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Earlier studies focus on the development of the finite set control transcription method for the treatment of a special
class of optimal control problems. Specifically, problems with multiple control variables for which each, or some, are
independently restricted to a finite set of values. At some level, even continuous control problems can be modeled
within the context of finite set control. To demonstrate the possible range of applications of this methodology, on—off
and variable actuation schemes are considered here. The goal is to demonstrate the utility and versatility of the finite
set control transcription method. The ensuing solutions are characterized as optimal switching schedules between
feasible control values. The finite set control transcription allows control switches to be determined over a continuous
time spectrum, overcoming many of the limitations associated with traditionally discretized solutions. The method is
particularly well suited for problems involving multiple but independently switching control parameters.
Specifically, a significant increase in computational efficiency is achieved, in contrast to existing methods, due to the
reduced dimensionality of the parameter optimization problem.

Nomenclature

throat area, m?

eigenvector real part

direction cosine matrix
constraint vector

exhaust velocity, m/s
characteristic velocity, m/s
valve core rod position vector, mm
cost function

= thrust, N

dynamics function

gravitational constant, m/s?
inertia tensor matrix

cost functional

diagonal dimension matrix
integrand cost

length, m

number of feasible control values
= number of control combinations
me, my, m,, = masses,kg
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number of variables in x
number of constraints
number of knots
number of nodes
number of segments
number of controls
number of states

cost state

quaternion vector

= specific gas constant
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R = real space

r = position vector, km

r = radius, m

7, = nozzle throat radius, mm
T = temperature, K

t = time

U = control space

u = control vector

u = feasible control value

u* = prespecified control value
Vv = Lyapunov/energy function
Ve VgV, = volumes, m

v = velocity vector

v, = throat velocity, m/s

Vi, = eigenvectors

w = eigenvector imaginary part
x = parameter vector

y = state vector

y = state estimate vector

4 = output vector

Z = output estimate vector

o = eigenvalue real part

B = path constraint vector

B = scalar weight

Y = specific heat

A = average segment duration
At = time interval

A = eigenvalue

0, = throat gas density, kg/m?
¢ = endpoint cost

¥ = point constraint vector

® = angular velocity vector

w = eigenvalue imaginary part
Subscript

f = final value

i = vector element counter

j = node counter

k = knot or segment counter
0 = initial value

I. Introduction

REVALENT in many engineering fields are systems composed
of interdependent continuous and discrete components or
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variables. Although processes exist in nature that are accurately
modeled with only continuously varying dynamics, it is often the
case that some level of decision making occurs in the process. The
decision is made by any number of sources, from natural to man-
made technologies, but itis clear that the selection is among a discrete
number of options. Thus, a hybrid system results, exhibiting
continuously varying and discretely chosen components. It is
observed in the literature that this often takes on a hierarchical
structure, for which continuous or time-driven dynamics exist at the
lower levels, and discrete or event-driven dynamics exist at the higher
levels [1,2].

The hybrid control problem motivates methods for determining
continuous and discrete control variables that affect a hybrid system.
The challenge clearly lies in the dual structure of the problem;
although strictly continuous and strictly discrete control methods
exist, there is room for developing the methods that treat hybrid
systems in the sense of stability and optimality. Existing techniques
generally extend the theory of either continuous or discrete systems,
using (for example) Lyapunov theory [3-5], classical optimal control
theory [2,6], or combinatorial techniques [1,7]. Commonly used are
mixed-integer nonlinear programming (NLP) algorithms, such as the
branch-and-bound method [8], the generalized Benders decom-
position [9], and the outer approximation method [10,11]. Although
these algorithms may be effective, they are expensive in the sense of
computational efficiency due to their combinatorial nature, and
increasing the number of discrete variables subsequently increases
the size of the problem exponentially.

An earlier study [12] introduced a new method, using a strictly
NLP approach, for treating a class of hybrid control problems
involving discrete control variables. Although NLP approaches by
other authors [13—15] have been suggested, they have been limited in
the number of discrete control variables that can be treated
simultaneously. In some cases, only a single discrete variable can be
considered; in others, the problem size grows exponentially with the
number of variables. Alternatively, the finite set control transcription
(FSCT) method addresses problems with multiple independent
control variables in a unique way, resulting in a linear relation
between the quantity of discrete variables and the size of the resulting
parameter optimization problem.

The FSCT method is an enhanced collocation method that
employs the Hermite—Simpson [16] integration equation to satisfy
differential constraints. The implementation for the FSCT method is
presented in detail, and its capability is sampled. The objective of the
current investigation is to further explore the capability and utility of
the method by demonstrating a range of applications. In so doing, the
scope of the method is characterized, ideally inspiring additional
applications outside those presented here. The applications presented
in this investigation are focused on aerospace systems, as these
served to motivate the method’s development.

The hybrid system under consideration for this investigation is
governed by the dynamics

y=r(ty u 1)

where the vector y € R" represents continuous state variables, and u
consists of n,, control elements limited to finite values as

up € Uy =ty ooy Upyy, 2
The function f describes the continuous variation of the states in
terms of time 7 and the present values for each state and control.

At first glance, this formulation appears to limit the method to a
specific class of hybrid systems: all states are presented as continuous
and all controls are presented as discrete. Thus, systems with discrete
states or continuous controls are apparently excluded. Previously, the
implementation carried this limitation. However, the FSCT method
can be tailored to include continuous state and control variables
within y and, likewise, discrete states and controls in u, to allow for a
more general treatment of hybrid systems. However, the necessary
adjustments are specific to the system under consideration; therefore,
that aspect is not discussed here. However, it is observed that many
control variables traditionally modeled as continuous may be more

accurately described by a combination of continuous dynamic states
and discrete controls. This characteristic is demonstrated later in this
document. Thus, the formulation of Eq. (1) is not necessarily
restrictive. For continuity and clarity, in this study, the term state
implies a continuous variable, whereas control implies a discrete one.

This paper is presented as a series of applications designed to
demonstrate the utility and versatility of the FSCT method. When-
ever possible, results are compared against those produced using
alternative hybrid control methods to articulate particular advantages
or ways in which multiple methods can be used in tandem.

The first example considers a switched linear system. Between
switches, Lyapunov analysis can be employed to identify the control
necessary to achieve asymptotic stability. However, although this
approach may lead to asymptotic stability within a given segment
(defined between switches), the wrong combination of switches can
lead to instability. Here, the FSCT method is useful in identifying the
optimal switching strategy that achieves the desired control goals and
preserves the overall stability of the system. Employing the afore-
mentioned Lyapunov approach can still provide a suitable initial
guess to the process. This is one example for which two methods can
work together to form a more robust solution strategy. In turn, the
results of the FSCT solution may then be used in adjusting the model
predictive control (MPC) law to better meet the optimal control
goals.

Minimum-time and minimum-acceleration problems, subject to
finite set control, are also considered in the analysis of a simple two-
dimensional lunar lander problem. A comparison is presented
between a MPC strategy and the FSCT approach. The FSCT solution
may subsequently be employed in devising a real-time MPC law.

To demonstrate the extension of the FSCT to problems involving
variable actuation, a small spacecraft attitude control problem is also
examined. The model assumes the vehicle is equipped with small
cold-gas thrusters. Initially, the FSCT method is used for attitude
tracking when only fixed-thrust amplitude is possible. The follow-on
example then considers the more complex case of variable thrust by
introducing a detailed model of the variable-thrust nozzle. The
thruster provides variable output through a valve core rod that
changes the effective nozzle throat area. The parameters that define
the actuation of the valve core rod are subject to finite set control. The
FSCT method is employed to determine the optimal actuation of the
valve core rod that meets the desired tracking goals.

Before proceeding with the individual examples previously
described, it is appropriate to introduce some basic background on
the FSCT method [12]. Subsequently, the details of each of the
examples previously summarized are presented.

