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Zermelo Navigation Problem: 1 Segment Solution

Optimal Boat Path from (0,0) to (10,10) Optimal Control (Magnitude and Pointing)
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Figure: Optimal Path (a) and Control (b) for the Minimum Acceleration Zermelo
Problem
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Zermelo Navigation Problem: 3 Segment Solution

Optimal Boat Path from (0,0) to (10,10) Optimal Control (Magnitude and Pointing)
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Figure: Optimal Path (a) and Control (b) for the Minimum Acceleration Zermelo
Problem
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I lethod Over

Introduction

» Research Motivation

> Accomodate realistic actuator constraints into the discovery of optimal
solutions

» Optimality vs. Implementability
> Realize bang-bang control solutions without ambiguity

» Realm of Hybrid Systems

> Medical diagnostics > Management
> Psychology > Sociology
> Education » Engineering...

> Economy
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Implementation of the FSCT Method

System Description

» Hybrid System Dynamics

y=f(t,y, u)

» Continuous States

T
y = [nn )]
vy € R

» Discrete Controls
w = [ug - unu]T

u, € U;= {174’,1, cee 7174'»"17;}

» Examples

Switched Systems

Task Scheduling and Resource Allocation Models
On-Off Control Systems

Control Systems with Saturation Limits

vvyYyy

Stanton Finite Set Control T



Implementation of the

Solving an Optimal Control Problem Numerically

Minimize J = ¢(to,Yo,tr,Y;) +ftt0f L(t,y,u) dt
subject to

= uf(t7 y? u)7

d"o(tovyo)a

¢f(tf7yf)a

= ﬁ(t7y7u)

coow
I

\ ?
Minimize J = F(x)
subject to

[cg(a:) (@) cgf (x) cg(w)]T =0

N\, Vv

NLP Solver

c(x)

Stanton
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T Method Overview

FSCT Method Overview

» Parameter vector consists only of states and times
= Yk o Atig e totf]T

» Control history is completely defined by
> Pre-specified control sequence
> Control value time durations, At; j, between switching points
» Key parameterization factors
ny Number of States
n, Number of Controls
n., Number of Nodes
ni Number of Knots
ns Number of Segments (ns = nyng + 1)

Finite
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Conclus S T Method Overview

FSCT Method Overview

= Yijg - Atig - tots]"

wel; = {1,2,3), ) 12 31 2 3
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. . . .
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Ny =2
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cee FE 0. ny =4
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Implementation of the FS

Ap

eralized Formulation

m me ng Phenomenon

Co Implementation Numerical Der

vatives

FSCT Interface

User Inputs
» System Dynamics  » Extra » Input File
Constraints/ -
£ ﬁ’ ﬁ’ ﬁ Objectives : Iéutlal Guess
oy’ ou’ ot ontrol Sequence
» User Options
> Problem Specifics
FSCT Suite
> Constraint/ » Data Manipulation = » SNOPT Interface
Objective Libraries Library Library
Outputs
» Final Solution » Convergence Log > Iteration History
z, F(z), c(z), n L -

Stanton
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i ing Phenomenon

Numerical Derivative

FSCT Process = Yijg - Atig - tots]"
|
Constraint Subroutines Objective Subroutines
> Initial States » Control
> Initial Time > Time
> Simpson Continuity > User Defined Objectives
> Segment Continuity
> Time
> Final States
» Final Time
> User Defined Constraints
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]
I
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Con Numerical Derivative

Switching Segments and Time for Multiple Independent Controls

» Knots designate switching times in each control axis
» Segments are bounded by switches in any control

» The chronological ordering of knots changes at each iteration of the

optimization
Iteration p Iteration p + 1
. |_| tio t13 . |_| tio t13
St 1| Tt L
- tap  tag - t2o lag
= to = a1
32 tss t3.2 t33
tz1 tz1
= =
Eo | | Lo I Lo Eo | Lo I Lo
Elo2 030 4 15060 T 8 9 10 Ehlo2 0 3 4560 T 89 10]
4 I M I A : I I
e Time e Time

Finite
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Numerical Derivative

Derivative Discontinuities: An Example

» Function

x1, 1 < T2,
flz1,z2) = min{z1,z2} = x1 =22, z1 =22,
x2, Tr1 > 2.
» Derivative
of 1, 1 < T2,
— = undefined, =1 = x2,
O 0, 1 > To2.

