This event is denoted as Temporary Satellite Capture (TSC). 
Kazimirchak-Polonskaya2 studied TSC in the early 1970’s by numerically integrating the orbits of a group 
of minor bodies, with a wide range of heliocentric orbital elements as initial conditions. She used an n-body 
integrator to propagate the initial conditions and searched for instances when the bodies crossed the sphere 
of influence of Jupiter, Saturn, Uranus, or Neptune. This effort was an attempt to create the dynamical 
circumstances required for a TSC to occur and thus establish a criterion for capture. Carusi,3-10 in 
collaboration with Pozzi,3 Valsecchi,4-10 Kresák,7,9 and Perozzi8-9 employed a similar approach to study the 
capture phenomena.  

Investigations of this problem have subsequently continued. In the mid-1970’s, Horedt,11 
Heppenheimer,12-13 and Porco13 considered the problem of TSC in the context of the planar circular 
restricted three-body problem (CR3BP). These authors attributed the strange behavior of some Jupiter 
family comets to the separatrices associated with the libration point L1 in the Sun-Jupiter system. Though 
not explicitly stated, this may be the first study linking the behavior of short-period Jupiter family comets 
to the dynamical structure associated with the collinear libration points in the Sun-Jupiter system. In a more 
recent effort, Lo and Ross14 suggested that the chaotic nature of the dynamics of Jupiter family short-period 
comets can be explained in the context of the stable and unstable manifolds associated with the collinear 
libration points L1 and L2 in the Sun-Jupiter three-body system. This approach successfully reveals many of 
the significant features of the motion of these comets. It is also noted, however, that certain comet behavior 
is even more completely reflected in the evolution of stable and unstable manifolds corresponding to the 
periodic orbits in the vicinity of L1 and L2.  Koon, Lo, Marsden, and Ross15 considered this issue in the 
context of the planar restricted three-body problem and presented some theoretical results as well.  But, to 
allow for a more thorough investigation of the critical features in the context of periodic orbits and quasi-
periodic trajectories in the three-dimensional, three-body problem (3BP), the complexities involved with 
the out-of-plane component of the motion are required; such analysis is the focus of the current effort. 

In this investigation, the motion of OTR and HRC are considered within the framework of the three-
dimensional, restricted three-body problem. This formulation allows for consideration of the impact of the 
stable and unstable manifolds, associated with both halo orbits and Lissajous trajectories, on the evolution 
of the comet trajectories. In particular, the problem is posed as a search for trajectory arcs along the stable 
and/or unstable manifolds that reflect the comet orbit. Initially, the comet trajectories are viewed in the 
context of the circular (but three-dimensional) restricted problem. The inherent symmetries of this model 
simplify the task of locating a trajectory arc that closely matches a segment along the path of OTR and 
HRC, particularly during TSC. Such a trajectory arc is defined as a “match.”  Once a match is identified, 
the solution is transferred to the ephemeris model. In this model, actual ephemeris data for the motion of 
the primary bodies is used during the numerical integration of the relative equations of motion. The purpose 
of this last step is to improve the accuracy of the match. Of course, the final arc that is computed is 
evaluated against the actual comet path that is also available from ephemeris information. 
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 BACKGROUND 

Circular Restricted Three-Body Problem 

In the simplified Sun-Jupiter-comet system, it is assumed that the mass of the comet is both constant 
and negligible, relative to the two larger primaries. It is also initially assumed that the motion of the 
primaries about the barycenter of the system is circular. Typically, the motion of comets is considered from 
an inertial, heliocentric perspective. However, the more significant features of TSC are best viewed from 
the perspective of the Sun-Jupiter rotating frame. Let the Sun-Jupiter rotating frame be defined such that 
the x-axis is directed from the Sun towards Jupiter. Then, the z-axis is normal to the invariant plane of 
motion of the primaries, in the direction of orbital angular momentum, and the y-axis completes the right-
handed triad.  