II. Finite Set Control Transcription Method Overview

The FSCT is a formulation of the hybrid optimal control problem
as a parameter optimization problem that can be solved using a
standard NLP algorithm, such as SNOPT [17]. The following
overview is intended for the reader possessing a general under-
standing of direct optimization techniques for continuously varying
parameters. Note that, although the method demonstrated here is
rooted in direct collocation, alternative formulations exist that
capitalize on the structure of indirect or direct shooting methods.

In the most basic sense, the object of a transcription formulation is
to convert the optimal control problem formulated as,

minimize

j =¢(t0’ Yo> tf’ yf)+/tf L(t’ Y, u)dt (3)
subject to
y=rf(ty u 4)
0 = v,(%. yo) ®)]
0 =v,(t, ys) (0)
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0 =80y u 7
into an NLP problem of the form,
min F(x) 8)
subject to
c(x)=[cf(x) ¢y, (x) ¢ (x) )] =0 ©)

Ultimately, x must contain the information necessary to express y(t)
and u(r) for t € [#y 1;] In the resulting NLP problem, an initial
guess for x is iterated upon until arriving at a feasible and locally
optimal set of values. Note that each problem has a cost function to
minimize as well as constraints for the dynamics, the initial and final
conditions, and any path constraints imposed on the system. In the
previous problem definitions, all constraints are presented as
equalities; however, extensions certainly exist for inequality con-
straints as well. The nature of the transcription formulation dictates
both the definition of the parameter vector x and the number and
forms of the constraint functions in ¢(x) in the resulting parameter
optimization problem. The details of how constraint functions are
generated is outside the scope of the current development, although
this process is articulated in the previous investigation. Let it suffice
here to present the definition of x as optimized in the FSCT
formulation, knowing that it is possible to devise Eqs. (8) and (9) to
ensure that the original optimal control problem is well represented.

Consider the following definition of the parameter vector used for
an optimization with the FSCT method:

x:[... Vijk o Ati.k R t./]T (]0)

The vector x contains parameters that represent states y; ; , and times
At; ., to, and t;. One of the key features of this parameterization is
that control variables are not among the parameters to be optimized.
This is unusual: most collocation and direct shooting methods
optimize parameters that directly represent control variables. How-
ever, in this case, a unique parameterization is necessary, because the
controls are discrete variables, whereas the elements of x (by the
nature of NLP) are necessarily treated as continuous variables
(although perhaps bounded and subject to constraints). Demon-
strated presently, a control history is completely defined by the time
elements in the parameter vector.

Let the trajectory defined from initial time £, to final time ¢, be
broken up into n, segments. The interior separation times between
segments are termed knots. These represent instances of time when
the discrete control variables switch from one feasible value to
another. Suppose each control variable is allowed n;, switches
between t, and ¢ ;. The resultis that n, = n,n; + 1, and each control
is held constant over each segment.

Define n,, as the number of nodes per segment. A node is a point in
time at which the values of the state variables are contained within the
parameter vector. Specifically, element y; ; , in Eq. (10) represents the
ith state at the jth node of the kth segment. Then, x contains n,n,n;
elements pertaining to all of the states at each node. These state values
are used directly in the cost and constraint equations (8) and (9).

The elements At;, in x indicate the elapsed time between two
control switches for a given control variable. Specifically, At
indicates the amount of time that passes between the control switches
at the (k — 1)th and kth knots for the ith control variable.

The values for each u; are prespecified between each switching
point. Thus, u}, indicates the prespecified value of the ith control
variable before the kth knot. With a discrete number of feasible
values, it is possible to set n; large enough, such that each possible
control value is designated as the actual control value for some
duration. During the optimization, the values of At; ; are determined,
indicating the amount of time (possibly zero) that each control value
is maintained.

The transcription definition is best interpreted with a visualization,
such as Fig. 1. In this conceptualization, consider the hybrid control
problem with n, =2 states and n, =2 controls, where U, =

ny=2,nu=2,n“=4,nk=5, ng=11
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Fig. 1 The parameters of x, where A;; = A¢; ;.

{1, 2,3} and U, ={—1, 1}. Next, assume the transcription is
selected, such that n,, = 4 nodes per segment and n; = 5 switching
points per control variable. Thus, the number of segments is n, =
(2)(5) + 1 =11 segments.

It is apparent from Fig. 1 that each control variable may take up to
n, + 1 = 6 different values over the trajectory duration. Arbitrarily,
the control values are prespecified, so that each control variable
systematically switches between the feasible values for that variable.
Note that some feasible control values may not be members of the
optimal solution. However, through the NLP algorithm, the time
durations between switching points are optimized. If one of the
prespecified control values is unnecessary or nonoptimal, then the
value of the respective time duration is reduced to zero.

Figure 1 further illustrates that the node distribution is not
necessarily uniform over the interval [#, 7, ]. The duration of each
segment is dictated by the current values of At; ;. The n, = 4 nodes
per segment are evenly distributed over a segment but for shorter
segments; this means a closer spacing between nodes. Thus, the state
values contained in x may pertain to dense or sparse regions,
depending on the time parameters in x.

It is also important to note that two nodes are associated with a
given knot: the terminal node from the preceding segment and the
initial node from the following segment. Therefore, in this
parameterization, two sets of state values are contained in x for the
times at each knot. For a feasible solution, continuous state variables
will have identical values at simultaneous nodes. Constraints in ¢(x)
are included to enforce continuity across segments. Of course, these
constraints are not always satisfied on intermediate iterations of the
solution process. For example, in Fig. 1, the states y, are not contin-
uous. Subsequently, this x does not represent a feasible solution.
During the FSCT optimization process, elements of x are updated to
ensure that, upon completion, the continuity constraints are satisfied.

Additional constraints are included in ¢(x) to ensure that

ni+1

O=t;—tg— » Atys  i=1 ....n, (11)
k=1

Also, at all times, At;; > 0, so that there are no negative time
intervals.

By prespecitying the control values, a collocation transcription
results for which control switching times are optimized to indicate an
optimal control history over all of the feasible control values.
Multiple control variables are easily managed and treated completely
independently. The control variables for a given segment necessarily
affect the hybrid system dynamics, and they are included in
appropriate constraint equations for that segment. As the NLP
algorithm searches for a feasible and locally optimal set of param-
eters, the state values are modified at each node so that, upon
completion, the state and control histories represent a matching
feasible trajectory.
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The total number of feasible values for a control variable m; should
have a significant effect on the choice of n;: the number of switching
points allowed over the trajectory. Clearly, when n;, >> max(m;), itis
possible to prespecify each control value over several time durations,
allowing more flexibility in the resulting NLP problem and a greater
likelihood to converge on a small local minimum. However, as 7,
gets larger, the sizes of x and c(x) also increase, which may
complicate (or at least slow down) the optimization process. This
characteristic indicates the primary limitation of the FSCT method.
To perform an optimization, a user must specify n;, thus limiting the
number of control switches to some maximum value.

In practice, it is useful to overparameterize a problem by setting n;
to an arbitrarily high value, allowing for more control switches than
are ultimately necessary. Overparameterizing allows the optimizer to
demonstrate the optimal number of switches (less than the param-
eterized number) by driving to zero the duration of superfluous
control values. The overparameterization also allows the user addi-
tional flexibility to arbitrarily prespecify control values, knowing that
nonoptimal control values are ultimately eliminated in the final
solution. Indeed, in the examples that follow, the concept of
overparameterization is employed. Consequently, ensuing solutions
may display features that are ultimately artifacts of the parameter-
ization. For example, two knots may occur simultaneously, ap-
pearing as though the control switches from one value to another and
then instantaneously to a third. In the parameterization, zero-duration
segments are present, indicating that particular prespecified control
values are effectively eliminated from the solution.

One natural characteristic of the numerical optimization process is
that it is iterative: a user must supply the optimizer with an initial
guess for x and allow the algorithm to improve upon that value until
the constraint functions are satisfied and the cost function is
minimized. Therefore, the identification of adequate solutions
requires a good initial guess x,. In some sense, x,, should be close to
the desired solution. The final point x  will most likely be in the same
region as x,. However, it is possible to expand the region containing
the initial guess and the final solution by ensuring that the initial
guess is not too close to an existing local minimum. The process of
balancing these factors makes the determination of a suitable initial
guess one of the most difficult aspects of numerical optimization.
Thus, it is crucial to provide a philosophy by which effective initial
guesses for x can be realized.