» Candidates for Numerical Implementation

Forward: 9f = @ +9,22) = flz, 22) = 0
8951 z1=xo 6

Backward: of = f@y,22) = flz1 = 6, 23) = 1,
6$1 . 1)

Central: of _ fltda) - flan b)) _ 1

or1 |, _ 20 2

1=
» Choosing an analytic expression for ;—Jl is equivalent to selecting

1=

a finite differencing scheme for numerically evaluated, derivatives = ©vaoe

Stanton ini ontrol Trar
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‘hing Phenomenon
Numerical Derivatives

Derivative Discontinuities: An Example

F(x) = (min{z1, 22})?

iAW
II{//‘\\\\
m:“?‘\“““m \
“‘m”u“““
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Numerical Derivative

Derivative Discontinuities: An Example

o ) At 2y =9,
F(x) = (min{z, z2})
of _q1 0f _
daz1 ? Bz
c= To
2, 2
_— Fée =0, m‘f; =1
) ‘ ) )
/ \ ’ : 3_1% = %’ 3_1% = %
. 1
. \ /0
. / 1
L \/ L = Constrained
= === Unconstrained
\ / Y
N

$f+(12—i)n=1

Figure: Effects of Alternative Derivative Definitions on Optimization Path

o o = DA
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Con s Implementation of Numerical Derivatives

Implementation of Numerical Derivatives

» An optimizer may calculate finite differences automatically in the
absence of analytic derivative expressions

» FSCT method’s derivatives may not be effectively evaluated without
user intervention
> Some sophisticated optimizers perform initialization routines to more
efficiently calculate numerical derivatives
> Functions are evaluated from an initial or random point of @ to
determine the structure of the Jacobian matrix
> If the initialization routine falsely identifies elements as constant (zero
or nonzero), then proper derivatives are not evaluated for future
iterations when the knot arrangement is different

» Overcome with user defined procedures to flag all potential
dependencies (nonzero Jacobian elements) as varying gradients




S Lunar Lander
Implementation of the FS L ] L .
mall Sp ft Attitude Control

Libration Point
I'raffic Flox lanage

2-Dimensional Lunar Lander

» Dynamics

71 v1
L ’f‘z o V2
v= ’[11 - (51

Vg —g+ u2

» Controls

u € {=50, 0, 50} m/s®
uz € {20, 0, 20} m/s*

» Initial and Final

Conditions
ro = [20015]" km
vo = [-1.70]" km/s 7
,’.f — 0 T Uf Ly
(3 = 0

Stanton Finite Set Control Transcription
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Figure: Optimal Solutions for the Minimum-Time (a) and Minimum-Fuel (b)
Lunar Lander Problem
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Small Spacecraft Attitude Control: Fixed Thrust
» Fixed thrust cold gas propulsion for
arbitrary attitude tracking

> Reference trajectory defined by Tq',
and "w*(t)
» Minimize deviations between body frame

and reference frame with minimum
propellant mass consumption

J = Pipy — Pamy;

tf . tf r b T r b
pf—po=/ pdt:/ (qv) (qv)dt-
t t

0 0

g u; € U={-1,0,1}
bwi
S . _ » where u; indicates for each principal
y=|m, | =Fftyu : ! " :
’f (ty,u) axis whether the positive-thrusting
T

pair, the negative-thrusting pair, or
neither is in the on position

Stanton i ontr ription
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Applicat Small Spac aft Attitude

Conclusions
Backup

Small Spacecraft Attitude Control: Fixed Thrust

——  Actual Trajectory
““““““ Desired Trajectory

Quaternions: Actual vs. Desired Angular Velocity: Actual vs. Desired

rad/s

w
N)
ye)
?

