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An enhanced optimizationmethod, rooted in direct collocation, is formulated to treat a specific class of continuous-

time hybrid control systems; specifically, dynamical systems that depend on continuous state variables and spatially

discrete control variables. In this study, a spatially discrete control variable refers to one that is defined over the

continuous-time domain yet is constrained to a range of discrete finite values. This subset of hybrid control systems is

termed here as finite set control. Traditionally, optimal control for hybrid systems of this class is formulated in the

context of mixed-integer nonlinear programming. The numerical efficiency of these methods, however, is adversely

affected by the number of independent control variables and the range of the combined set. The methodology

presented in this study focuses on this class of problems: multiple independent control variables, each with a unique

range and a switching schedule independent from the others. The resulting formulation leads to a more

computationally efficient nonlinear program suitable for the identification of optimal control solutions for this class

of hybrid systems.

I. Introduction

U NIQUE optimal control applications exist, requiring control
solutions that are defined over a continuous-time domain but

are constrained to afinite range of values in that domain. This study is
focused specifically on systems of this form for which the states are
governed by differential equations of motion, and control variables
exhibit discontinuities in switching from one operating point to
another in the range or set of possible values. Dynamical systems in
which the bodies are controlled by on–off actuation schemes fit well
into this category. Additionally, continuous control problems in
which bang–bang control behavior is assumed a priori may also be
treated in this context.

In this framework, the system can be described by avector of states
y 2 Rny governed by

_y� f�t; y; u� (1)

The nonlinear field in Eq. (1) depends on the state y and a control
vector u, consisting of nu elements, and may also depend explicitly
on time t. In this study, the range of each control variable is limited to
a finite set Ui. Therefore, if ui denotes the ith control variable, for
i� 1; . . . ; nu, then ui 2 Ui where

U i � f ~ui;1; . . . ; ~ui;mig (2)

That is, each control ui can take on any one of themi possible values
in the set Ui. Notice that, in general, the number of elements in each
of these nu finite sets may vary from one control variable to the next.
Thus, the range (i.e., the possible values of the elements) and
cardinality (i.e., the number of elements in the set) of each finite set
are unique for a given control variable. In addition, the total number
of control combinations is

�m�
Ynu
i�1
mi (3)

Thus, any control problem is simply the determination of which of
the �m control combinations to implement at each instant in time.

Systems described by Eqs. (1) and (2) fall into a class of hybrid
control systems [1] due to the presence of both continuous and
spatially discrete variables. Although the scope of hybrid control
systems is broad, potentially involving continuous and discrete
variables in both states and controls, many treatments on the subject
are limited to special cases or specific classes. Often, researchers
have considered the case of a single switching variable [2–4] for
which the discrete variable indicates the system mode or dynamics
vector field governing the system at a given time. For example, using
different Lyapunov-like functions for each mode, conditions for
stability can be obtained, leading to switching strategies based on the
Lyapunov-like functions and/or their time derivatives.

This investigation considers an optimal control problem involving
the system described by Eq. (1):

J� ��t0; y0; tf; yf� �
Z
tf

t0

L�t; y; u� dt (4)

with equality constraints formulated as

0 � 0�t0; y0�; 0� f�tf; yf�; 0� ��t; y; u� (5)

Here, 0 2 Rn 0 is a vector of initial conditions, f 2 Rn f denotes
the terminal constraints, and � 2 Rn� represents the path constraints
imposed over all t 2 � t0 tf �. Note that though all the constraints
presented here are formulated as equality constraints, that is not a
necessary restriction.

The resulting hybrid optimal control problem is often termed in the
literature as a mixed-integer optimal control problem [5–8].
Although the feasible control values in Ui are not necessarily
integers, it is generally possible to formulate them as a function of
integers (most often as the binary values 0 and 1). This leads to the
use of mixed-integer nonlinear programming (MINLP) as a tool for
solving these problems. Commonly used algorithms include the
branch and bound method [9], the generalized benders decom-
position method [10], and the outer approximation method [11,12].
In a basic sense, each of thesemethods fixes all or some of the integer
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variables on each iteration and solves a series of primal subproblems
using standard nonlinear programming (NLP) algorithms. Although
these methods can be effective, their primary limitation is the ad-
verse impact of increasing the number of integer variables, which
subsequently increases the size of the combinatorial problem
exponentially.

An overview of the existing research efforts on mixed-integer
optimal control problems is provided by Sager et al. [5], discussing
the indirect and direct transcription methods in conjunction with
MINLP methods. Additionally, Allgor and Barton [13] address
several MINLP approaches to decompose the master problem such
that either collocation or direct single shooting strategies can be used
on the variational subproblems. Stryk and Glocker [6] use a branch
and bound procedure in combination with direct collocation for
solving robotics problems. Gerdts [7] also uses the branch and bound
method on anMINLP, resulting from the discretization of an optimal
control problem. Lee et al. [14] use a control parameterization
enhancing technique to transform the discrete-valued problem into
an ordinary optimal control problem with fixed switching points.

The objective of this investigation is to effectively treat the hybrid
optimal control problem using a strictly NLP approach. Wei et al.
[15] use a traditional NLP technique on the hybrid system with a
single discrete control variable. Gerdts [8] proposes a variable time
transformation method using direct shooting to formulate the prob-
lem as a nonlinear program. Comparing identical problems using the
branch and bound approach, he demonstrates orders of magnitude
improvement in computational time, using the strictly NLP
approach. A similar method, optimizing switching times (proposed
by Sager et al. [5]), has the same effect of reducing the problem to a
nonlinear program. However, one drawback to these methods is that
the number of stages or segments grows exponentially with the
number of control functions and expected switches.

In contrast to classical transcription formulations, the present
development features a unique approach that effectively addresses
the deficiencies of the methods previously described in dealing with
multiple independent spatially discrete control variables. An imme-
diate advantage of the proposed approach is a significant reduction in
computational overhead during the numerical solution process. The
improved performance allows for a more effective treatment of this
class of problems, particularly when the cardinality of each of the
associated finite sets (i.e., the discrete range of each control variable)
is large.

Solutions derived using the proposed enhanced direct collocation
method are characterized as optimal switching schedules. The
optimal control history is subsequently deduced directly from these
switching schedules and the corresponding values of the control
variables in each finite set. The process of transcribing the optimal
control problem into a parameter optimization problem is consistent
with classical methods [16–18]. The solution is numerically
determined using an existingNLP algorithm, such as SNOPT [19]. A
unique and complex element of this type of problem, from a
numerical perspective, is that switches occur not only along one

control axis but also across control variables. This leads to switches
in variable dependencies during the solution process. These
switching dependencies are explored and addressed in this
investigation.

II. Transcription Formulations for the Finite Set
Optimal Control Problem

A brief review of traditional collocation for solving optimal
control problems, in the presence of continuous control inputs, is
presented first to establish the terminology relevant to this study.
Subsequently, two concepts for employing a collocation approach on
a finite set control problem are demonstrated. The first represents a
logical step from the traditional collocation formulation and is
addressed by various authors in the literature. The second is an
alternative formulation proposed here to reduce the size of the
resulting NLP problem when multiple independent finite set control
variables are present.