By modeling the comet as an infinitesimal particle in a three-body system, the initial search for a 
match is confined to the three-dimensional solution space of the CR3BP. Thus, any potential motion of a 
comet in this regime is based on an understanding of this available solution space. Of course, with no 
general solution for motion in the restricted three-body problem, any analysis of the behavior begins with a 
consideration of particular solutions. For this investigation, such solutions include the five equilibrium, or 
libration, points L i  as well as fundamental motions in the vicinity of the collinear libration points L i  
( =i 1,2,3), such as periodic orbits. Viewed in the Sun-Jupiter rotating frame, it is clear that the paths of 
OTR and HRC are neither periodic nor stationary. On the contrary, their evolution appears chaotic in 
nature. However, equilibrium and periodic solutions provide the structure necessary to identify and 
numerically produce trajectory arcs in the CR3BP that resemble the observed paths of these comets, 
specifically by examining the flow toward and away from such solutions. Naturally, there are an infinite 
number of periodic solutions that satisfy the equations of motion of this system. Families of halo orbits in 
the vicinity of the collinear libration points are selected here as the basic framework for this analysis. 
Experience with such periodic orbits, as well as the associated stable and unstable manifolds, suggests 
behavior that is similar in nature to that observed in the motion of the comets. For notational purposes, let 
SJL1 denote the Sun-Jupiter L1 halo family, and SJL2 denote the Sun-Jupiter L2 halo family. These 
continuous, three-dimensional families are represented in Figure 1 in terms of xz-plane projections of a 
limited number of periodic trajectories that are members of these families.  

Dynamical Systems Approach 

The geometrical theory of dynamical systems (from Poincaré) is based on the phase portrait of a 
dynamical system as discussed in various mathematical sources.16-23 Periodic solutions and equilibrium 
points are two examples of the fundamental models available for the phase space, that is, invariant 
manifolds. Equilibrium points and periodic orbits exist specifically in the center manifold, a significant 
subspace of the phase space. However, it is possible to exploit the hyperbolic nature of these types of 
solutions in the restricted problem, by using other invariant manifolds, that is, the associated stable and 
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unstable manifolds, to generate general trajectory arcs in this region of space. The stable and unstable 
manifolds asymptotically approach and depart these fundamental solutions. The first concern, then, is the 
computation of the stable and unstable manifolds associated with particular equilibrium points or periodic 
halo orbits. 

As mentioned, for this investigation, periodic halo orbits are used as the reference solution for 
investigating the phase space. A nonlinear system and its flow give rise to a nonlinear map.  Then, along a 
periodic orbit of the flow, any state can be defined as a fixed point for the map. Suppose that exx =  is a 
fixed point of the map 1( ) ( ( ))k kx t F x t+ = , where overbars indicate vector quantities. To investigate the 
behavior near the periodic solution ( ) ( ( )) ( )i

k i k kx t F x t x t+ = = , of period T, and the fixed point based at 

exx = , introduce a disturbance such that yxx e +=  and, then, a discrete-time representation of the linear 
system, )(),()( 11 kkkk tyttty ++ Φ= , allows for an assessment of the stability of the periodic solution. The 
procedure is based on the availability of the monodromy matrix associated with a particular halo orbit. As 
with any discrete mapping of a fixed point, the characteristics of the local geometry of the phase space can 
be determined from the eigenvalues and eigenvectors of the monodromy matrix (that is, the state transition 
matrix (STM), ),( 00 ttT +Φ , after one period (T) of the motion).  They are characteristic of the fixed point 
as well as the halo orbit itself. Once stable, unstable, and center eigenspaces are identified, a 
correspondence with one state on the periodic solution is established for computational purposes. Then, the 
eigenvector directions associated with other states along the periodic orbit can be determined by mapping 
these vectors using the STM. That is, if ˆ sWY  is the six-dimensional unit stable eigenvector direction 
associated with the fixed point 0 0( ) ( ) ex t x t T x= + =  on the periodic solution after one period of the motion 
(T), then 0 0

ˆ ˆ ˆ( ) ( , ) ( , )s s sW W W
i i iY t t t Y t t Y= Φ Φ  is the unit stable direction associated with the state ( )ix t .  

The stable ( sE ), unstable ( uE ), and center ( cE ) eigenspaces associated with ex  span the linear 
phase space. These three fundamental subspaces are themselves invariant sets. The three fundamental 
eigenspaces intersect at ex  and are tangent to the local stable ( s

locW ), unstable ( u
locW ), and center ( c

locW ) 
manifolds corresponding to the nonlinear map. Furthermore, since s

locW  and u
locW  are tangent to sE  and 

uE  at ex , respectively, the asymptotic nature of the solutions is preserved in the vicinity of ex  for the 
map. Thus, the local approximation of the stable (unstable) manifold involves calculating the eigenvector 
associated with the stable (unstable) eigenvalue that corresponds to the fixed point ex . Hence, the global 
stable and unstable manifolds can be approximated numerically by propagating initial conditions that lie on 

s
locW  and u

locW . For instance, near ex , sW  is determined to first order, by ˆ sWY . Remove the fixed point ex  
from the stable manifold to form two half-manifolds 

+sW  and sW
−

. Consider a state sx  on 
+sW . 