Figure: Fixed Thrust Attitude Control &

anton Finit trol
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Small S
Libratic

Small Spacecraft Attitude Control: Variable Thrust

» Variable thrust cold gas propulsion ot ore Momn

Valve Core Rod

» Valve rod modifies nozzle throat area

» Include additional states to model

variable thrust &
> Resulting dynamics are still hybrid

» States and Controls

- bq’i -
byt Nozzlo Throat
. W(;p = | w; € {0,1}
v= “la €{-1,0,1}
v
rqi
L P

» w; indicates whether the it" thruster pair is on or off

> q; indicates the acceleration of the valve core rods of the it" thruster pair

oy <9 = = R
21

Stanton
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Lunar Lander
Small Spacecrs
Libration
I'raffic Floy

Small Spacecraft Attitude Control: Variable Thrust

——  Actual Trajectory

““““““ Desired Trajectory

Quaternions: Actual vs. Desired Angular Velocity: Actual vs. Desired

rad/s

Figure: Variable Thrust Attitude Control™ - -

Stanton Finit Control
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Libration Point Formations: Formation Limitations

cs

Tad
Deputy

Figure: Formation Pointing

» Fixed size, shape, and orientation of the formation

» Fixed orientation of each member of the formation (deputy spacecraft)

Finite Set Control T
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Lunar Lander

Libration Point Formations: Dynamical Sensitivities

» Previous investigations have focused on unconstrained continuous
control solutions

> Linear and nonlinear; feasible and optimal solutions

> Non-natural formations require extremely precise control (< nm/s?
accelerations)

» These controls are impossible to implement with existing actuator
technology

Continuous Control

» Cannot reproduce the fidelity of
Finite Burn Implementation continuous COHtrOl
c—1 o = > Continuous control may even be
T smaller than minimum thrust bound
Thrust Limitations

Figure: Implementing a Continuous
Control Solution
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L on Point Formations
I'raffic Flow Management

1all Spacecraft Attitude Control

Libration Point Formations: Control Limitations

» Fixed thruster location on each spacecraft body
» Specified thrust acceleration magnitude

> Based on actuator performance capability
T
i

™

Figure: Spacecraft Body

Finite Set Control T
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I'raffic ow Management

Implementation of

Costs and Constraints

» Constraints
> Initial time and states specified
> Final time and formation size and plane specified
> rl; =1 km distance between chief and deputy, v}, = 1.73 km distance
between deputies
> Specified pointing 7% = [1 0 0]
> State continuity (differential constraints) by segment
> State equality across segments (at knots)
» Weighted Costs
> Minimize thrust
> Minimize formation size deviations along trajectory
> Minimize formation plane deviations along trajectory

J = wiJi+waJe+w3Js
F(x) = wiFi(e)+ w2Fe(x) + wsF3(x)

Stanton
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Baseline Initial Guess

Spacecraft Positions - Inertial Frame
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Baseline Solution

Spacecraft Positions - Inertial Frame
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10
—~ s
g F\
g o w0
=
> 5 -10 s_)
o RN S0
“—lo 0 Y-10 -10
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10 10
7’ 7 °
g 0 g 0
2 2
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Trajectory Legend

Deputy 1 Trajectory N
Deputy 2 Trajectory TN
Deputy 3 Trajectory tg[]/_\_/\tf
Control Legend
Axis 1 Control (ug) T
Axis 2 Control (u,) ST
gL

Axis 3 Control (u.)

«10”  Control Accelerations - Body Frame
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: il il
S I i
0 1 2 3 4 5
x 107
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Traffic Flow Management

» Density of traffic, p, in
vehicles/distance unit

9p | 9(pv)
o T

or

=0,

» Velocity of traffic, v, in
N

distance unit/time unit

v:vmax(l— p )
Pmax
}

0.5

0.0
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Implementation

Conclusions

» Finite Set Control Transcription: This investigation yielded a new
metholology for treating Hybrid Control Systems
» Future Work

> Initially designed for continuous states and discrete controls

> Further Development of the Methodology

> Extensions are demonstrated for broader classes of hybrid systems
> Investigate mesh refinement

> Apply concepts to direct/indirect shooting methods
» Explore extended classes of hybrid systems
> Further Application of the Methodology
» Further depth in relevant problems, such as Spacecraft Attitude
Control and Traffic Management
» Others...

» Petroleum engineering: Smart Well Technology

Stanton

Qe
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Action Items

> Spelling and Rewording

> Marchand: Ch 6-7, App A (Ch 5, App B)
» D’Souza: Ch 1-7

» Transition to Chapter 5 (Libration Point Formations)
» Figure Size and Legibility
» Formatting Considerations

To be completed before 8 May!