A. Traditional Collocation Formulation

The optimal control problem established in Eqs. (1–5) is tran-
scribed using collocation [16–18] into a set of n optimization
parameters x, an objective function F�x�, and a series of constraints
c�x� � 0. At a minimum, the vector constraint equation accounts for
the initial, final, path, and dynamical constraints and may be
decomposed as

c �x� � � cT 0
�x� cT f �x� cT��x� cT_y �x� �T � 0 (6)

In this study, a suitable collocation formulation must account for
the presence of discontinuities, either in states or controls. The term
knot is used here to denote a point in time at which a discontinuity
might occur, and it divides the trajectory into separate subarcs or
segments. The knots may be either fixed or free in time. When the
knots are free, the times at which they occur are optimized. Let there
be nk knots and ns segments. Along each segment, the problem is
discretized in time at nn different places called nodes. Figure 1
illustrates the conceptual relation between knots, nodes, and
segments at two consecutive iterations. Each segment starts at either
t0 or a knot and ends at either another knot or tf. Thus, the
formulation consists of nk � ns � 1 knots.

Although, conceptually, each segment may consist of a different
number of nodes, the transcription is simplified by assuming an equal
number of nodes per segment. In this formulation, the nodes are
uniformly spaced within a segment, but they are not necessarily
uniformly spaced along the course of the trajectory. That is, each
segment may span a different length of time. In most cases, it is
desirable for the segment duration (or the location of the knots) to be
optimized as well. In Fig. 1, the knot times change between iteration
p and iteration p� 1 as the NLP algorithm improves the current x.
Consequently, assigned times for nodes change to maintain uniform
spacing per segment.
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Fig. 1 An example of segments and knots at two consecutive iterations.
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A convenient parameterization includes (in the parameter vector)
the states and controls at the nodes, the duration of the segments, and
the initial and final times. Consider the parameter vector

x � �� � � yi;j;k � � �|�������{z�������}
nynnns

� � � ui;j;k � � �|�������{z�������}
nunnns

� � � �tk � � �|�������{z�������}
ns

t0 tf|{z}
2

�T (7)

In the preceding equation, i identifies members of a vector, j denotes
the respective nodes, and k represents the relevant knot or segment.
The knot times are defined as

tk � t0 �
Xk
��1
j�t�j; k� 1; . . . ; nk (8)

and the resulting node times are

tj;k � tk�1 �
j � 1

nn � 1
�tk � tk�1�

j� 1; . . . ; nn; k� 1; . . . ; ns (9)

where tns � tf.
A summary of the quantities available from this parameterization

are presented in Table 1. The arrays Yny;nn;ns andUnu;nn;ns contain the

states and controls (respectively) at each node. Node times, knot
times, and segment durations are contained in Tnn;ns , Tnk , and�Tns .
Thus, the parameter vector provides sufficient information to
adequately represent the optimal control problem as a nonlinear
program through appropriate definitions of F�x� and c�x�.

B. One Concept for Optimizing Switching Times

When the control variables are limited to a finite set, the traditional
collocation formulation must be modified. Assume that the ith
control variable has a discrete range characterized by the finite set
Ui � f ~ui;1; . . . ; ~ui;mg. Note that, in this case, the range of each
control variable is limited to m different values. Although it is
generally possible for the cardinality of each finite set Ui to be
different, the cardinality of all nu sets in this example is assumed
equinumerous. That is, all finite sets have the same number of
elements. This constraint can be expressed as

Ym
��1
�ui � ~ui;�� � 0; i� 1; . . . ; nu (10)

Then, at each instant in time, the optimal solution indicates which of
the m possible values is optimal for each variable.

A direct consequence of this formulation is that theNLP algorithm
must determine a control solution over the �m�mnu possible control
combinations at each instant in time. However, this type of
optimization process is rooted in gradient methods, and gradients are
not defined across a switch or discontinuity in a variable. Thus,
during the solution process, spatially discrete control variables are
essentially treated as continuous variables subject to constraints, and
the final solutionmust meet the constraint in Eq. (10). Unfortunately,
gradient methods move a point toward a root of the constraint
according to the gradient at the current point of x, independent of
whether it is the right root to choose. Once the constraint is met, it is
difficult (if not impossible) for the NLP algorithm to seek another

root. Although the constraint is valid, it cannot be implemented with
traditional transcription.

To circumvent this problem, consider the multiple segment
formulation of Sec. II.A. Instead of optimizing the control values,
assume the control values and optimize the switching times. Similar
to the direct shooting implementations presented by Gerdts [8] and
Sager et al. [5], a formulation can be devised that assigns each
segment one of the �m options and then requires the NLP algorithm to
determine the duration of each segment. With this formulation, the
predetermined control values are removed from the parameter vector.
This is analogous to having one discrete control variable for which
the �mvalues represent each of the possible control modes available to
the system.

For example, a segment k is designated with control u�tj;k� �
� ~u1;1; . . . ; ~unu;1�T for all nodes j� 1; . . . ; nn along that segment. If
this control combination is not desirable in the optimal solution, the
NLP algorithm determines that the duration of that segment �tk is
zero.A usermust ensure that each control combination is represented
in at least one segment (possibly many). Assuming the existence of
nonoptimal control combinations, it is conceivable that the durations
of a significant number of segments are reduced to zero.

Let ns � � �m segments, where � is an arbitrary integer assigned by
the user. Choosing a formulation with enough segments to cycle
through each of the �m control combinations multiple times increases
the number of control sequences in the solution space for the
problem. Naturally, a user must balance solution flexibility with the
size of the underlying NLP problem. Without knowing in advance
what the optimal sequence may look like, a user should set � as high
as possible. The resulting NLP problem is naturally large, and
parameters in x associated with zero-duration segments are
essentially wasted. Therefore, the algorithm is unnecessarily slowed
down, as a potentially large number of variables take up space and
computational time while contributing nothing to the solution.

C. Switching Segments and Time for Multiple Independent Controls

The formulation presented in the previous section assumes the
cardinality of each Ui (for i� 1; . . . ; nu) is exactly equal to m.
Furthermore, only synchronous switches in the control variables are
allowed. That is, control variables are not allowed to switch values
independent from one another. To address this limitation, an
alternative formulation is presented here, one that significantly
reduces the number of wasted parameters and improves overall
computational efficiency. In particular, the proposed method is most
useful for problemswithmany control variables inwhich �m becomes
excessively large. The salient feature of this formulation is that each
of the control axes is treated independently. This minimizes the
number of variables while offering the greatest flexibility in the
solution process. Knots and segments are employed, but their
definitions are slightly altered.