Integrating forward and backward in time from sx  produces 
+sW . Thus, there exists some arbitrarily small 

constant d such that ˆ sW
s ex x d Y= + ⋅  lies on the local stable manifold, s

locW . Higher order expressions for 

sx  are available but not necessary. Thus, by numerically propagating the nonlinear vector field with initial 
state sx , the global stable manifold, sW , associated with ex , can be computed. 

In configuration space, the collection of all trajectories that represent the stable and unstable manifolds 
associated with numerous states along the periodic orbit forms, locally, a three-dimensional surface. This 
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can be further expanded to consider a large subset of a family of orbits, such as SJL1 and SJL2. In such a 
case, the collection of all stable and unstable manifolds – represented in terms of a large collection of 
numerically determined trajectories – that asymptotically approach and depart this subset of the family 
forms a volume in configuration space. The search for a match to reflect a particular comet trajectory in this 
regime involves the search for a trajectory arc, from among this large volume of numerical trajectories 
(associated with the SJL1 and SJL2 halo families). This arc must resemble the path of the comet 
particularly in the vicinity of Jupiter while the comet is captured. Clearly, this type of search is a nontrivial 
task. Nevertheless, the symmetry properties inherent in this problem are very useful in simplifying the 
search process for a match (that is, in narrowing the solution space of interest). 

Symmetry of Solutions in the CR3BP 

The form of the mathematical model for the CR3BP lends itself to various types of symmetries. The 
more obvious one is, of course, the xy-plane symmetry. That is, if [ ]Tx y z x y z� � �  satisfies the equations 
of motion (EOMs) then so does [ ]Tx y z x y z− −� � � . This property leads to the existence of northern and 
southern families of periodic halo orbits. A northern halo family is characterized by a maximum out-of-
plane excursion (Az amplitude) that lies above the xy-plane ( z+ ). A southern halo family has a maximum 
out-of-plane excursion below the xy-plane ( z− ). The term “out-of-plane” denotes the plane of motion of 
the primaries. The two halo families represented in Figure 1 are both northern families of solutions. This 
northern/southern symmetry of solutions is defined here as symmetry property 1 (SP1). The structure of the 
EOMs also lends itself to time-invariance. That is, if the independent variable, time (t), is transformed to 

t−=τ  it is clear that, if [ ]Tx y z x y z� � �  satisfies the EOM’s for 0t∆ > , then [ ]Tx y z x y z− − −� � �  
also satisfies the EOM’s for 0t∆ < . The symmetry due to time invariance is defined here as symmetry 
property 2 (SP2). These two symmetries, SP1 and SP2, simplify the task of characterizing the solution 
space. This task is further simplified by identifying the surfaces of zero-velocity and, thus, regions that are 
excluded for motion in the CR3BP.  

Zero-Velocity Surfaces and Regions of Exclusion 

In the CR3BP, propagation of a set of initial conditions will result in a path that is bounded by the 
zero-velocity surfaces, as discussed by Szebehely.24 For a given value of the pseudo-energy, it is well-
known that these zero-velocity surfaces bound the regions that represent the available solution space and 
thus, by default, also indicate regions that are excluded as the path of the third body (comet or particle) 
evolves. The Sun-Jupiter L1 and L2 halo families, that is, those depicted in Figure 1, correspond to a 
specific range of values of the Jacobi Constant. The associated zero-velocity surfaces then apportion the 
configuration space into three regions of motion: the inner region, the outer region, and the temporary 
satellite capture (TSC) region. A comet moving within the inner region is in an orbit contained within the 
heliocentric orbit of Jupiter. A comet moving in the outer region is in an orbit that extends beyond the 
heliocentric orbit of Jupiter. A comet that shifts into the TSC region is temporarily captured by Jupiter and, 
thus, remains in the vicinity of the planet until it escapes and crosses into either the inner or outer region. 
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To better visualize these three regions, consider the zero-velocity surface associated with a Jacobi Constant 
that possesses a value of 3.0058 as illustrated in Figure 2. Note that the inner region reflects motion within 
the center spheroid; the outer region is defined as that space beyond the “pinched” cylindrical structure that 
surrounds the system; and, the TSC region is seen as the relatively small opening that connects the 
available regions of motion. A particle on or near the Sun-Jupiter line (x-axis), in the vicinity of the 
opening of the zero-velocity surface, can move across regions through this opening. The inner region is 
closed except for the single connection to the TSC region. Thus, the out-of-plane motion of a particle in the 
inner region remains bounded. This particular value of the Jacobi Constant is characteristic of the largest 
member of the northern L2 halo family that appears in Figure 1. The opening of the zero-velocity surface 
narrows as the Jacobi Constant increases towards the value associated with the libration point L2. Consider 
a subset of the halo family for which the Az amplitude is continuously decreasing. Since, for this subset, the 
Jacobi Constant increases with decreasing Az amplitude, the out-of-plane extent of the bounding inner 
region decreases with decreasing Az. The two comets in this study also exhibit bounded out-of-plane 
motion in the inner region. Observations based on numerical analysis indicate that, for trajectories that are 
propagated from initial conditions representing manifold surfaces, the out-of-plane excursion is loosely 
bounded by the Az amplitude of the halo orbit from which they originate. Thus, by measuring the maximum 
out-of-plane excursion along the actual (ephemeris) path of the comet in the inner region, an initial guess 
for the Az amplitude of a specific halo orbit is generated; this halo orbit is, then, likely to produce a 
trajectory arc that best matches the comet path. 