In this investigation, x, is generated by selecting states along or
close to a desired (or, maybe, anticipated) solution, whereas controls
(that is, time durations) are arbitrarily selected. This approach is
convenient, because the analyst often possesses some intuitive
knowledge regarding the behavior of the states. For example, initial
conditions, final conditions, and path data are often available and can
be easily converted into the state values of x,,. Once the times for the
nodes are known, a guess for y; ;, can be interpolated. Likewise,
starting values of #, and 7, can generally be deduced intuitively. Of
course, identifying candidate initial values for the control history is
not intuitive. In that case, it is convenient to assign initial values for
control switches arbitrarily.

This approach can be quite effective. An arbitrarily designated
control sequence, combined with an intuitive set of state parameters,
generally results in a nonfeasible initial guess. Of course, because the
starting point is not feasible, it is also not likely in the vicinity of an
existing local minimum. The optimizer adjusts the initial values of all
the parameters to make x feasible, moving x away from what may be
apoorinitial guess. However, by observing that most often n,n,,n, +
2> n,(n; + 1) (the number of states is greater than the number of
control time parameters), the state elements within x,, provide inertia
to keep x in the same vicinity. Thus, this approach helps in producing
initial guesses that are not too close or too far away from a good
solution.

In this study, the control values are generally prespecified in a
manner similar to the profile of Fig. 1. The control values are selected
as an ordered set, in which each of the feasible values is present for
multiple time durations. One way of expressing the prespecified
control values in this example is

*
u;

k ﬁi,mod(k—l,m,-)Jrl (12)

for i=1, ...,n, and k=1, ..., ny+ 1. This employs the
modulus function, where mod(a, b) = a — nb, and 7 is the largest
integer multiplier, such that 7b < a. This choice can be altered,
should problem intuition dictate a less arbitrary arrangement.

An effective strategy for guessing the time durations A¢, ; allows
for uniform segment durations for all segments in the initial guess.
One way of accomplishing this is through the definitions

- ty— 1
A=L—= (13)
nS
iA k=1
At =1 n,A k=2, ....m (14)

(n,+1—0DA k=n,+1

fori =1, ..., n,. This guarantees that, upon the first iteration of the
optimization, each segment has duration A, and the knots are placed
as far apart as possible. Also notice that there is a structured rotation
between the control variables with regard to switching times: u,;
switches, followed by u,, and so on. The order of control switches is
free to change throughout the optimization process (u; does not
always switch before u;,,), but the initial ordering and initial
separation between knot times allows for free movement of the knots
in order to arrive at a feasible and locally optimal switching structure.

This philosophy for generating x, is practiced in each of the
applications that follow. In each case, the optimization algorithm
successfully converges on a solution, using the initial guess
generated as described. However, although this process proves to be
effective in these instances, there is no a guarantee that (in general)
initial guesses derived using this process will always result in
converged solutions. Admittedly, producing a good initial guess is
far more of an art than a science (and experience with NLP, in
general) and, with the FSCT method specifically, it is beneficial in
obtaining and interpreting solutions.

III. Two Stable Linear Systems

Although the FSCT method is especially effective for multiple
control variables, first consider a system controlled by only one
decision. The system is

y=fo.uw=A4,y (15)

ueil, 2} (16)

-1 10 -1 100
A‘_[—IOO —1}’ AZ_[—m —1] an

Thus, the system is characterized by two separate dynamical modes,
and the decision variable determines which of the two is in play at any
given time. Notice that, individually, each mode is a linear time-
invariant system, guaranteeing exponential stability at the origin
y=0.

This example is presented by Branicky [3,5] as a classical
demonstration of how multiple Lyapunov functions can be used to
develop switching laws for the system. It is intriguing in that,
although individually stable, one cannot arbitrarily switch between
dynamical modes and guarantee system stability. Branicky shows,
for example, a switching law devised, such that u = 1 when y is in
quadrants 2 and 4, and u = 2 when y is in quadrants 1 and 3. From
any point, the trajectory goes to infinity, as illustrated in Fig. 2a.
However, this is not the case for all switching functions. For example,
the law that switches modes when y crosses the line y, = y, results in
a stable system converging on the origin (Fig. 2b).
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Fig. 2 Three switching laws.

The characteristics of the system can be explained via Lyapunov
analysis, which follows. The technique of multiple Lyapunov
functions is intuitively applied, because the switched system consists
of multiple dynamical modes. Subsequently, the FSCT method is
applied to demonstrate an alternative analysis technique for deter-
mining stable (and optimal) switching laws. This system, presented
in Egs. (15) and (16), serves as an excellent example, because each
method can be exercised in a graceful manner due to the inherent
simplicity of the linear system. In addition, this example capitalizes
on the familiarity of linear systems and the Lyapunov stability theory
to the general reader.

A. Stability via Multiple Lyapunov Functions

The key feature of the switching law of Fig. 2b, that guarantees
stability, is that the system remains in both modes for exactly one-half
of a revolution between each switch. Recall that the two-state linear
system with complex eigenvalues A, , = @ £ jow and corresponding
eigenvectors v, , = a % jw has a solution of the form:

coswt  sinwt

__ At — pat
y(0) =etyy=e"la w][—Sinwt cos wt

}[a wly,
as)

Then, one-half revolution later from any point,

(-2

cosw(t+Z
— eot(t-%—%)[ a w ]|: ( a))

sinw(t +7) 1
. [a w] 'y
—sinw(t+%) cosw(t+7)

ey (19)

provided that the system remains in the same mode over that time.
Thus, for a <0 (a stable system), the function V = y”y, which
represents (in a sense) the energy of the system, is guaranteed to be
smaller after one-half of a revolution. Consistent switching at
intervals of 7 ensures an incremental decrease in system energy,
resulting in convergence to the origin.

Other stable switching structures may also be obtained with a more
classical Lyapunov argument. Considering each stable dynamical
mode A, separately, there exist symmetric positive definite matrix
pairs P, and @, such that

PuAu + AZ;Pu = _Qu (20)

Stability for the mode is demonstrated through the Lyapunov
function

V,=yP,y>0 @1
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with the negative time derivative
Vu=yTPu.)}+.’.’TPuy=_yTQuy<0 (22)

This standard analysis method offers a way of defining a stable
switching law according to the behavior of the Lyapunov functions
for each mode. For example, define @, = Q, = I for simplicity.
Then, the Lyapunov equation (20) can be solved uniquely to yield P,
and P,, corresponding to their respective modes. In this case, it is
observed that, regardless of the current mode, the energy of the
system decreases according to —y’Q,y=—y’y. However,
V| # V,, and a reasonable switching law can be selected, such that
the Lyapunov function is minimized [4]. Thus,

(1 Vi<V,
”_{2 v, >V, 23)

A trajectory implementing this switching law is illustrated in Fig. 2c.

B. Optimal Switching via Finite Set Control Transcription Method

The method of multiple Lyapunov functions demonstrated
previously can be effective in determining switching strategies
between a finite number of system modes identified through a single
decision variable. Variations on the theme arise by choosing the
minimum V', instead of V,, for some candidate Lyapunov functions,
or by minimizing some combination of the two [4]. With an infinite
set of stable switching laws, a question remains regarding efficiency
and robustness. Although various criteria are available to categorize
the effectiveness of a switching structure, a simple criterion is
presently selected to demonstrate how the FSCT method can aid in
the realization of an appropriate switching law. For this example,
consider the objective of minimizing the time needed to move a point
from its initial position to the vicinity of the origin. Naturally, the
trajectory will never go through the origin, as ¢* > 0 always.
However, by choosing a region near the origin, a terminal condition
for the optimal control problem is established. Let the final point be
subject to

yiyy=1 24)

such that the objective is to cross the boundary of the unit circle in
minimum time, starting from the initial point, y, = [10 10]". The
optimal control law indicates when to switch between the dynamical
modes of A, and A, to most efficiently guide the trajectory to the
terminal manifold.