Let a knot be defined as any interior point for which one element of
the control vector switches from one value to another. The
fundamental distinction here is that each knot is associated with a
control axis. Before, the knot times could be described by Tnk, an
array with Tnk values. Likewise, the segment durations were �Tns ,
and there were ns � nk � 1 segments. Now, the knot times are
described as Tnu;nk , a two-dimensional array with nu 	 nk values. In
other words, there are knots for each control axis. The axis durations
are also two-dimensional, as �Tnu;nk�1, with nu 	 �nk � 1� values.
These are the time durations between two switches in a given axis. It
is important to note that this is not necessarily the duration of the
segments. A segment is now defined as the time elapsed between
switches in any of the elements of the control vector. For example, the
first segment is bounded both by t0 and the first switch in the control,
regardless of the axis in which the switch occurs. With nunk interior
knots to separate the segments, the total number of segments
becomes ns � nunk � 1. The nomenclature for the multiple
independent control formulation is summarized in Table 2.

To illustrate the concept further, consider a sample case with
nk � 3 interior knots for each of thenu � 3 control axes. Specifically,
letUi � f�1; 0; 1g for each axis. Figure 2 demonstrates the concept

Table 1 Nomenclature summary: multiple segment
formulation

Array Description Dimension Element

Yny;nn;ns States by node ny 	 nn 	 ns yj;k or yi;j;k
Unu;nn;ns Controls by node nu 	 nn 	 ns uj;k or ui;j;k
Tnn;ns Node times nn 	 ns tj;k
Tnk Knot times nk tk
�Tns Segment durations ns �tk
ns Number of segments nk � 1
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at two consecutive iterations of the optimization process. The control
values are predesignated in a pattern logical for an aerospace
application, for which nonzero control values indicate thrusting arcs.
In each control axis, the control value begins at 1 (a positive thrusting
arc), and a coasting arc follows the first knot. At the second knot, the
control value switches to�1 (a negative thrusting arc) until the third
knot, where another coasting arc begins. With additional knots, this
pattern continues. The control values in each of the nu control axes
are designated similarly. In this example, observe that the total
number of segments is ns � �3��3� � 1� 10.

Let the time elements of the parameter vector x be identified as xt.
The time elements include all of the axis durations �Tnu;nk�1 along
with the initial and final time. Here, xt is defined as

x t � � � � � �ti;k � � � t0 tf �T (11)

The knot times Tnu;nk are defined according to elements in xt:

ti;k � t0 �
Xk
��1
j�ti;�j (12)

Thus,�ti;k represents the time duration between the knots located at
ti;k�1 and ti;k. The definition in Eq. (12) guarantees that the knot times
remain in chronological order for a given control axis. That is,

ti;k�1 � ti;k 
 0; k� 1; . . . ; nk � 1 (13)

where ti;0 � t0 and ti;nk�1 � tf . For example, in Fig. 2, t2;1 precedes
t2;2, which is followed by t2;3. However, there is no relation between
knot times in different control axes. Therefore, t2;1 need not be after
t1;1. In general,

� < i 6) t�;� 
 ti;k
8 i; �� 1; . . . ; nu; 8 k; �� 1; . . . ; nk (14)

Compare the arrangement of knot times for iteration p and iteration
p� 1 in the figure. Both illustrations represent valid arrangements
for the knots. However, it is clear that the chronological ordering of
all the knots may change during the optimization process.

This algorithm defines segment boundaries by the chronological
ordering of knot times, including t0 and tf at the end points. Let the
unordered segment boundaries be defined as

� t00 t01 � � � t0� � � � t0ns�1 t0ns �
� � t0 t1;1 � � � ti;k � � � tnu;nk tf � (15)

Because knots are completely free to move on � t0 tf � and are
independent between control axes, the segment boundariesT0ns�1 are
not necessarily in ascending order. Thus, a sorting algorithm converts
T0ns�1 into the sequential listing Tns�1 of the segment boundaries.

Now, tk�1 and tk bound the kth segment.
Observe, for example, that segment 5 is bounded at the pth

iteration by knots located at t2;2 and t3;2. Between iterations though,
the axis durations �Tnu;nk�1 change values, thereby changing the
positions of the knots at the next iteration. At iteration p� 1,
segment 5 is bounded by t3;1 and t2;3. Completely different sets of
variables now define the segment boundaries. Expressing the
segment boundaries for segment 5 in terms of xt, on thepth iteration,

t4�xt� � t2;2�xt� � t0 � j�t2;1j � j�t2;2j (16)

t5�xt� � t3;2�xt� � t0 � j�t3;1j � j�t3;2j (17)

and on the (p� 1)th iteration,

t4�xt� � t3;1�xt� � t0 � j�t3;1j (18)

t5�xt� � t2;3�xt� � t0 � j�t2;1j � j�t2;2j � j�t2;3j (19)

Thus, the dependencies of segment boundaries continuously change
throughout the optimization process. The term “segment time
switching” is used to refer to the switching dependencies of a seg-
ment’s time elements, demonstrated here. Segment time switching is
the fundamental characteristic of the parameterization presented in
this investigation. It is addressed in more detail subsequently.

III. Implementation of the Finite
Set Control Transcription

In Sec. II, a formulation is developed for solving finite set control
problems. Starting from a traditional collocation method, the
transcription is modified to effectively treat problems with multiple
independent switching controls. The resulting method is termed in
this investigation as the finite set control transcription (FSCT)
method. It is characterized by containing only the state and time
elements in the parameter vector, the predesignated controls along

Table 2 Nomenclature summary: multiple independent

control formulation

Array Description Dimension Element

Yny;nn;ns States by node ny 	 nn 	 ns yj;k or yi;j;k
U�nu;nk�1 Prespecified controls nu 	 �nk � 1� u�i;k
Unu;ns Controls by segment nu 	 ns ui;k
Unu;nn;ns Controls by node nu 	 nn 	 ns uj;k or ui;j;k
Tnn;ns Node times nn 	 ns tj;k
Tnu;nk Knot times nu 	 nk ti;k
�Tnu;nk�1 Axis durations nu 	 �nk � 1� �ti;k
T0ns�1 Unordered knot times 0 . . . ns t0k
Tns�1 Ordered knot times 0 . . . ns tk
ns Number of segments nunk � 1
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Fig. 2 Conceptual control profile with segment divisions at two consecutive iterations.
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each segment, and a segment-time-switching phenomenon through-
out the optimization process. Although the nature of switching
dependencies is introduced previously in the paper, a more complete
understanding can be gained through a description of the FSCT
implementation.