STABLE AND UNSTABLE MANIFOLDS ASSOCIATED WITH A PERIODIC ORBIT 

Given some initial observations concerning the search for trajectories that lie on manifold surfaces, 
that is, those associated with periodic halo orbits that may best match the comet paths, some additional 
relationships between the stable and unstable manifolds are notable. Consider a general nonlinear vector 
field, ( ) ( , ( ))x t f t x t=� . Suppose this vector field is linearized relative to a periodic solution, 

)()( Ttxtx += . The linear system is described by ( ) ( ) ( )y t A t y t=� , where )()( TtAtA +=  and )(ty  is a 
perturbation from the periodic solution. Recall that the discrete time representation of the linear system can 
be represented in the following form, )(),()( 11 kkkk tyttty ++ Φ= . This representation also corresponds to 
the continuous form )(),()( 00 tyttty Φ=  for 0)0( tt =  and 0 0( , ) ( ) ( , )t t A t t tΦ = Φ� , nItt =Φ ),( 00  
( 1),( =iiI n  and 0),( =jiI n  for ji ≠ ). These equations are valid for all time, t. Let 0>∆t  and consider 
the following well-known variable transformation: t−=τ , )()( τzGty = . The matrix G is a constant 
diagonal matrix with elements 1)1(),( +−= iiiG . This transformation must satisfy both the continuous and 
discrete time representations of the linear vector field. This requirement leads to a matrix relationship 
between the state transition matrix in positive time ( 0>∆t ), and the state transition matrix in negative time 
( 0 0t τ∆ < ⇒ ∆ > ): GttG ),(),( 0

1
0 Φ=Φ −ττ . This result is crucial in establishing a relationship between 

the stable and unstable manifolds associated with a state on the periodic solution.  

As previously mentioned, the stability of a periodic orbit can be assessed from the eigenvalues of the 
monodromy matrix, )0,(TΦ . Let jλ  denote the eigenvalues of )0,(TΦ , where 6,,1…=j . Consider the 
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eigenvalue problem uuu vvT λ=Φ )0,(  and sss vvT λ=Φ )0,(  where the subscript s again denotes stable and 
the subscript u denotes unstable. The vectors sv  and uv  represent the corresponding stable and unstable 
eigenvectors associated with sλ  and uλ , respectively. Since the eigenvalues of the monodromy matrix 
appear as reciprocal pairs, let 1s uλ λ′ = . From the properties of the state transition matrix, the eigenvalue 
problem can be restated as ( ,0)s u uv T vλ ′ = Φ −  or ( ,0)s s sv T vλ ′ ′ ′= Φ −  where the prime notation denotes 
negative time (i.e. numerical propagation with 0<∆t ). It is apparent that u sv v ′=  and, consequently, 

s uv v ′= . From the time invariance property of the state transition matrix, GttG ),(),( 0
1

0 Φ=Φ −ττ , it 
follows that us vGv = . This result, combined with the time invariance property of the state transition 
matrix, can be applied to the mapping ˆ ( ) ( ,0) ( ,0)uW

i i u i uY t t v t v= Φ Φ  to establish a relationship between 
the unstable manifold in positive time  ( l uW

Y ), associated with the state ( )ix t  on the periodic orbit, and the 
unstable manifold in negative time ( l uW

Y
′

), associated with the state ( )ix t− : l l( ) ( )
u uW W

i iY t GY t
′

= − . A similar 
relationship exists for the stable manifold ( l sW

Y ) associated with ( )ix t  on the periodic orbit, that is, 
l l( ) ( )

s sW W

i iY t GY t
′

= − . Consider the case of a simply symmetric periodic solution, such as a halo orbit. A 
halo orbit is symmetric about the xz-plane. Thus, if [ ]( ) T