The FSCT method is well equipped to solve this optimal control
problem. Actually, many of the unique characteristics of the solution
method are not exercised by this example, due to the fact that the

15 . . . . .

10}
5,
ol [

[
-5t | o
o -0t !

-15} \

a) Switching law initial guess: yTP;y < yTP,y

problem consists of only one decision variable. The total number of
segments is exactly the number of prespecified control values and,
consequently, the control characteristics of each segment are known
a priori. Thus, the optimization process simply determines appro-
priate switching times between segments.

To begin the process, a user selects the number of knots, indicating
the total allowable control switches over the course of the trajectory.
Let n; = 20 kt for an initial optimization, and prespecify control
values, such that

3 1
ufp =3+ =Dk (25)

indicating that u begins at the value 1 and alternates between 1 and 2
over each of n; + 1 =21 segments. Additionally, a user selects a
node count that sufficiently captures the state dynamics between
control switches when state continuity conditions are satisfied. For
this example, n,, = 100. Appropriate knot conditions are identified to
ensure state continuity across segments, and the optimization
function, J = F(x) = t; — t,, completes the FSCT formulation.

A preliminary guess is necessary to conduct the nonlinear
optimization. The initial point x, is generated, using an interpolation
of the trajectory determined by the minimum Lyapunov function
switching law of Fig. 2¢c over the time interval # € [0 3]. Thus, the
preliminary cost of the optimization is 3, a reasonable estimate when
considering this trajectory first crosses the unit circle at time
t = 3.17. The knots (switching times) between dynamical modes are
uniformly spaced in time from O to 3. Thus, the preliminary guess
does not satisfy the continuity constraints: the guessed control
switches do not correspond to the control switches of the interpolated
states. This is acceptable, as the optimization process ensures that the
final solution is feasible, as well as locally optimal.

An FSCT optimization applied for the selected initial guess leads
to the trajectory illustrated in Fig. 3a. The final time is ¢, = 0.3782,
significantly smaller than the initial guess. The solution is feasible,
and three control switches are clearly observable by the corners in the
trajectory. With 20 kt, then, it is apparent that 17 possible control
switches are not used. Indeed, the solution consists of many knots
occurring simultaneously, resulting in zero-duration segments. Thus,
the transcription is overparameterized for this solution. Observe that
the control switches occur at the following states:

|:y1:| _[—9.3125] |:y1i| _[1.5297}

v 3.3180 | v, [ 42932
y —1.7921
o= (26)
N 0.6385

15

10

5 - -

-15

b) Switching law initial guess:— L <2<m

m =Y

Fig. 3 FSCT locally optimal solutions based on various initial control switching strategies.
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Notice that the switching points are related, as

EORERS R
Y2 ) k=1 Y1) k=2 Y2) k=3
This ratio implies the switching law
1 —Ll<2<py
= m=y =
“ { 2 otherwilse (28)

where m = 2.8067. It is important to observe that the trajectory that
resulted from the FSCT optimization shows control switches in only
quadrants 1 and 2, whereas the control law in Eq. (28) observes
switches in each of the four quadrants. The difference is explained
through the fact that the solution method, like any NLP method, is
only capable of determining locally optimal solutions, most likely in
the vicinity of the initial guess. Obviously, the solution is only a local
minimum, as the trajectory actually crossed the terminal radius at one
point before the final time. In this case, the initial guess and the
parameterization leads to a solution with only three observable
control switches. However, the symmetry of the trajectories
generated in either dynamical mode imply that symmetry should also
existin the switching law. This intuition leads to Eq. (28). To validate
this control law, a second optimization problem is solved, this time
with a new initial guess. For the second optimization, the states and
control switch times of the initial guess are generated using Eq. (28).
Optimizing this initial guess, the trajectory of Fig. 3b is determined.
Validating the control law, this second solution corresponds perfectly
to the initial guess, except that in the final solution, m = 3.0979, a
slightly larger slope for the switching line. However, the cost is even
further improved, with ¢, = 0.0870.

The fact that the slope value m changes between the two
optimizations is not overly surprising. One reason for this is simply
that, in each case, the solution is a local, not global, minimum.
Through further analysis, it is apparent that m is a factor of the initial
point and the size of the terminal radius as well. Indeed, a change to
the terminal radius, such that y} Yy = 0.5 yields m = 3.7786 in the
optimal solution.

The intent of this example is to demonstrate how a classical
problem, which can be solved using traditional control techniques,
can also be analyzed using the FSCT method. One advantage of the
latter is the ability to optimize a control solution or control law
according to a specified objective. In this case, the final time is
minimized; however, it might be equally useful to minimize the
integral of the system energy over a fixed time, for example. Both
costs capture, in a sense, the sentiment to drive a trajectory to the
origin in an efficient manner, although both undoubtedly yield
different solutions. It is observed, after all, that the trajectories of
Fig. 3 reach the unit circle quickly, but their control law does not
guarantee that the trajectory will remain within that circle for all
future time (it may escape the region and reenter). Thus, the FSCT
method can only guarantee optimality over the range of time
considered, not beyond.

IV. Lunar Lander

In a second example, it is useful to revisit the classical lunar lander
problem explored in earlier studies [12] and in many sources on
optimal control theory [18-20]. The system is modeled in terms of
four states and two independently switching control variables subject
to finite set control. This, in a sense, increases the complexity of the
previous example. Specifically, by implementing multiple control
values, the unique segment-switching characteristics of the FSCT
method can be observed while maintaining problem simplicity and
familiarity. The objective of the problem is to transfer a rocket from a
lunar orbit to the lunar surface in minimum time or by using
minimum acceleration. The dynamics are constructed in two
dimensions, in which separate fixed-magnitude thrusters are pointed
in the principal directions. The dynamics are described by

F Uy

.| vy

Y=l |7 ", (29)
U, —g+u,

where r, v, and u represent position, velocity, and control
acceleration, respectively, and the subscripts indicate the hori-
zontal and vertical dimensions. A gravitational constant of g=
1.6231 m/s? is used. With initial conditions, r, =[200 15] km
and vy =[—1.7 0]" km/s, and final conditions, r; = v, = 0, the
lander must achieve a soft landing on a specified target from a
completely specified initial state. Both minimum-time and
minimum-acceleration optimizations are realized with the finite set
control constraints, u, € {—u;, 0, u;} and u, € {—ii,, 0, U},
where 1, = 50 m/s?> and i, = 20 m/s?. The control constraints
ensure constant thrust acceleration during thrusting arcs.

A. Optimal Minimum-Time and Minimum-A cceleration Solutions

The FSCT is employed next for the analysis of the lunar lander
problem previously described. For this example, let n,, = 5 nodes per
segment and n; = 14 kt per control axis. In addition, let the
prespecified controls be identified as

= i, cos[g (k — 1)] (30)

Thus, it is assumed in the control sequence that the vehicle thrusts
initially in the positive directions (uprange and up), then it coasts,
then it thrusts in the negative directions (downrange and down). The
resulting optimizations determine the appropriate times for all
control switches, indicating the durations for each thrusting and
coasting arc.

Aninitial guess is devised with 7, = O and #, = 300 s, and all knot
times are evenly distributed over the interval, such that each segment
duration is identical. The state parameters in x are constructed to
create a linear progression in each state, from its initial value to its
final value. Initial, final, and knot condition constraints are satisfied
by the x supplied to the optimizer before the first iteration, but
continuity constraints are not immediately satisfied. During the
optimization process, x is improved, such that all constraints are
satisfied. In addition, the final x minimizes the objective function,
representing J = t; — t, for minimum time or

iy
J =/ u'u dt
fo

for minimum acceleration.