Implementation considerations are presented in the context of how
partial derivatives are calculated, as the performance of the optimi-
zation process is dependent upon these partials being evaluated
quickly and accurately.Many literature sources discuss their role in a
quasi-Newton technique [19–21]. Of course, partial derivatives can
be calculated either numerically or analytically. If the user selects
numerical derivatives for simplicity, some considerations are neces-
sary to ensure success; these are discussed next. In this investigation,
however, analytic derivatives are supplied to the NLP algorithm to
reduce computational time. In developing analytic expressions for
problemderivatives, some interesting insights into the segment-time-
switching phenomenon may be observed. Specifically, switching
dependencies occur within the continuity constraints and, conse-
quently, the process of evaluating derivatives for these constraints is
discussed next. This leads to further analysis of the characteristics of
the FSCT method involving the accuracy of derivative evaluations
and the convergence performance of the method. First, however, it is
necessary to demonstrate how the optimization parameters are
manipulated at the beginning of each iteration in order to properly
evaluate any constraints or derivatives.

A. Optimization Parameters

In the FSCT method, the parameter vector is defined as

x � � � � � yi;j;k � � � � � � �ti;k � � � t0 tf �T (20)

The parameterization consists of state values, time durations between
control switches, and bounding times t0 and tf. In the evaluation of
cost and constraint functions, the elements of the current point x are
deparameterized and assigned to the respective state or time values
that they represent. The three-dimensional array Yny;nn;ns is assigned

for the states, whereas the two-dimensional array �Tnu;nk�1 carries
the time durations. The deparameterization is simply

yi;j;k � xnynn�k�1��ny�j�1��i; �ti;k � xq1�nu�k�1��i
t0 � xq2�1; tf � xq2�2 (21)

where q1 � nynnns and q2 � q1 � nu�nk � 1�. Adopting a
shorthand notation, the expressions in Eq. (21) are implied by

x ! Yny;nn;ns ; �Tnu;nk�1; t0; tf (22)

where a! b indicates a mapping from input a to output b. Like-
wise, the application of Eq. (12) reveals the times of each knot:

t0; �Tnu;nk�1 ! Tnu;nk (23)

Recall that the elements of Tnu;nk are ti;k, where the control axis and
knot number are distinguished by i and k, respectively. Thus, in this
form, knot times are arranged in a two-dimensional array, and the
chronological ordering of knot times is unknown.

To evaluate continuity constraint equations, the states, controls,
and timemust be known at each node of each segment. The states are
contained in the array Yny;nn;ns and extracted directly from x. The

node timesTnn;ns are easily determined throughEq. (9) if the segment
boundaries Tns�1 are known. Presently, then, Unu;nn;ns and Tns�1 are
extracted. Notice that the controls and segment boundaries are
related, as the latter are simply the knot times which define switches
in the control. The arrays are determined simultaneously, then, as the
ordering of knots ultimately defines the control sequence.

In the first step, the segment boundaries are placed in an unordered
listing according to Eq. (15). The segment boundaries include the

initial time, the final time, and each knot contained in Tnu;nk . In
shorthand,

t0; Tnu;nk ; tf ! T0ns�1 (24)

where the elements of the output are t0�, �� 0; . . . ; ns. It is clear that
t00 � t0 and t0ns � tf; however, the interior segment boundaries are not
arranged chronologically. Each interior segment boundary (t0�,
�� 1; . . . ; ns � 1) is directly linked to an element ti;k, and it is
necessary to maintain in storage the i, k pairing associated with each
segment boundary. Next, a sorting algorithm places the total
collection of knots in chronological order to define the interior
segment boundaries:

T 0ns�1 ! Tns�1 (25)

The segment boundaries Tns�1 represent the chronological ordering
of knots. When the segment boundaries are sorted, the respective i, k
pairings must be passed along. Thus, it is crucial to identify not only
the time for each knot in Tns�1 but also the element in Tnu;nk from
which it came. This provides the basis for determining the control
sequence along each segment.

Let the element u�i;k be the prespecified control value for the ith
control axis between ti;k�1 and ti;k. The array of prespecified controls
is U�nu;nk�1 and has the dimension nu 	 nk � 1. In conjunction with

the sorted knots, the segment control values are determined:

T nu;nk
; Tns�1; U

�
nu;nk�1 ! Unu;ns (26)

The control values are completely contained in Unu;ns , where ui;k
indicates the control value for the ith axis on the kth segment. In this
process, the control values along the first segment are simply the first
prespecified control values; that is

ui;1 � u�i;1 (27)

Then, at each segment boundary, all control values are held constant
except in the control axis associatedwith the given knot. Because this
knot identifies a control switch in its corresponding axis, the value in
that control axis is updated to its next prespecified value. Thus, if �i
indicates the current control value of the ith axis, then

ui;k � u�i;�i (28)

ui;k�1 �
�
u�i;�i�1 tk � ti;�i
u�i;�i otherwise

(29)

Upon each control switch, the update �i � �i � 1 is performed in the
switching axis to complete the recursive step. Equation (29)
guarantees that along the final segment:

ui;ns � u�i;nk�1 (30)

In a final step, the controls are determined at each node:

U nu;ns
! Unu;nn;ns (31)

Because the controls are assumed constant over all segments, it is
clear that ui;j;k � ui;k for all nodes j� 1; . . . ; nn. With this, all
necessary elements are extracted, and the cost function and
constraints can be evaluated in terms of the extracted elements.

B. Dynamical Constraints Using Simpson Integration Equations

The dynamical constraints are the central feature of a collocation
method. When they are satisfied to tolerance, state continuity exists
in the context of the given dynamical model. The dynamical
constraints are also the key functions affected by the segment-time-
switching phenomenon. Although any integration scheme may be
used, the Hermite–Simpson [18] integration equation is employed in
this investigation. It is presented here to aid in the following
discussion on the switching phenomenon.
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Recall that the ny�nn � 1�ns dynamical constraints are of the form

c _y�x� � � cT_y1;1 �x� � � � cT_yj;k�x� � � � cT_ynn�1;ns
�x� �T (32)

where

c _yj;k�x� � yj�1;k � yj;k � h
6
�f�tj;k; yj;k; uj;k�

� 4f�tm; ym; um� � f�tj�1;k; yj�1;k; uj�1;k�� (33)

In Eq. (33), the time variables are determined from previously
extracted quantities by

h� tk � tk�1
nn � 1

; tj;k � tk�1 � h�j � 1�

tm �
1

2
�tj;k � tj�1;k� (34)

Note that tk are elements of the one-dimensional array Tns�1,
representing segment boundaries, whereas tj;k are members of the
two-dimensional array Tnn;ns, denoting the node times within a
segment. The already extracted state and control values at the nodes
yj;k and uj;k are used to determine the midpoint states and controls:

y m � 1
2
�yj;k � yj�1;k� � h

8
�f j;k � f j�1;k� (35)

u m � 1
2
�uj;k � uj�1;k� � uj;k � uj�1;k (36)

The result in Eq. (36) is trivial, because the controls remain constant
over any segment.