ix t x y z x y z= � � �  represents a state on the halo 
orbit then [ ]( ) T

ix T t x y z x y z− = − − −� � �  also represents a state on the same orbit. Suppose that the 
nonlinear and linear systems are numerically propagated with 0<∆t  and that the eigenvalue problem (in 
negative time) is solved to determine the stable and unstable eigenvectors associated with )0,( T−Φ . In 
negative time, a state on the unstable manifold asymptotically departs the periodic solution, locally. 
However, in real time 0>∆t . Thus, the unstable manifold in negative time is, in reality, the stable 
manifold in positive time. That is, the unstable manifold associated with ( )ix t−  is also the stable manifold 
associated with ( )ix T t− . This leads to the following relationships: l l( ) ( )

s uW W

i iY T t GY t− =  and 
l l( ) ( )

u sW W

i iY T t GY t− = . That is, the stable manifold associated with the state ( )ix T t−  is a mirror image 
(about the xz-plane) of the unstable manifold associated with the state ( )ix t  on the same halo orbit. 
Similarly, the unstable manifold associated with the state ( )ix T t−  is a mirror image of the stable manifold 
associated with the state ( )ix t . This fact further simplifies the search for a stable/unstable manifold 
trajectory that matches a segment along the path of a comet. Once the evolution of trajectories that 
represent the stable manifold originating from a particular halo family is well understood, then the behavior 
of the corresponding unstable manifold directly follows. Of course, this result is essentially an application 
of the symmetry due to time invariance (SP2).  

Although SP1 and SP2 simplify the process of identifying a match, an initial guess is still not 
available. The search is generally initiated from the single observation that the matching trajectory that lies 
on the manifold surface is likely to originate from a halo orbit whose Az amplitude is close to the maximum 
out-of-plane excursion of the comet in the inner region. Even if the initial search efforts are concentrated 
only on a northern family (by SP1) and only on the stable manifold associated with this family (by SP2), 
there are still two separate halo families to search, SJL1 and SJL2. Thus, a large solution space still exists. 
However, numerical analysis and extensive experience indicates that this initial choice is not critical. In 
order to establish this fact, it is necessary to introduce some notation to classify the available solutions.
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NUMERICAL RESULTS  

Evolution of the Stable/Unstable Manifolds in the Sun-Jupiter System 

In order to characterize the evolution of a trajectory corresponding to a stable or unstable manifold 
associated with a particular halo family, and provide some structure to the search process, it is necessary to 
establish a set of parameters to identify (a) the desired halo orbit along the family, (b) the point of origin, 
that is, the fixed point, ex , along the orbit, and (c) the stable/unstable directions associated with ex . Since, 
as previously discussed, numerical results indicate that the out-of-plane excursion along a given trajectory 
that represents a manifold is loosely bounded by the Az amplitude of the originating halo orbit, the Az 
amplitude is used to parameterize the family. Clearly, as seen in Figure 1, some members of the SJL1 (or 
SJL2) halo family share the same Az amplitude. However, members of the halo family that constitute the 
subset most often producing matches for comet trajectory arcs all possess Az amplitudes well below 60×106 
km. This fact is expected since neither OTR or HRC exceed this value in terms of a maximum out-of-plane 
excursion. Thus, for this investigation, the Az amplitude is an acceptable parameter. If the halo orbit is 
unstable, both a stable and an unstable manifold is associated with each state (fixed point) along the orbit. 
Thus, it is also necessary to characterize each state (fixed point) along a particular halo orbit. Figure 3 
includes the yz-projection of an L2 northern halo orbit. Since the comets OTR and HRC possess a 
significant out-of-plane component, it is reasonable to characterize each point in the yz-projection of the 
halo orbit by its ( zy, ) coordinate. Note, however, that this particular parameterization is not as effective 
for smaller members of the halo family, that is, those close to the xy-plane. Nevertheless, the out-of-plane 
component of the position vector corresponding to either comet in this investigation is significant and, thus, 
the parameterization is still acceptable. To collapse the ),( zy  pair into one parameter, let 

1
1 2tan ( )y zα σ σ−=  where 1σ is defined as +1 for an L1 halo and –1 for an L2 halo. The value of the 

integer 2σ  equals +1 for a northern halo and –1 for a southern halo. This convention ensures that α  is 
always positive in the direction of motion along the orbit. Furthermore, α  is constrained to a range 
between 0° and 360°.  