Figure 4 displays the solutions of both the minimum-time and
minimum-acceleration problems. Vehicle positions, velocities, and
controls are plotted for both minimizations. Notice the control
history u; for the minimum-time solution. In essence, this solution
represents bang—bang control in the first axis, with u, (f) = —ii; on
t€[0 33.66]s,and u,(f) = i, for the remaining time until 7, at
101.32s. Of course, this control behavior is expected for a minimum-
time optimization. However, recall that the prespecified initial value
for u, is i1, . As the illustration demonstrates, there is an instantaneous
switch in the control at ¢, = 0 from i, to 0 and then from 0 to —i;.
The solution exhibits that A#, | = At;, = 0 in order to accomplish
this. In addition, there are instantaneous switches, approximately
located att = 34 and t = 45 s. Ateach of these times, there exist time
durations At , for coasting and negative-direction thrusting, and
each has been optimized to be identically zero. This behavior is a
common artifact of the FSCT formulation. It does not indicate that
control switches should occur at these times; rather, it indicates that
the problem has been overparameterized with more knots than
necessary. However, because control values are prespecified in the
optimization, it is useful to overparameterize the problem, allowing
for more control switches than needed. Overparameterizing allows
the optimizer to demonstrate the optimal number of switches (less
than the parameterized number) by driving the superfluous control



8 STANTON AND MARCHAND

20 40 60 80 100 120

—_———

20 40 60 80 100 120

[ ]

20 40 60 80 100 120

20 40 60 80 100 120
Time (s)

km

200} 7
100 \
~20 0 20 40 60 80 100 120 140 160

v

0

km/s

and

-20 0 20 40 60 80 100120 140 160
50 ¥ I—-l l-—

0

-50
-20 0 20 40 60 80 100120 140 160

20Uz
o [

m/s2

200t r
,E 100 \
0 ;
-20 O
5
Z
g or"?
2
-5
-20 O
o 90f w1
w1
= 0
E—50
-20 O
20} u2
i LLI_[\I_LIJ_I_\
é—20
-20 O
a) Minimum time (FSCT)
200t
E 100 \
—220 0 20 40 60 80 100120 140 160
@ v
0 S
E _—
_—20 0 20 40 60 80 100 120 140 160
50 U1
2 0
=)
-50
-20 0 20 40 60 80 100120 140 160
% 2 | Iy
E ol | LT

-20 0 20 40 60 80 100120 140 160
Time (s)

b) Minimum acceleration (FSCT)

Fig. 4 Lunar lander example: comparison

axis durations to zero. The overparameterization also allows the user
additional flexibility to arbitrarily prespecify control values,
knowing that nonoptimal control values are eliminated in the final
solution.

This same behavior is observed for the minimum-acceleration
optimization displayed in Fig. 4b. One may easily observe that most
thrusting arcs are reduced exactly to zero by the optimizer for both
control axes. This indicates that far fewer switches were necessary to
identify this local minimum, and it provides confidence that the
formulation has not underparameterized the problem by providing
too few control switching opportunities.

For both the minimum-time and minimum-acceleration examples,
solutions have been obtained for several values of n; to assess the
effectiveness of the solution method with fewer or more control
switches. Numerical evidence suggests that underparameterizing can
lead to nonconvergence, but overparameterizing does not affect the
final solution, aside from increasing the size of the optimization
problem and potentially increasing the convergence time. In these
particular examples, varying n; showed minimal impact on
convergence time and no impact on the performance index of the
final solution.

An important discovery from the lunar lander example is the extent
to which the FSCT method results in implementable control solu-
tions. First, it is clear that the solution requires some interpretation.
Superfluous control switches must be discounted before imple-
menting the control history. Actuators with minimum ontimes do not
support thrust durations approaching zero; however, within the
tolerance of the optimization, zero or near-zero burn durations actu-
ally indicate that the respective actuation is not desirable. Clearly, an
optimization must be scaled properly in time to differentiate short
actuation times from nonoptimal control sequences. Secondly, once
a control solution is adequately interpreted, the performance of the

m/s2

-20 R R R R R . . . .
-20 0 20 40 60 80 100120 140 160
Time (s)

¢) Minimum acceleration (MPC)

of FSCT and MPC simulation results.

solution in a continuous time setting can be nearly identical.
Although this collocation technique does rely on a time discretization
along each segment, the switching times between control values are
optimized over a continuous spectrum. Therefore, the control
solution represents exact switching times within the tolerance of the
optimization.

B. Model Predictive Controller for Real-Time Implementation

One potential drawback of the FSCT method is that, although
capable of producing optimal control histories for the finite set
control problem, optimal control laws for real-time implementation
are not immediately available. For the general dynamical problem,
there is no guarantee that an optimal control solution will imply a
real-time law, u = u(z, y). To compensate for this limitation, a
process is now considered by which FSCT solutions may be
implemented in conjunction with a MPC design for real-time
implementation of finite control. To begin, a simple model predictive
controller is introduced. More complicated, and perhaps more
robust, control designs are beyond the scope of this work, although
developed in the theory on MPC [21].

1. Linear Discrete-Time Model

MPC offers a method for tracking an arbitrary reference trajectory
while optimizing a performance index over a finite time horizon.
Specifically, MPC techniques can be used for tracking (i.e.,
implementing) an a priori discovered FSCT solution. A basic model
predictive controller is derived using a discrete-time linear dynamic
model of the form

y(+ Ar) = A@)y(t) + B(Hu(r) 31)
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z (1) =Cy(1) (32)

Here, z(¢) is the measured output from the linear system. In general,
then, the nonlinear continuous dynamics of Eq. (1) must be
transformed into the form of Egs. (31) and (32) through appropriate
definitions of A(r), B(r), and C. It is beyond the scope of this
document to demonstrate this transformation.

2. Model Predictive Control Law

The MPC law exploits the linear discrete-time model to develop
estimates for the observation variables, z(¢), at future time intervals,
given the current state values. The output predictions are determined
for a finite horizon of future times, and current control values are
chosen, so that these output estimates are as close as possible to
desired values of the nominal trajectory (the FSCT solution). In the
traditional sense, the linear discrete formulation allows controls to be
determined by solving a linear equation, holding the control values
over the increment Az constant. The finite set control nature of the
hybrid system motivates a minor modification to this design, featured
presently.

Let the estimate on the output at time ¢ 4+ jAtz, given the states at
time ¢, be denoted as Z(7 + jAr]|r), such that

Z2(t + jAtt) = Cy(t + jAt)r) (33)

=C[A(t + ( — DADH(t + (j — D) At]r)
+ B(t+ (G— DAtDu(t + (j— D At]9)] (34)

In this notation, the symbol * indicates that the variable is estimated
for a future time value. Equation (33) can be manipulated to show that
any future estimate may be expressed as a function of y(z), the
controls u(f) through u(t + (j — 1) Af], and the estimated values of
the A and B matrices through time 7 + (j — 1) Atz. Let the predicted
future outputs at discrete-time intervals be stored in the vector Z,
where

27t + jAtln)

Z =[z2"(t+ At 2T (t+ pAtry |”

(35)

and p is the prediction interval over which observation variables are
stored. Using the simplifying assumption that u(t + jAt) = u(r)
over the entire prediction interval, the output can be expressed as

Z =Gy(t) + Ku(r) (36)

with appropriate definitions for the matrices G and K. In Eq. (36), a
linear relationship is defined between the current states, the current
control values, and the estimates of the future output. Let the nominal
output (corresponding to the FSCT trajectory) be expressed at the
same discrete-time intervals in the vector Z,,. A cost function of the
form

.7 Z%(zn _Z)TQ(Zn _Z) +%(un _u)TR(un _u) (37)

may be employed to penalize deviations in both states and controls
away from the nominal. Thus, 7 can then be minimized according to
user-defined weight matrices Q and R to produce a tracking
trajectory that also minimizes control over the prediction interval. If
J is minimized at each interval, then # may still take on different
values at each interval, even though the prediction equation assumes
otherwise. A MPC law for the hybrid system is defined according to

u = arg min J (38)

uel"u
Simply stated, the implemented control at the current time is the
feasible control combination that minimizes the cost function. Thus,
if each control variable, u;, may assume m; possible values, then the

control must consider each of the m possible control combinations,
implementing the minimizing choice. Notice that

1y
m= 1_[ m;
i=1

and the control law is most effective for n,, and m; (and therefore m),
which is reasonably small to reduce the number of computations per
interval.