Stanton
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Implementation Details

Introduction

Implementation of the FSCT Method Existence and Uniquenes
Applications Linear vitched tem
Conclusions 1-D Lunar Lander
Backup Libration Point Formation
.. . T
The Optimization Parameters w=[ vk Aty g - to tf]
Array, Description Dimension Element
Y'ﬂy,”nx'ﬂs States by node ny X np X ng Yj k O Yi ik
U:Lu ng+1 Pre-specified controls ny X (ng + 1) u; k
s »
Unying Controls by segment ny X ng ui
Ungy,nn,ns Contro}s by node My X Np X ng Uk OF U g
Trngp,ns Node times Np X Ng g,k
Ty, ny, Knot times ny X ng tik
ATy, np+1 Axis durations ny X (ng + 1) N
T 41 Unordered knot times 0...ng t,
Tp_y1 Ordered knot times 0...ng th
s Number of segments ngng - 1

@ — Y, np,ns ATnu,nk+lv to, ty

to, ATnu,nk+1 — T"u,"k tik = to + Zﬁ:l |Ati,m}

t T t ald am ’ ’ ’
0> Trg,ngs ty = Thqq [to ot tns]

’
Tret1 — Tngt1 _

= otk tng,ng tf}
ujl =
* _
Try,mp: Tng4+1> Unu,nk+1 — Uny,ns Wi,k =

ws Ki+12 e = tikgo
i,k+1 - s otherwise
Uny,ns = Uny,nn,ns Uik
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Implementation Details

clusions 1-D Lunar Lz
Backup Libration Point Forn

1tion

T
T T T
Cy(:l:) = [091,1(17) e C'gj,k(w) T Cn—1ims (w)]
where
CYj K (x¢) = Yit1,k — Yjk
-3 [f (tgks Yjopr g k) +4F (s Yy wm) + F (tj+1,kvyj+1,kv“'j+1,k)]
and
tp — tk—1
h = ———
Ny — 1
e = teor+h(i—1),
1
tm = 5 Gk +tin)
with midpoint states and controls
1 h
Ymn = 3 (Wi Yjre) + 3 (Fin = Firn)
1
Um =5 (U T ULE) S Uk = Uik
o = = = wae

Stanton Finite Set

ontrol Transcription
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Implementation of the FSCT Method Existence and Uniquenc
Applications Linear Switched en

“onclusions 1-D Lunar Lande
Backup Libration Point Formation

Partial Derivatives for the Simpson Integration Equations

dey, . h Af ) )

ik _ o M (%K 0Fm OYm

Yk 6 \%yjk  Oym Oyjk
% _ < ofm _Ovm 6.fj+1,k)
OYjti1k Oym dvjp1k Otk

h

6
s _h (af], +48fm aum>
Buj,k 6 Buj k Aum, 6"’j,k

9y, 1 (0 m _Oum 3fj+1,k)
Oujt1k o \"Bum Uitk OUjt1k
dey
Uik 1 oh
Js
—L2 = (et Am S —
EY p (75.k m o+ Fi1) EY
_h[oFk Oty i Fm OYm Oh N Fm Otm N Of 41,k Otjt1k
6 | Ot Oty_q Oy, Oh Oty Otm Otp_q Oti i1k Otp_1
ey
Uik 1 dh
Js
—L= = Fik+afm +
oty ( J.k m J+1, k) oty

_n [ﬁfj,k ot i <8fm Oy Oh  Ofm atm) . OF i1,k Otjt1k

6 |0t Oty Oy, Oh Oty Otm Oty

i1k Oty
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Existence ¢

Linear Sw

1-D Lunar E
Libration Point Formation

Partial Derivatives for the Simpson Integration Equations

. . . T
» Divide parameters into state and time elements: & = [a:g :z:tT]
» Partial Derivatives for State-Parameters

8093., k - =y

..’ Yy — J4k?
8C»y'jyk . nyk

O0xy, Ju . T Yk
Yit1,k

0, otherwise.