Consider the state characterized by the angle α  along a given halo orbit. Assume that the halo orbit is 
unstable such that there exist both stable and unstable directions associated with this state (fixed point) 
along the halo. The eigenvectors of the associated monodromy matrix, )0,(TΦ , are six-dimensional, with 
three position elements ( zyx ,, ) and three velocity elements ( , ,x y zv v v ). Thus, the six-dimensional unit 
stable and unstable eigenvectors, l [ ]/

/ / / / / /( )
s uW T

i s u s u s u s u s u s uY t x y z x y z= � � � ,  can each be expressed in terms 
of two three-dimensional vectors [ ]/

/ / /
s u

TW
p s u s u s uY x y z=  and [ ]/

/ / /
s u

TW
v s u s u s uY x y z= � � � . Note that /s uW

pY  and 
/s uW

vY  are not themselves unit vectors. Since /s uW
pY  and /s uW

vY  are three-dimensional vectors, each can be 
represented in configuration space as an equivalent unit direction, relative to the Sun-Jupiter rotating frame, 
associated with the state ( )ix t  along the halo orbit. For instance, the unit vector along / ( )s uW

v iY t  can be 
expressed in terms of azimuth relative to the rotating x-axis ( dα ) and elevation relative to the xy-plane 
( dβ ). The azimuth is measured in the positive sense when / 0s uy >� ; the elevation is measured in the 
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positive sense when / 0s uz >� . The azimuth angle ( dα ) is constrained to be evaluated between ±180° and 
the elevation angle ( dβ ), then, always possesses a value between ±90°. Each state, or fixed point, defined 
within a halo family – including all states along each orbit in that family – corresponds to a unique ( ,d dα β ) 
pair. The directional evolution of the vector /s uW

vY  along the SJL2 halo family appears in Figure 4. This 
figure includes contours of constant dα  and dβ  along sample members of the halo family. Contours of 
constant dα  and dβ  appear as nonlinear, smooth, three-dimensional curves along the halo family, while 
lines of constant α  are two-dimensional rays originating from ( , ) (0,0)y z = . Numerical analysis indicates 
that the essential features of a collection of trajectories representing stable/unstable manifolds, associated 
with a particular halo family, are better preserved along lines of constant dα  (azimuth), compared to lines 
of constant α (angular location along the halo orbit) or lines of constant dβ  (elevation). This numerically 
observed trend is illustrated in Figure 5. This fact is most useful once a candidate match for a segment or 
arc along a particular comet trajectory is identified. Suppose a candidate match for the path of HRC in the 
TSC region is identified among the stable manifold trajectories associated with SJL2. HRC experiences 
several close approaches to Jupiter during TSC. If the flyby altitude of these close approaches is too low, 
one can improve the match – without loosing the essential features – by selecting a neighboring trajectory 
with the same dα . Since the ( , )d dα β  pairs are unique along a family, the new trajectory match – one that 
constitutes an improved match – is associated with a different member of SJL2.  

Numerical Near Symmetry of Solutions Across Halo Families 

Numerical observations on the evolution of the stable/unstable manifolds associated with SJL1, 
compared to the unstable/stable manifolds associated with SJL2, reveal some numerical near symmetries 
across halo families. In configuration space, particularly in the TSC region, a trajectory representing a 
stable manifold associated with the particular state [ ]1 1 1 1 1 1 1( ) Tx t x y z x y z= � � � along a northern L1 
halo orbit shares many characteristics with the globalized unstable manifold associated with the alternate 
state vector [ ]2 2 2 2 2 2 2( ) Tx t x y z x y z= � � �  along a southern L2 halo, when 1 2y y≈ , 1 2z z≈ − . Note, 
that these coordinates correspond to the rotating frame typically defined in the CR3BP. These trajectories 
corresponding to the stable and unstable manifolds appear as near mirror images on the xy-plane (i.e. the 
plane of motion of the primaries) and their out-of-plane components are apparently inverted. This 
observation is illustrated in Figure 6. The converse also appears valid for a southern L1 halo and a northern 
L2 halo, due to the natural xy-plane symmetry in the CR3BP (SP1). This numerically observed fact supports 
the conclusion that the initial choice of an L1 or an L2 halo orbit is arbitrary. Once a match, one that exhibits 
the most notable features of the comet trajectory in the TSC region, is identified, then the most appropriate 
halo family, that is, L1 or L2,  for the best match to the comet trajectory can be determined.  

Critical Energy Level for TSC 

In astronomy, the more commonly accepted definition of TSC requires only that the Joviocentric 
energy become negative at some instance during the comet’s orbital evolution. However, the Joviocentric 
energy of a comet can become negative near Jupiter without forcing the comet to transition between 
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regions. Thus, a more specific definition of TSC is implemented in this investigation. In any temporary 
satellite capture, the comet must first enter the TSC region as defined in terms of the zero-velocity surfaces. 
The comet will eventually exit the TSC region, but its heliocentric orbit will be affected by its encounter 
with Jupiter. The extent of this effect depends on the type of encounter. There are two possible types of 
encounters. Suppose the comet’s path originates in the inner region. The simplest type of TSC (Type 1) 
occurs when the comet crosses into the TSC region and immediately exits to the outer region. This type 
also applies to an immediate crossover from the outer region to the inner region. A type 1 capture is also 
defined as a flythrough of the TSC region. If, instead, the comet enters the TSC region and experiences 
more than one close encounter with Jupiter before it exits the TSC region, the encounter is defined as a  
type 2. 