3. Comparison of Model Predictive Control Performance

The hybrid system model predictive controller is easily
demonstrated in conjunction with the FSCT method, using the
minimum-acceleration solution of the lunar lander problem. With
m = (3)(3) =9 possible control combinations, it is reasonable to
assume that there exists a time interval Az, such that m evaluations of
J can be compared to determine the minimizing control per interval.
For this simulation, At is chosen, such that there are 500 intervals
between £, and ¢, (less than four intervals per second for the
minimum-acceleration trajectory). In addition, a prediction horizon
is selected where p = 10, indicating that the controller calculates the
estimates for the next 10 intervals of the output at each time step.
Using Eq. (37), the objective is to mimic the FSCT solution as close
as possible via a real-time implementation. Because the a priori
discovered optimal solution includes state and control values, it is
logical to use all of this information in the controller. The weight
matrices, @ and R, are proportioned, however, to emphasize
position-state tracking over velocity or control tracking.

The results of a simulation implementing the real-time controller
are depicted in Fig. 4¢, displaying positions, velocities, and control
values of the lunar lander. For positions and velocities, both the FSCT
solution and the MPC simulation states are plotted to demonstrate
minimal deviations between the two. It is especially interesting to
compare the control histories of Figs. 4b and 4c: they are nearly
identical. The primary observable difference between the MPC
simulation and the FSCT solution is that the simulation has removed
the instantaneous control switches that resulted from over-
parameterization in the FSCT formulation. Thus, with the FSCT
solution in hand, it is possible to derive a real-time control law that
very closely recreates the optimal trajectory.

The consistency between the FSCT minimum-acceleration
solution and the hybrid-system MPC simulation suggests the
effectiveness of using the two methodologies in tandem. It is
observed that the FSCT method offers control histories instead of
implementable control laws. On the other hand, an MPC-derived
controller may only be as good as the nominal trajectory selected for
tracking. As a pair, however, it is possible to derive optimal
trajectories and control histories and implement them in a real-time
context, in which perturbations, modeling errors, and other
unknowns are likely to arise. This example is intended to further
illustrate the utility of the FSCT method when a control law, rather
than a control history, is desired.

V. Small Spacecraft Attitude Control

In a final example, the FSCT method is applied to determine finite
set control schedules for tracking an arbitrary spacecraft orientation.
This example is specifically motivated by spacecraft limited to
commercial off-the-shelf actuator technologies that are inexpensive
and readily available. The available literature [22-24] indicates a
range of new thruster technologies for small spacecraft that are
currently under development. Although these may offer wide ranges
of thrust magnitudes and performance efficiencies, it is interesting to
explore how the capability of traditional technologies can be
stretched to maximize performance. The attitude control problem
offers an exciting dynamic environment along with conceivable
control limitations, which makes the FSCT method quite relevant.

Consider a low-cost microsatellite employing a basic nitrogen
cold-gas propulsion system [25,26] for attitude control. Two
scenarios are now investigated for this small spacecraft-attitude-
control problem. In both of the scenarios, the spacecraft is equipped
with six thruster pairs situated on a cuboid spacecraft body to provide
purely rotational control in each of the body’s principal directions,
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positive and negative. The propellant &V, is stored in a single spherical
tank located at the center of mass of the cuboid spacecraft.
Temperature and pressure are regulated at each thruster nozzle to
allow for constant thrust of 2 N. Pertinent statistics for the spacecraft
and the propulsion system are listed in Table 1.

The first scenario demonstrates the simplest control system to
conceive. Each thruster pair is controlled by an on—off valve, and
thrust magnitudes are limited to two values (2 N when on and 0 N
when off). The second scenario explores a variable-thrust cold-gas
propulsion system in which the effective throat size of each thruster
nozzle varies to alter propellant mass flow. However, the new
problem can still be modeled in a finite set control formulation, so
that the FSCT method can be used. In transitioning between the two
scenario formulations, it is suggested that many variable control
problems are actually, at some level, finite control problems with an
extended dynamic description.

For the dynamical relations that follow, it is necessary to identify
the principal moments of inertia for the spacecraft. Assume a
constant mass density within the propellant tank, and further assume
a constant mass density in the remaining dry space of volume V.
Using the quantities derived in Table 1, the spacecraft moment in the
first principal direction is

1 2
J, = Emc(l% +5)+ gmsr2 39)

with similar definitions for the second and third.

In all subsequent examples, quaternions are selected to represent
the attitude of the vehicle. Three fundamental reference frames are
defined. The inertial reference frame i is characterized by unit vectors
i ;j for j =1, 2 and 3. Similarly, a body-fixed frame b is defined and

associated with unit vectors b ;- The specified reference attitude
history, then, defines frame r and its unit vectors 7 is

Let “q' ="q'(t) denote the four-dimensional time-varying
quaternion that describes the orientation of the spacecraft body
frame b with respect to the inertial reference frame i. This four-
dimensional quaternion can be decomposed [27] into a three-
dimensional vector *g/, and a scalar element ? g, such that

Q3 Table1 Relevant quantities for a microsatellite

Parameters Variables Values
Assumed quantities

Dimensions
Height of cuboid spacecraft A 1.00 m
Length of cuboid spacecraft I 1.25m
Width of cuboid spacecraft I3 1.50 m
Radius of spherical tank r 0.25m

Masses
Dry mass my 15.00 kg
Propellant mass (at f,) m, 5.00 kg

Cold-gas propulsion

Specific gas constant, N, R 296.80 N-m/(kg - K)
Specific heat, N, y 14
Storage temperature T 298.15 K
Maximum thrust F, 2.00N
Nozzle throat radius r, 2.50 mm
Derived quantities
Volumes
Cuboid volume V. L,
Propellant volume v, tmr’
Dry volume Vy Vo=V,
Masses
Total mass m, mg +m,
Cuboid mass m, my(V./Vy)
Extra sphere mass m m, —m.
Cold-gas propulsion
Characteristic velocity c* 434.439 m/s
Exhaust velocity c 787.042 m/s
Gas density/velocity PV, 129.42 kg/(m?s)

product at throat

g = [Z"?] (40)

Thus, the 3 x 3 direction cosine matrix *C' that transforms any three-
dimensional vector from inertial to body-fixed coordinates may be
expressed as [27,28]
'C=C(q) = (ay —"q " g + 24} qi — 2"l g} x]
(41)

where [’qix] is the skew-symmetric cross-product matrix that
operates on a vector in the same way as a cross product [29].
Equations (40) and (41) combine notational elements from various
sources [27-29] to simplify the overall bookkeeping process in the
present example. Specifically, the left and right superscripts on g,
and its elements, indicate a quaternion that corresponds to ”C’, the
direction cosine matrix that transforms a vector from i-frame
coordinates to b-frame coordinates. This left/right superscript
convention is adopted throughout this document.

A. Low-Cost Cold-Gas Thrusters: Fixed-Thrust Attitude Control

Consider a microsatellite with on—off actuation for its six attitude
control thruster pairs. Each thruster delivers either O or 2 N of thrust,
depending on the state of each on—off valve. Using the existing
propulsion system, the objective in this scenario is to track an
arbitrary reference trajectory as well as possible, while minimizing
fuel expenditure.

Let the desired spacecraft orientation be characterized by
"q' ="q'(t), where "' = "®(¢) represents the associated time-
varying angular velocity. Furthermore, let the initial attitude of the
vehicle, at ¢ = f,, be defined by "¢'(t,) =[1 0 0 0] and the
reference angular velocity be given by

‘@' (1)
0.3cos7(1 —e091%) + (0.087 + 0.006 sin 1)re 00"
= 0.3sin#(1 — e *01") 4 (0.087 4 0.006 cos ) re 00" | rad/s
1
42)

Notice that the reference trajectory is completely specified,
indicating the ideal attitude for the spacecraft at all times. The
reference angular velocity previously specified is arbitrarily selected
for this example. However, the parameters that define this reference
motion were specifically selected to yield a challenging nominal path
to better test the efficiency of the FSCT method under such
circumstances.