1. Partial Derivatives for the Simpson Integration Equations

For any set of dynamics, the general partial derivatives of c _yj;k may

be determined as follows:

@c _yj;k
@yj;k

��I � h
6

�
@f j;k
@yj;k

� 4
@fm
@ym

@ym
@yj;k

�
(37)

@c _yj;k
@yj�1;k

� I � h
6

�
4
@fm
@ym

@ym
@yj�1;k

�
@f j�1;k
@yj�1;k

�
(38)

@c _yj;k
@uj;k

�� h
6

�
@f j;k
@uj;k

� 4
@fm
@um

@um
@uj;k

�
(39)

@c _yj;k
@uj�1;k

�� h
6

�
4
@fm
@um

@um
@uj�1;k

�
@f j�1;k
@uj�1;k

�
(40)

@c _yj;k
@tk�1

�� 1

6
�f j;k � 4fm � f j�1;k�

@h

@tk�1
� h
6

�
@f j;k
@tj;k

@tj;k
@tk�1

� 4

�
@fm
@ym

@ym
@h

@h

@tk�1
� @fm
@tm

@tm
@tk�1

�
�
@f j�1;k
@tj�1;k

@tj�1;k
@tk�1

�
(41)

@c _yj;k
@tk
�� 1

6
�f j;k � 4fm � f j�1;k�

@h

@tk
� h
6

�
@f j;k
@tj;k

@tj;k
@tk

� 4

�
@fm
@ym

@ym
@h

@h

@tk
� @fm
@tm

@tm
@tk

�
�
@f j�1;k
@tj�1;k

@tj�1;k
@tk

�
(42)

In Eqs. (37–42), @f
@y
, @f
@u
, and @f

@t
are dependent on the chosen dynamics

and

@ym
@yj;k
� 1

2
I� h

8

@f j;k
@yj;k

;
@ym
@yj�1;k

� 1

2
I � h

8

@f j�1;k
@yj�1;k

@um
@uj;k

� 1

2
I;

@um
@uj�1;k

� 1

2
I

@h

@tk�1
�� 1

nn � 1
;

@h

@tk
� 1

nn � 1

@tj;k
@tk�1

� 1 � j � 1

nn � 1
;

@tj;k
@tk
� j � 1

nn � 1

@tm
@tk�1

� 1 �
j � 1

2

nn � 1
;

@tm
@tk
�

j � 1
2

nn � 1
(43)

Considering the formulation presented in this investigation, onemay
observe immediately that the derivatives �@c _yj;k�=�@x� are completely

defined without applying Eqs. (39) and (40). Because the control
values are prespecified in this formulation, they are not optimization
variables and their constraint partials can be ignored. They are
included previously in the paper only for completeness.

In contrast, Eqs. (37) and (38) are directly implementable, as yj;k
are variables contained in the parameter vector x. If the variables are
divided into state elements and time elements, x� � xTy xTt �T , then
the Jacobian elements are

@c _yj;k
@xy�

�

8>><
>>:

@c _yj;k
@yj;k

xy� � yj;k
@c _yj;k
@yj�1;k

xy� � yj�1;k
0 otherwise

(44)

Alternatively, Eqs. (41) and (42) are not immediately imple-
mentable because the time variables tk�1 and tk do not appear directly
as parameters in x. However, tk�1 and tk are dependent upon the time
parameters xt, such that

@c _yj;k
@xt
�
@c _yj;k
@tk�1

@tk�1
@xt
�
@c _yj;k
@tk

@tk
@xt

(45)

To apply Eq. (45), the partials �@tk�=�@xt� must be determined.
Recall from Sec. III.A that segment boundaries of Tns�1 are directly
linked to knot times Tnu;nk that are functions of the parameters in xt.
Therefore, it is possible to determine

@tk
@t0
;

@tk
@tf

(46)

and
@tk
@�ti;�

for all segments boundaries k� 0; . . . ; ns, control elements
i� 1; . . . ; nu, and knots �� 1; . . . ; nk. Beginning with exterior
segment boundaries, it is clear that, because tns � tf ,

@t0
@t0
� 1;

@tns
@t0
� 0;

@t0
@tf
� 0

@tns
@tf
� 1;

@t0
@�ti;�

� 0;
@tns
@�ti;�

� 0 (47)

This is true regardless of the ordering for interior knots. However,
interior segment boundaries in Tns�1 correspond to elements in the
knot array Tnu;nk. That is,

tk � ti;�; 1 
 k 
 ns � 1 (48)

for some pair i, �. Likewise, the derivatives of the element ti;� are
assigned to the element tk:

@tk
@xt
� @ti;�
@xt

; 1 
 k 
 ns � 1 (49)

Thus, all that remains is to identify the proper derivatives for the knot
times. Under the assumption that all �ti;�  0,
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@ti;k
@t0
� 1;

@ti;k
@�t�;�

�
�
1; �� i; � 
 k
0; otherwise

;
@ti;k
@tf
� 0 (50)

With these derivatives carefullymatched, the components of Eq. (45)
are completely defined.

To further understand the impact of segment time switching on
derivative evaluation, consider again the illustration of Fig. 2. The
partial derivatives of the segment boundary times with respect to xt at
the pth and (p� 1)th iterations are given next:

x t � � � � � �ti;k � � � t0 tf �T

�
@t4
@xt

�
p

� � 0 0 0 1 1 0 0 0 0 1 0 �
�
@t5
@xt

�
p

� � 0 0 0 0 0 0 1 1 0 1 0 �

�
@t4
@xt

�
p�1
� � 0 0 0 0 0 0 1 0 0 1 0 �

�
@t5
@xt

�
p�1
� � 0 0 0 1 1 1 0 0 0 1 0 �

Thus, the segment boundary derivativeswith respect to elements inxt
are always either 0 or 1, and it is the ordering of the knots that
determines the proper structure at each iteration. The constraint
derivatives for the fifth segment, then, are defined by

@c _yj;5
@xt
�
@c _yj;5
@t4

@t4
@xt
�
@c _yj;5
@t5

@t5
@xt

(51)

and clearly demonstrate dramatically different behavior on each
iteration.

2. Time Invariance

The parameter t0 appears in the definition of every knot time, with
the exception of tns � tf. For an interior segment k, then, t0 defines
both tk�1 and tk. If the dynamic model is time invariant, the partial
derivatives �@c _yj;k�=�@tk�1� and �@c _yj;k�=�@tk� have a canceling effect
in Eq. (45), such that

@c _yj;k
@t0
� 0 (52)

on an interior segment. Thus, because the parameters are axis
durations instead of absolute times, t0 and tf only have nonzero
effects on the last segment.