Based on this definition for TSC, a specific energy level less than or equal to 2 22.5  /km s−  is 
apparently required (in the CR3BP) for trajectories associated with SJL1 to experience a TSC. Along SJL1,  
trajectories generated to approximate the stable manifold, and that experience this crossover after one 
revolution in the inner region, are identified in Figure 7 as a function of the critical angular location (α) and 
the Az amplitude of the halo orbit. The shaded regions in Figure 7 indicate the range over α for which a 
trajectory defined along the stable manifold crosses into the TSC region from the inner region. This critical 
angle α is crucial in identifying a match for OTR in the CR3BP. Recall that the search for a match is 
essentially the search for a “segment” of a trajectory arc (corresponding to a stable/unstable manifold) that 
reflects a segment of the comet’s path, particularly during TSC. The TSC for OTR satisfies the conditions 
for a type 1 capture, while that of HRC satisfies the conditions of a type 2. Since neither OTR or HRC ever 
evolve into a periodic halo orbit, it also becomes necessary to consider heteroclinic connections between 
the stable and unstable manifolds in the TSC region, or the long-term evolution of the stable or unstable 
manifolds, beyond the TSC stage. Thus, classification of the capture type before searching for a match, is 
significant because the type of capture affects the structure of the search. That is, there are two directions in 
which a stable/unstable manifold can be propagated. One direction leads the trajectory into the TSC region, 
the other results in a trajectory that passes further away from the TSC region. If a comet experiences a type 
1 capture, it is best to propagate the manifolds, i.e., numerically integrate the trajectories, away from the 
TSC region. If instead, the comet experiences a type 2 capture, a good approximation for a match can be 
obtained by propagating the trajectories towards the TSC region and searching for heteroclinic connections 
between the stable and unstable manifolds.15,23 The difference is in the integration time. As illustrated in 
Figure 7, if the trajectories representing the stable/unstable manifolds, associated with SJL1, are propagated 
towards the inner region, only a handful will return through the TSC region after 1 revolution. Certainly, 
the window of opportunity is wider as more revolutions are included. However, each revolution in the inner 
region adds to the integration time and degrades the accuracy of the solution. Furthermore, the analysis that 
led to Figure 7 can be accomplished using the SJL2 family instead, by propagating the stable/unstable 
manifolds towards the outer region. However, since the outer region is open, and beyond the heliocentric 
orbit of Jupiter, the return time to the opening of the zero-velocity surface is much longer than the return 
time for SJL1 trajectories, which further increases the numerical integration error.  
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Identification of a Match for Oterma 

In the past, OTR was captured by Jupiter on two separate occasions; once from 1935 to 1939, and later 
on from 1962 to 1964. Both encounters with Jupiter resulted in a type 1 TSC. The search for a match to 
reflect these flythroughs begins by measuring the maximum out-of-plane excursion of the comet path while 
it orbits the Sun in the inner region. Based on this maximum out-of-plane excursion, an initial guess for the 
Az amplitude of the halo orbit can be obtained. From the plot in Figure 7, states along this halo orbit can be 
determined that will result in a trajectory along the stable manifold that returns through the opening of the 
zero-velocity surface after 1 revolution in the inner region. If a candidate match is identified, but the 
direction is inverted, or the trajectory itself appears inverted, the symmetry properties (SP1 and SP2) can be 
applied to improve the match for a given Az amplitude. If, for the initial Az amplitude, a candidate match 
exists but is not sufficiently close to the path of the comet, the features of the trajectory can be adjusted by 
examining nearby trajectories along lines of constant dα . Thus, the essential characteristics of the 
trajectory will be preserved by changing the Az amplitude of the halo orbit, while maintaining the azimuth 
of the stable (or unstable) eigenvectors in a constant direction. The best match obtained in the CR3BP can 
be further improved by transferring the solution into the ephemeris model. In the ephemeris model, periodic 
halo orbits do not exist. Thus, transferring the orbit into this model requires its transformation into a quasi-
periodic Lissajous trajectory. The transfer is accomplished by selecting several target points along the 
original halo orbit as an initial guess for the quasi-periodic solution in the ephemeris model and applying a 
differential corrections process25-27 for multiple revolutions to obtain a Lissajous trajectory that is similar to 
the original halo orbit. Once the orbit is transferred into the ephemeris model, it is necessary to re-establish 
the comet match. The numerical approximation of stable and unstable manifolds associated with quasi-
periodic orbits is based on the power method discussed by G. Gómez, A. Jorba, J. Masdemont, and C. 
Simó.28 Though the matching trajectory (or trajectory arc) in the ephemeris model will not originate from 
the same angular location (α), it will be in the neighborhood of the original value. The match for OTR as it 
is developed and computed in the ephemeris model is plotted in Figure 8. The red curve in this figure 
represents the stable manifold associated with a northern SJL1 quasi-periodic Lissajous trajectory 
computed in the ephemeris model. The black curve represents a segment along the comet’s orbital path 
available directly from comet ephemeris data.  