Let m, =m,(t) denote the propellant mass available. This
quantity is time-varying because the propellant mass decreases each
time the thrusters are engaged. The state vector, in this case, may be
defined as

bqi (1)
h(z)l(t)
Yy =| m,() (43)
"q'(1)
p(t)

The scalar state, p = p(t), measures an integral cost for deviations
between reference and actual trajectories. The previously stated
formulation also allows the reference quaternion, "¢’, to be deter-
mined at each relevant instant in time by the FSCT method.

The control variables, elements of the vector u, indicate the
position of the on—off valve for each of the 12 thrusters. Because
thrusters, at a minimum, are assumed to act in pairs, it is logical to
allow each control variable to indicate the valve position for at least
two thrusters. However, it is also observed that each thruster pair has
a corresponding thruster pair that acts in an opposing fashion, such
that their effects are cancelled when both pairs are on. Thus, consider
the control vectoru € U?, where U = {—1, 0, 1}. Thus, n, = 3, and
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each control variable is limited to three values, indicating for each
principal axis whether the positive-thrusting pair, the negative-
thrusting pair, or neither is in the on position.

The state dynamics for the system are described by the following
relations,

bqi %E(bqi)bwi

ha')i _J—lhwi X Jhwi + FIJ—lLu
y=|m, | =ft y u= —25%73 | |u,l (44)

rq'i %E(rqi)rwi

p bqiTH(rq[)TH(rqi)bq[

where J = diag(J,, J,, J3) is the inertia tensor, L = diag(l,, 1,, I3)
contains the spacecraft dimensions, and (for any given quaternion q)
the matrices E(q) and H(q) are given by

41 —492 —4q3

40 —493 492
E(q) =

q3 qdo —4q1

—q2  qi 40

91 —4q0 —493 42
H@=|q9 g -9 -4
43 —42 491  —4o

=—E"(q) (45)

A few observations are appropriate in regard to the previous state
equations. First, recall that the cost index p represents an integral of
the deviations with respect to the reference attitude. This quantity,
then, depends explicitly on both "¢’ and “q’. Whereas "’ is a
prespecified function of time, there is no simple closed form expres-
sion that yields the value of "¢ at each point in time. This vector must
be determined through numerical integration, which motivates its
inclusion in the state vector y. Computational overhead is further
reduced by defining ¢’ and *@" in terms of body-fixed coordinates b.
This leads to a diagonal inertia tensor that is easily invertible. Finally,
note that the propellant mass flow rate 7z, is only nonzero when one
or more thruster pairs is on.

The cost dynamics p are used for evaluating an integral cost. Here,
it is desired to minimize deviations between the actual and reference
coordinate frames. Consider the following relations:

C(q")=C(qCCq)" (46)

gt =H(q)'q (47)

This implies that if b i|I7;, then "g5 = 0. Thus, a cost function that
. r bTr b . . . .

penalizes "q, "q; > 0 ensures minimal deviations between body and

reference coordinate frames. This is equivalent to minimizing the

terminal cost p(t,), subject to an initial cost of p(#,) = 0, because

L/ Iy
Pr—Po= / pdr= [ g} g dt 48)
1 1

0 0

The complete cost function weighs penalties on trajectory tracking
deviations with the amount of propellant mass expelled in tracking
the reference. Minimizing the total cost function,

J = ,3|17/‘ - ﬁzmp, (49)

is equivalent to minimizing tracking deviations and maximizing the
final propellant mass when 8, > 0 and 8, > 0.

The problem is completely defined by identifying the remaining
initial states for the optimization. Let the spacecraft begin along the
reference trajectory. In this case, ’q'(t,) =[1 0 0 O0]" and

bwi = w(y). In addition, assume the initial propellant mass is

m,(t)) =5 kg. These assumptions imply there is sufficient
propellant available to achieve reasonable trajectory tracking for
the interval from 7y = 0 to 1, = 20 s.

The fixed-time-optimal control problem detailed previously is
solved using the FSCT method to yield a feasible and locally optimal
trajectory and control switching schedule. For this sample solution,
the selected transcription parameters are n,, = 5 nodes per segment
and n;, = 20 kt, allowing 20 control switches in each u; over the time
interval from #, to z;. The prespecified control values are selected
based on the following law:

U, = cos[g (k— 1)] (50)

This control law alternates between positive, zero, and negative
torques for each control variable. Clearly, the control sequence
selection resembles that of the lunar lander problem, as this seems to
allow substantial flexibility to solve the underlying NLP problem.

The FSCT solution is depicted in Fig. 5, when the cost function is
set with equal penalty weights, §; = B,. In Fig. 5a, the trajectory
position (quaternion) histories for ?q’ and "¢ are shown as the actual
and desired trajectories, respectively. This illustration gives a visual
sense of how well the trajectory can be tracked, given finite value
control limitations. In Fig. 5b, the resulting control history (switching
schedule) is depicted. For each control variable, note that the
durations of arcs associated with both u; =1 and u; = —1 are
reduced to zero. This indicates that the transcription formulation is
not underparameterized.

Finally, Fig. 5c depicts the actual and desired angular velocities
@' and "w'. It is not unexpected that significantly more deviation is
observable in this plot. Control restrictions clearly reduce the way in
which velocity variables can change with time. More important,
deviations in angular velocities are not penalized in the cost function,
so the FSCT method does not attempt directly to drive velocities to
match.

b

B. Low-Cost Cold-Gas Thrusters: Variable-Thrust Attitude Control

The performance of the previously mentioned system is clearly
limited by on—off control actuation. Of course, fixed-thrust control is
an obvious choice when the intent is to apply the FSCT method to a
real example. Indeed, the simplest (and perhaps least expensive)
propulsion systems can benefit from the methodology for deter-
mining control strategies for reference tracking. A hybrid system
model predictive controller used in conjunction with FSCT solutions
may be as successful in this case as it was for the lunar lander
presented earlier. Here, however, another scenario is presented to
expand the class of applications available to the FSCT methodology.

The most straightforward way of improving upon the solutions of
the first attitude control scenario is to expand the solution space to
include variable magnitude control inputs. This improves perform-
ance through better tracking, less fuel expenditure, or both. Thus, this
scenario explores the possibility of a variable amplitude controller
with a modified cold-gas propulsion system. The purpose of the
development that follows is to demonstrate that the variable control
problem can still be interpreted, on a higher level, as a finite set
control problem. Extrapolating further, many (if not most) dynamical
systems with variable control inputs can be extended to reveal
discrete components. Consider, for example, a control system for
which the varying inputs are determined by a digital computer. At the
highest level, everything is reduced to a binary description (0s
and 1s), not unlike the discrete control inputs shown in the examples
so far.

A previously developed variable amplitude cold-gas propulsion
system [30] serves as the inspiration for the following development.
Here, the nitrogen propellant system is modified to allow variation in
the effective dimension of the nozzle throat and, subsequently, the
propellant mass flow. Consider the illustration of Fig. 6. A valve core
rod lies near the throat of the thruster nozzle and has controlled
motion up and down. Let the variable d; indicate the position of the
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Fig. 5 Fixed-thrust attitude control.

valve core rod for the ith thruster. In addition, define r, as the radius of
the nozzle throat. The effective throat area is a function of the rod
position, expressed as

2
Ay =t =~ 5a,) 6

where 0 < d; < 2r,. Note that if the rod position is such that d; > 2r,,
no effect is expected on thruster performance, and (A,) . = 777
Because the throat area directly affects the mass flow through the
nozzle (assuming constant propellant density and velocity), it has a
direct effect on the magnitude of thrust. Assuming, as before, that the

maximum thrust available is (F,) .« = 2 N, then

(Ft)max
(At)max c

which can be evaluated using the constants in Table 1. Now, the
amplitude of control for each thruster is a function of one discrete
variable, indicating the position of the on—off valve and one contin-
uous variable, indicating the valve core rod position. To describe the
dynamical system, it is necessary to understand how the rod position
d; is controlled. Surely, there are many ways of doing this, all
affecting the nature of the dynamics. Assume then, for the sake of this
argument, that each rod is driven by a constant-acceleration motor.
Thus, the rod position and its velocity v; are continuous variables,
whereas its acceleration a; may take only a discrete number of values.