Likewise, in a time invariant formulation, if a segment k is
bounded by two knots associated with the same axis (such as ti;��1
and ti;�), all of the partials will cancel out with exception to that
associated with �ti;�. That is,

@c _yj;k
@�ti;�

�
@c _yj;k
@tk

(53)

@c _yj;k
@�xt��

� 0; otherwise (54)

3. Derivative Discontinuities for the Dynamical Constraints

The dynamical constraints exhibit discontinuities in function
derivativeswhen the chronological ordering of the knots switch. This
is demonstrated in how the partials �@tk�=�@xt�may change between
the values 0 and 1 between iterations. A simple analogy is useful in
conceptualizing this phenomenon. Consider a simple function of two
variables defined by

f�x1; x2� �min�x1; x2� (55)

If this function appears in a parameter optimization problem as either
the objective or a constraint, its evaluation is straightforward:

f�

8<
:
x1 x1 < x2
x1 � x2 x1 � x2
x2 x1 > x2

(56)

Interestingly, when x1 < x2, variable x2 has seemingly no impact on
the function. However, there is a switch in dependency when x2 is
smaller than x1. The characteristics of this function are quite similar
to those of the dynamical constraints in the FSCT method. Consider
the derivative with respect to the first variable:

@f

@x1
�

8<
:
1 x1 < x2
undefined x1 � x2
0 x1 > x2

(57)

Thus, a derivative discontinuity exists when x1 and x2 are equal.
However, anNLPalgorithm requires derivatives to be tractable at any
point within the range of optimization. Therefore, if evaluating
�@f�=�@x1� or �@f�=�@x2� analytically, it is up to the user to choose an
appropriate definition in the case that x1 � x2. Three reasonable
candidates for �@f�=�@x1�jx1�x2 may be seen in how numerical
derivatives could be evaluated using forward, backward, or central
differences:

Forward

@f

@x1

����
x1�x2
� f�x1 � �; x2� � f�x1; x2�

�
� 0 (58)

Backward

@f

@x1

����
x1�x2
� f�x1; x2� � f�x1 � �; x2�

�
� 1

Central

@f

@x1

����
x1�x2
� f�x1 � �; x2� � f�x1 � �; x2�

2�
� 1

2

Thus, choosing an analytic expression for �@f�=�@x1�jx1�x2 is
equivalent to selecting a finite differencing scheme for numerically
evaluated derivatives. Inmost cases, the selection is arbitrary, as there
is probably no basis for valuing onemethod over another. However, it
is clear that when x1 � x2, the path of the NLP algorithm can be
altered dramatically simply by selecting a different derivative
definition.

This conceptualization is easily extended to the continuity
constraints of the FSCT method. Consider as an example the
four knot sequence described in Fig. 3, in which t0 
 t1 
 t2 
 t3.
The first four knots are defined by t0 and the knot times t2;1, t3;1, and
t1;1, respectively. This implies that, in this example,

�t2;1 
 �t3;1 
 �t1;1 (59)

According to the FSCT implementation of analytic derivatives, the
associated dynamics equations for the three segments shown have
time dependencies, as given in Table 3. Thus, when time derivatives
are calculated for the dynamical constraints on one of these
segments, nonzero Jacobian elements appear for their respective
dependent members of xt. The derivatives with respect to all other
members of xt, including tf and other members of �Tnu;nk�1, are
identically zero.

t0 t1 t2 t3

| | | |
t0 t2 , 1 t3 , 1 t1 , 1

Fig. 3 Sample four knot sequence.
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As long as the knots are sufficiently far away, no difficulties
confront the solution process. However, consider further the scenario
that

�t2;1 ��t3;1 
 �t1;1 (60)

such that t1 � t2. In the context of the dynamical problem, this
situation indicates that the controls in two axes must switch
simultaneously. Thus, knots come together to exist at the same point
in time, but their ordering is still specified according to the
implementation (in this case, t1 � t2;1 is ordered before t2 � t3;1). In
this situation, it is possible for the xt dependencies determined by
numerical derivatives to be completely different than the analytic set.
To illustrate, assume that finite differences are calculated using
forward differences, such that

@c

@x
� c�x� �� � c�x�

�
(61)

Then, when �t2;1 is perturbed forward by � > 0, the knot ordering
will necessarily change because

�t3;1 
 �t2;1 � � 
 �t1;1 (62)

The xt dependencies via forward differences are also presented in
Table 3. To contrast the two derivative methods, variations for
forward differences are highlighted. Thus, according to the forward
difference, changes to �t2;1 have no effect on segment 1, as its
bounding times remain the same even when the parameter is
perturbed. Instead, when �t2;1 is perturbed forward, it affects
segment 3, despite the fact that knot ordering indicated otherwise.
Likewise, on segment 2, analytic calculations consider �t2;1 as the
left bounding time, whereas a forward differencing scheme
necessarily implies it is the right bounding time. On segment 2, one
method will result in �@c�=�@�t2;1�> 0, whereas the other will
compute a negative value.

Therefore, as with the sample function f�min�x1; x2�, several
derivative definitions can be employed at the switching points for
which derivative discontinuities exist. It is clear that the path of x
chosen by the NLP algorithm will vary based on the derivatives
calculated, but this does not inhibit the FSCT method. Considering
the total number of parameters in x and the relatively few gradients
that can be affected by the switching phenomenon, the NLP
algorithm can still make improvements in x on an iteration inwhich a
switch occurs, regardless of how the derivative is defined. Although
the specific search direction of the switching iteration may vary, it is
observed that an identical local minimum can be found via different
paths. Thus, these derivative discontinuities do not present obstacles
in determining an optimal solution.

It should be noted before proceeding that this situation only arises
when two knots originating from different control axes occur
simultaneously. Based on the definitions of knot times, knots in
one control axis cannot switch in order. However, two knots in one
axis can exist simultaneously when a given element �ti;k � 0. In
fact, this is a common occurrence, as the user may prespecify a value
of u�i;k that is simply not desired in the optimal solution. The NLP
algorithm makes zero a time duration in order to remove the
nonoptimal control value. Having simultaneous knots in a single axis
is an anticipated condition, and it is important that this situation does
not cause any adverse effects in derivative calculations. This is
guaranteed in the definition of Eq. (12), which is specifically
formulated to produce this result.

C. Implementation of Numerical Derivatives

When a user selects a finite differencing method for evaluating
function derivatives, some additional considerations may be
required. Depending on the specific optimization algorithm, the NLP
algorithm may calculate finite differences automatically in the
absence of analytic derivative expressions. If this is the case, the
FSCT method derivatives may not be effectively evaluated without
user intervention.

Some sophisticated NLP algorithms perform initialization
routines to more efficiently calculate numerical derivatives. To
avoid excess computation, functions are evaluated from an initial or
random point of x to determine the structure of the Jacobian matrix.
Linear constraints (constant Jacobian elements) and nonlinear
constraints (varying Jacobian elements) are identified. This allows
the routine to characterize the sparsity of the Jacobian. By
performing this task in the initialization, the algorithm seeks to avoid
recalculating nonchanging elements. However, in the context of the
FSCT implementation, this procedure will not be able to adequately
identify the potential dependencies that would appear from a
different evaluation point. Some Jacobian elements will appear to be
nonvarying at a particular point based on the current arrangement of
knots. If the initialization routine falsely identifies elements as
constant (zero or nonzero), then proper derivatives are not evaluated
for future iterations when the knot arrangement is different.
Consequently, the NLP algorithm cannot determine the best search
direction for the next iteration point, and it is unlikely that the NLP
algorithm would converge on an optimal point.