Identification of a Match for Helin-Roman-Crockett 

HRC experienced a type 2 capture by Jupiter from 1966 until 1985. Since HRC remained in the 
vicinity of Jupiter for an extended period of time, the search for a match is simplified by considering 
possible heteroclinic connections between the stable and unstable manifolds associated with SJL1 and 
SJL2. The search process is the same as that used for OTR, except that, in this case, the near symmetry 
across halo families offers an advantage in establishing a match. In this case, the match for HRC is a 
combination of the stable and unstable manifolds associated with a southern SJL1 halo. Both the 
trajectories, that is, one each corresponding to the stable and the unstable manifolds, respectively, originate 
from the same halo orbit and, hence, share the same Jacobi Constant. Once again, to improve the accuracy 
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of the match, the trajectories are transferred from the CR3BP into the ephemeris model. The match, as 
computed in the ephemeris model, is plotted in Figure 9. The red curve represents a segment along the 
stable manifold for a southern SJL1 quasi-periodic Lissajous trajectory. The unstable manifold appears as a 
blue curve for the same SJL1 Lissajous trajectory. The orbital path of the HRC comet is directly plotted 
from ephemeris data as a black curve. 

CONCLUSION 

The natural symmetries in the CR3BP and the observed near-symmetries between the L1 and L2 halo 
families — based on numerical analysis — provide the basic understanding necessary to begin the search 
process and ultimately identify a match in the CR3BP, for a particular Jupiter family short-period comet. A 
dynamical systems perspective has provided significant insight into the geometry of solutions in the Sun-
Jupiter system and offered a simple model to account for the most notable features of the TSC phenomena 
observed in Jupiter family short-period comets. Furthermore, the fact that the observed motion of these 
comets can be explained in the context of dynamical systems suggests further applications to the motion of 
natural bodies in the solar system. This dynamical insight also extends to potential applications in support 
of interplanetary mission design for spacecraft. The next step in this investigation is to apply this modeling 
approach to the capture of other short-period Jupiter family comets, such as Gehrels 3. Although the search 
strategy discussed here has been successfully applied to the capture motion of HRC and OTR, a slightly 
different approach might be necessary in modeling other Jupiter family comets. Since the three-
dimensional, chaotic nature of TSC results in distinct types of motion during capture, modeling other 
comets might require consideration of the stable and unstable manifold solutions associated with other 
types of periodic and orbits in the Sun-Jupiter system, aside from the SJL1 and SJL2 halo families. 
Furthermore, comets such as Gehrels 3, that experience low altitude approaches to Jupiter might also 
require a more complex model that incorporates additional perturbing forces. Nevertheless, the modeling of 
the TSC phenomena has generated additional understanding of the natural dynamics in this R3BP regime. 
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Figure 2 – Zero-Velocity Surface  for C=3.0058 in the Sun-Jupiter System 

Figure 1 – Sun-Jupiter L1 and L2 Northern Halo Families 
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Figure 4 – Contours of Constant dα  and dβ  
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Figure 3 – Characterization of Location on Halo Orbit 
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Figure 5 – Stable Manifold Behavior Along a Line of 
Constant αd vs. a Line of constant α 

Figure 6 – Inverse Near Symmetry of Stable/Unstable Manifold Trajectories 
Across Halo Families

-1.0

-0.5

0.0

0.5

1.0

z
[1

08
km

]

-1.0 -0.5 0.0 0.5 1.0

x [108 km]

L1 L2

Jupiter

-1.0

-0.5

0.0

0.5

1.0

y
[1

08
km

]

-1.0 -0.5 0.0 0.5 1.0

x [108 km]

L1 L2

Jupiter



 18  

 

 

 

 

Figure 7 – Capture Condition  for SJL1 Stable Manifold 
Trajectories After 1 Revolution in the Inner Region 
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Figure 8 – Ephemeris Model Match for Oterma (1935-1939) 
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Figure 9 – Ephemeris Model Match for Helin-Roman-Crockett (1966-1985) 
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