If the valve core rod positions and velocities are included as state
variables, a hybrid system ensues consistent with the formulation in
Eq. (1), with only continuous states and discrete controls. Although
this is not the only formulation for the variable amplitude control
problem, this formulation demonstrates that it is possible to extend a

PV = (52)

variable amplitude control device into a combination of continuous
states and discrete decision variables. In this case, states are defined
for the physical elements that allow for thrust amplitude variations.

The state vector for this scenario, then, includes the same
quantities as the previous scenario, now adding core rod positions
and velocities to the set. Recall that, at a minimum, the 12 thrusters of
the microsatellite are combined into six thruster pairs. In the first
scenario, two pairs providing torque along the same axis of rotation
were considered together. In this scenario, the dynamic relations

Valve Core Motion |

Valve Core Rod

30° 29.5°

30° \i

Nozzle Throat
Fig. 6 Variable amplitude thruster nozzle.
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dictate that only thruster pairs can be considered to act in harmony.
Let the vectors d and v, which contain the individual rod dynamics,
have six components each. Thus, a thruster pair shares the same rod
positions and velocities to ensure that translational accelerations
cancel at all times. The state vector for the dynamical system takes the
form:

(53)

The control vector is now

w
u=|:ai| (54)

where w and a are each vectors composed of six elements (corre-
sponding to the number of thruster pairs), w; € {0, 1} indicates
whether the ith thruster pair is on or off, and a; € {—1, 0, 1}
indicates the acceleration of the valve core rods of the ith thruster
pair, which can be negative, zero, or positive. The dynamics of the
system are described by

— i -

q
ba')i
’hp
y=| d |=fty.w
D
g
L p
- LECg) el A
—J "0l x JPo' + p,v,c] ' LA(d)w
—2p,v,/ir(d)w
= o,V (55)
oa
LECgy e
L *q"H(q)" H(q)'q _

where the previously defined quantities J, L, E, and H are
unchanged, and

S of q!

NS N rgi
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S 0~ T—

-1
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s O/\/_\/

-1 . . .
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S0

-1 . .
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Time (s)

a) Quaternions

Ad)
A(d) —A(d) 0 0 0 0
= 0 0 A(dy) —A(dy) 0 0
0 0 0 0 A(ds) —A,(dg)
(56)

A(d):[At(dl) At(dz) At(d3) A[(d4) Ar(ds) Ar(dﬁ)]T
(57

1 1 2
A, (d) zz[nr,z —n(r,—zd,-) ] (58)
1

Notice immediately that Eq. (58) differs from Eq. (51) by the scaling
factor ;. Additional scaling factors, o, and o, are present in the
valve core rod dynamics as well, so that all state variables remain
O(10°) to improve the convergence of the underlying NLP problem.
In this case, a; = 10? so that r, and d; are presented in millimeters.
Likewise, o, = 10', and so v is in 107 m/s, and a5 = 10°, so that
a; = 1 indicates that the ith rod is accelerating by 10+ m/s.

Clearly, A(d) and A(d) represent the effective throat cross-
sectional area for each thruster pair, listed in matrix form and vector
form, respectively. These facilitate the new definitions for “’
and 7, Thus, the effective control torque, evaluated by
pv,cJ'LA(d)w and measured in rad/s?, as well as the total
mass flow defined by m p» are determined by the current throat area
and the state of the on—off valve.

In as many ways as possible, the optimization of the variable-thrust
attitude control scenario is set up identically to the fixed-thrust
scenario. The cost function is that of Eq. (49). Again, , = B, to
allow for a direct comparison between results. In this transcription
formulation, n,, = 5 and n; = 20 again but, with additional control
variables (n, = 12 instead of 3), the total number of segments, and
thereby nodes, is significantly increased.

The prespecified controls for the formulation follow a standard
structure:

1 1
Wi =5+5 =D (59)
aj, = cos [g (k— 1)] (60)

Notice that each w; alternates between the values 1 and 0, whereas a;
alternates between 1, 0, and —1.

The results of the FSCT optimization are presented in full in
Figs. 7-9. Immediately, Figs. 7a and 7b can be compared with Fig. 5
to show how quaternions and angular velocities match the reference
trajectories in each scenario. As expected, the variable-thrust

o 2 :
g o
E o T "o
g 2

0 5 10 15 20

, (rad/sec)
(=)

5 (rad/sec)
=)

0 5 10 15 20
Time (s)

b) Angular velocities

Fig. 7 Variable-thrust attitude control.
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formulation offers more flexibility and, consequently, better tracking

for the attitude control problem.

Figures 8a and 8b record the control histories that produce this
trajectory. For each thruster pair, the controls indicate whether the
thruster switch is on or off and whether the motors driving the valve
corerod are accelerating the rod. For completeness, Fig. 8c shows the
position history of the valve core rods for each thruster pair. Notice
that the positions remain within the bounds 0 < d; < 5 mm, where
the rod position has an effect on the resulting mass flow through the

nozzle.

Figure 9 examines the effective control torque history for the
system. When the effects of all of the finite value control variables are

¢) Valve position

Fig. 8 Variable-thrust attitude control.

considered along with new dynamic states (d and v), one can extract
the actual control torque, measured in rad/s?, that is applied to the
spacecraft at any time. Figure 9a illustrates this. Note that the zero-
duration dots contained in the figure are artifacts of zero-duration
segments that naturally result in an FSCT solution. For the sake of
this discussion, they can effectively be ignored. As a comparison
with this solution, Fig. 9b illustrates the control torque for an
unconstrained control system that tracks the reference trajectory
perfectly. The unconstrained control torque is derived using a
continuous Lyapunov-based control law, which guarantees perfect
tracking of quaternions and angular velocities (because initial states
are along the reference). Some distinct similarities are easy to
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Fig. 9 FSCT variable-thrust attitude control torque vs unconstrained attitude control torque.
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observe by looking at the plots together. Certainly, control torque
magnitudes are similar, but there are also points at which the derived
control torque from the finite set formulation very closely mimics the
behavior of the purely continuous control.

This is viewed as a significant result that demonstrates how a
detailed hybrid system formulation can approach a continuous
formulation. Although it is a step backward to use a finite control
formulation if control inputs are truly continuous, perhaps it is
reasonable to argue that many systems (if not most) are truly hybrid
systems, modeled as continuous. Often, it is easier to model the
continuous system, as numerous methodologies exist for treating
such systems. However, if a system has discrete components, it is
ideal to treat them as such. Thus, the FSCT method offers an avenue
for modeling any discrete components present in the problem, at
whatever level they may appear in the dynamical model.

VI. Conclusions

The FSCT method is demonstrated for the determination of
optimal solutions to hybrid control problems. The intent of the
present investigation is to explore the range of applications that the
FSCT method is suited to treat. Basic and complex applications
illustrate its capability and utility.

The FSCT method uniquely transforms the hybrid control
problem into a NLP problem to optimize controls limited to finite sets
of values. A primary feature demonstrated is the ability to manage
multiple independent decision inputs simultaneously. The number of
control variables contributes linearly to the parameter size of the
underlying NLP problem, as opposed to the exponential growth
characterizing similar methodologies. This distinction allows the
FSCT method to efficiently optimize systems with many control
variables. In this investigation, an application with two control
variables articulates the characteristics of a multiple control solution,
whereas an application using up to 12 control variables displays the
method’s effectiveness with large dimensionality. Aside from the
computational advantages offered by the FSCT method, this study
further demonstrates the utility of the method when used in
conjunction with Lyapunov techniques or MPC methods for real-
time applications.
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