This can be overcome with user-defined procedures to flag all
potential dependencies (nonzero Jacobian elements) as varying
gradients. With this information, the NLP algorithm will perform
finite differences for each element, actively determining the
dependencies on each iteration. Efficiency degrades, and there is
necessarily excess computation, but derivatives can be calculated
accurately.

D. Other Constraints

So far, the implementation of the FSCTmethod is presented in the
context of the continuity constraints and the segment-time-switching
phenomenon that exists in those constraints. However, the continuity
constraints along segments are only a subset of the constraints
necessary for successful implementation of the method. Of course,
the specific set of constraints may be dependent upon the actual
problem transcribed. However, common to most applications are
three additional subsets of constraints described presently. These
implement various initial, knot, and time conditions.

1. Initial States and Time

The initial conditions most often employed with optimal control
problems have all of the initial states as well as the initial time fixed.
Thus, the constraints  0�t0; y0� � 0 will capture fixed initial states
and time.

Notice that the initial states are simply the states assigned to the
first node of the first segment yi;1;1. Let the specified initial states be
identified as y�0 and the specified initial time as t�0 . Then, n 0

�
ny � 1 constraints are imposed to represent  0 as

c  0
�x� �

y1;1;1 � �y�0�1
..
.

yi;1;1 � �y�0�i
..
.

yny;1;1 � �y�0�ny
t0 � t�0

2
666666664

3
777777775

(63)

TheNLPalgorithm drives this vector to zero during the optimization.
Although, simple constraints like this could and should bemet on the
first iteration by appropriately assigning the initial conditions in the
first guess for x.

Table 3 Segment dependencies for analytic and numerical

(forward differencing) derivatives

Segment Boundaries

Dependent Members of xt

Analytic derivatives Forward differences

1 t0, t1 t0, �t2;1 t0, �t3;1
2 t1, t2 t0,�t2;1, �t3;1 t0,�t3;1,�t2;1
3 t2, t3 t0, �t3;1, �t1;1 t0, �t2;1, �t1;1
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The Jacobian elements for these constraints are simple to compute:

@c 0i

@x�
�
�
1 x� � yi;1;1 , � � i
0 otherwise

(64)

@c 0ny�1

@x�
�
�
1 x� � t0, � � nynnns � nu�nk � 1� � 1

0 otherwise

(65)

for i� 1; . . . ; ny.

2. Segment Continuity Between Knots

Consider a set of dynamics in which all states must be continuous
across segments. Because no time elapses between the end of the
kth segment and the beginning of the (k� 1)th segment, the states
must be equal at those points. Theny�ns � 1� segment constraints are
formulated as

c s�x� �

y1;1;2 � y1;nn;1
..
.

yi;1;k�1 � yi;nn;k
..
.

yny;1;ns � yny;nn;ns�1

2
6666664

3
7777775

(66)

with Jacobian elements

@csny�k�1��i

@x�
�

8<
:
1 x� � yi;1;k�1
�1 x� � yi;nn;k
0 otherwise

(67)

for i� 1; . . . ; ny and k� 1; . . . ; ns � 1.

3. Time

Time equality constraints ensure that the sums of the axes
durations for each control axis are equal to the trajectory time offlight
tf � t0. That is, the nu time constraints are

c t�x� �

tf � t0 �
Pnk�1

��1 j�t1;�j
..
.

tf � t0 �
Pnk�1

��1 j�ti;�j
..
.

tf � t0 �
Pnk�1

��1 j�tnu;�j

2
6666664

3
7777775

(68)

The Jacobian elements for these constraints are

@cti
@x�
�

8>><
>>:
1 x� � tf
�1 x� � t0
�1 x� � �ti;k
0 otherwise

(69)

for i� 1; . . . ; nu and k� 1; . . . ; nk � 1. For these derivatives, it
is assumed that �ti;k  0. This is a reasonable assumption if
simple bounds keep the time durations nonnegative. Alternatively,
the derivatives associated with the durations are�sign��ti;k� instead
of �1.

IV. Application: Lunar Lander

With the FSCTmethod and its implementation considerations thus
introduced, its characteristics are easily demonstrated through an
application. The classical lunar launch/lunar lander problem is
commonly treated in the literature on optimal control theory [22,23].
The objective for the launch problem is to transfer a rocket from the
lunar surface into a lunar orbit in minimum time. The problem is
constructed in two dimensions (range and altitude), yielding
four states (position and velocity in each dimension) and one control
variable (thrust direction angle). The thrust acceleration magnitude

and the gravitational field are assumed constant. The rocket is
initially at rest and must achieve a specified final altitude and range
velocity. It is observed that the lunar lander problem (assuming a soft
landing) is the identical problem, integrating backward. The
simplicity and familiarity of this problem make it an interesting test
case for the FSCT method.

Consider the lunar lander problemwith one added complexity: the
vehicle cannot alter its thrust vector. Instead, the vehicle can thrust
with constant accelerationmagnitude in each principal direction. The
dynamics are described by

_y�

_r1
_r2
_v1
_v2

2
664

3
775�

v1
v2
u1

�g� u2

2
664

3
775 (70)

where r, v, and u represent position, velocity, and control
acceleration, respectively, and the subscripts indicate the horizontal
and vertical dimensions. The gravitational constant of g�
1:6231 m=s2 is obtained using the mass and equatorial radius of
the moon. With initial conditions r0 � � 200 15 �T km and 0�
��1:7 0 �T km=s and final conditions rf � vf � 0, the lander must
achieve a soft landing on a specified target from a completely
specified initial state. Both minimum time and minimum fuel
optimizations are realized with the finite set control constraints:

u1 2 f� ~u1; 0; ~u1 g (71)

u2 2 f� ~u2; 0; ~u2 g (72)

which ensure constant thrust acceleration during thrusting arcs.
These constraints are easily implemented with the FSCT method by
prespecifying the control values between switching times (knots)
according to the control constraint. In this example, let nn � 5 nodes
per segment and nk � 14 knots per control axis. In addition, let the
prespecified controls be identified as

u�i;k � ~ui cos

�
	

2
�k � 1�

�
(73)

such that the control structure resembles that of Fig. 2. Thus, it is
assumed a priori through the control sequence that the vehicle will
thrust initially in the positive directions (uprange and up), then coast,
then thrust in the negative directions (downrange and down). The
resulting optimizations determine the appropriate times for all
control switches, indicating the durations for each thrusting and
coasting arc.

An initial guess is devised with t0 � 0, tf � 300 s, and all knot
times are evenly distributed over the interval such that each segment
duration is identical. The state parameters in x are constructed to
create a linear progression in each state from its initial value to its
final value. Initial, final, and knot condition constraints are satisfied
by the x supplied to the NLP algorithm before the first iteration, but
continuity constraints are not immediately satisfied. During the
optimization process, x is improved such that all constraints are
satisfied. In addition, the final x minimizes the objective function,
representing J� tf � t0 for minimum time or

J�
Z
tf

t0

uTudt

for minimum acceleration.
Figure 4 displays the solutions of both the minimum time and

minimum acceleration problem. Vehicle positions and controls are
plotted for both minimizations in Figs. 4a and 4b. Notice the control
history u1 for the minimum time solution. In essence, this solution
represents bang–bang control in the first axis, with u1�t� � � ~u1 �
�50 m=s2 on t 2 � 0 33:66 � s and u1�t� � ~u1 for the remaining
time until tf at 101.32 s. Of course, this control behavior is expected
for aminimum time optimization. Recall, however, that the prespeci-
fied initial value for u1 is ~u1. As the illustration demonstrates, there is
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an instantaneous switch in the control at t0 � 0 from ~u1 to 0 and then
from 0 to � ~u1. The solution exhibits that�t1;1 ��t1;2 � 0 in order
to accomplish this. In addition, there are instantaneous switches at
t� 34:06, 68.65, and 101.32 s. At each of these times, there exists
time durations �t1;k for coasting and negative-direction thrusting,
and each has been optimized to be identically zero. This behavior is a
common artifact of the FSCT formulation. It does not indicate that
control switches should occur at these times; rather, it indicates that
the problem has been overparameterized with more knots than
necessary. However, because control values are prespecified in the
optimization, it is useful to overparameterize the problem, allowing
for more control switches than needed. Overparameterizing allows
the NLP algorithm to demonstrate the optimal number of switches
(less than the parameterized number) by driving to zero superfluous
control axis durations. The overparameterization also allows the user
additional flexibility to arbitrarily prespecify control values,
knowing that nonoptimal control values are eliminated in the final
solution. In this case, specifying nk � 14 knots represented an
overparameterization in u1 but not necessarily in u2. In the vertical
control axis, only three time durations are driven to zero by the
optimization. These are the positive thrusting arc occurring at t�
33:93 s and the coasting and negative thrusting arcs occurring
simultaneously at the final time.

This same behavior is observed for the minimum acceleration
optimization displayed in Fig. 4b. One may easily observe that most
thrusting arcs are reduced to identically zero by the NLP algorithm
for both control axes. This indicates that far fewer switches were
necessary to identify this local minimum, and it provides confidence
that the formulation has not underparameterized the problem by
providing too few control switching opportunities.

Figure 4c plots the minimum time and minimum acceleration
trajectories concurrently. For each trajectory, the dots indicate the

actual values of the state parameters optimized in x. Thus, these are
the states at the nodes along each segment. It is clear that the nodes are
not evenly distributed spatially nor are they distributed evenly in
time. Again, this is due to the varying durations of each segment.
Regardless, there arenn � 5nodes on each segment and, by segment,
they are evenly distributed in time. The lines between the nodes are
not simply a connection of the dots. Rather, the lines indicate a
propagation of the initial conditions along with their respective
control solutions using a variable-step integrator. Although the
notions of overparameterization imply that enough knots are
included in the parameterization, this illustration indicates the
sufficiency of the node count, as the integrated trajectory matches
nearly identically to the distributed nodes. The consistency between
node locations and propagated states demonstrates the accuracy of
the Hermite–Simpson integration equations. At the final time, state
errors for both optimization solutions areO�10�6� m in positions and
O�10�10� m=s in velocities, only slightly larger than the integration
tolerances for the propagation.

An important discovery from the lunar lander example is the extent
by which the FSCT method results in implementable control
solutions. First, it is clear that the solution requires some inter-
pretation. Superfluous control switches must be discounted before
implementing the control history. Actuators with a minimum on
times do not support thrust durations approaching zero; however,
within the tolerance of the optimization, zero or near-zero burn
durations actually indicate that the respective actuation is not
desirable. Clearly, an optimization must be scaled properly in time to
differentiate short actuation times from nonoptimal control
sequences.

Second, once a control solution is adequately interpreted, the
performance of the solution in a continuous-time setting can be
nearly identical. Although this collocation technique does rely on a
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time discretization along each segment, the switching times between
control values are optimized over a continuous domain. Therefore,
the control solution represents exact switching times within the
tolerance of the optimization. In this example, the continuous-time
system is simulated with state and control propagation, showing
negligible deviations from the FSCT solution.

One final observation regarding overparameterization is now
explored. Consider the case in which the optimal solution requires
that�ti;k � 0 for some i and k. Thus, ti;k�1 � ti;k and the prespecified
control value u�i;k are not part of the optimal solution. In addition, let

u�i;k�1 � u�i;k�1 (74)

This is a common situation, as many applications may prespecify
control values to alternate between two values (or on and off). In this
case, the control effectively remains at thevalue ofu�i;k�1 from ti;k�2 to

ti;k�1 (see Fig. 5). Define �� as the total duration spent at this control
value, such that

��� ti;k�1 � ti;k�2 ��ti;k�1 ��t%
0

i;k ��ti;k�1 (75)

Notice that �ti;k�1 and �ti;k�1 can take any values, such that their

sum remains �� while still ultimately communicating the same
control profile.

Thus, there are an infinite number of combinations of parameters
that represent an identical optimal solution. However, it is observed
that changes to the two nonzero time durations have significant
impact on the dynamic constraints, as the knot locations determined
through �ti;k�1 and �ti;k�1 further determine the node locations at
which states are defined in xy. This inertia deters arbitrary variations
in time parameters, thus facilitating convergence. In other words,
minor changes in the values of �ti;k�1 and �ti;k�1 require major
changes in the elements of Yny;nn;ns on the three corresponding

segments in order to realize an equivalent optimal solution.

V. Conclusions

The continuous-time hybrid optimal control problem, exhibiting
continuous state variables and spatially discrete control variables, is
the subject of this investigation. Traditionally, this type of problem is
formulated in the context of mixed-integer optimization and some-
times solved using strictly NLP methods. However, these earlier
formulations do not adequately treat the problem of asynchronous
switching across multiple spatially discrete control variables, each
subject to a unique discrete range. Although the present investigation
also employs a strictly NLP approach, the fundamental difference
between this work and earlier efforts is a novel transcription
formulation that effectively treats the asynchronous switching
problem. The approach is termed the FSCT method. In contrast to
earlier formulations that also employ a strictly NLP approach, the

FSCTmethod significantly enhances the computational efficiency of
the nonlinear program by reducing the size of the underlying
parameter optimization problem.

The present work is devoted to the theoretical development of the
FSCT method and discussion of special considerations regarding its
numerical implementation in a nonlinear program. The effectiveness
of the method is demonstrated with a simple aerospace engineering
application. Specifically, a lunar lander for which the thrusters are
each independently constrained to a unique and finite set of thrust
levels. Each thruster can switch between their allowed levels inde-
pendently of the others. This gives rise to asynchronous switching.
Although this example is relevant specifically to aerospace engineer-
ing, the FSCTis formulated in a generalized form and is thus useful in
any application involving multiple spatially discrete variables for
which asynchronous switching is desirable.
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