» Partial Derivatives for Time-Parameters

ac?]j,k _ 8C?Jj,k Otr—1 ac?]j,k %
ox¢ Otp—1 Oz Oty Oz’

where
Oty Ot and Oty
Oty’  Oty’ OAL;

are determined according to knot ordering

Q>
Stanton Finite 0
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Linear itche Sy en
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Libration Point Formation

Implementation o

Backup

Initial States and Time

» Constraint Function

y1,1,1 — (¥o)1

Yi,1,1 — (Y0)i

Cyy (:l:)

Yny,1,0 = (Y0)n,
to — t5 ]

» Jacobian elements

8C¢oi . 1,
0z~ - 0,
acwony +1 1,
O0x 0,

fori=1,...,ny

Ty EYin SV =1,
otherwise,

Ty =to &y =nynpns + nu(ne + 1) + 1,

otherwise,

Finite
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Implementation Det
Exister wnd Uniquenc
Linear Switched S
ITLC S 1-D Luna
Backup
Segment Continuity Between Knots

en
Land
Libration Point Form

» Constraint Function

Y1,1,2 = Yinn,l
es(T) = | Yirk+t — Yinek
y'ﬂyvlyns - ynyynnynsfl
» Jacobian elements

1 Ty = Yi 1l k+1
6csny(k71)+i B > 7= Yi,1,k+1,

- _17 Ty = Ying,k,

0x~
0,
fori=1,...,ny and k=1,

otherwise,

A
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Time

Implementation Det
Exister wnd Uniquend
Linear Switched

S 1-D Lunar Land
Backup Libration I

int Forn

» Constraint Function

tr—to— iy Aty

ct(w): tf—to—znk+l|Atz ,i|

f - to an+1 |Atnu7’i|
» Jacobian elements
1, z,=ty,
der. -1, =y =to,
or,

fori=1

Ty = Ati,k,
0, otherwise
,ny, and k=1 sng+ 1

A
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nt Formation

Existence and Uniqueness

Theorem

T @ ik

Let y = f(t,y,u), where u is constant, and y(a,u) =b. Suppose that f is

continuous in some closed region D of the t,y plane and hence is bounded
In particular, suppose that

|f(t, y,u)] < M over D
and also that f satisfies a Lipschitz condition in the y argument—that is,
|f(t,y2,u) — f(t,y1,0)| < Clyz — v,
where the constant C' is independent of t or u. Finally, define a rectangle
t—al<h |y—bl <k

such that Mh < k. Then y = f(t,y,u) has a unique solution y(t,u) in the
shaded part of the rectangle.

[m] =5 =

= Q>
Stanton ini
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Two Stable Linear Systems

Backup b siiom Bl Hommeiien
¥y = fly,u)=Auwy,
u € {1,2},
where

-1 10
A= [ —100

-1 100
R
o o[ty

—1

_[-1 10
Ll T
a0

) u=2
Figure: Individually Stable Systems

Stanton

F
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Libration Point Formation

Two Stable Linear Systems

> Several switching laws

(a) Unstable u:{ ;7
(b) Stable w { 1,
2’

(¢) Stable w = { ;7
where P, Ay + AZPU =1

y1y2 < 0
otherwise

Y1 > Y2
otherwise

y'Piy < yPoy
otherwise

. &

488884

Stanton
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]
I
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Backup Libration Point Forn

Two Stable Linear Systems
» FSCT Optimization J = F(z) = t; —to
T
yryp =1
3 1

*:_ __lk
Uk 2+2( )

(a) (b)
Figure: FSCT Locally Optimal Switching Trajectories
» Optimization implies the switching law

{1,—i3ﬂ§m
u =

A

Stanton
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Implementation of the FS Methoc

1-D Lunar Lander

Minimum Time Solution

Initial Guess.

15 15

- -

1 1

=
E

B B

o EJ 10 ey E 0 EJ S 0w ®m w0 s @ w0
1 o v

v

05
=z 2 )
FR =
£ E
-05| ©

o EJ 0 0 0 0 0 R )
2fu 2| u
Lo Lo
R R
B B

10 10

20 L L 20

o EJ 10 3 700 F EJ e R N R B

Time (5) Time (s

(a) (b)

Figure: Initial Guess (a) and Minimum Time Solution (b) for the 1-D Lunar
Lander Problem

cription
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n Point Formation

Equations of Motion

Moon

Sun,®

Figure: CR3BP Frame

» Circular Restricted Three-Body Problem (CR3BP) Equations
> Rotating Frame R = {&r, Y, 2R},

> Chief spacecraft lies on a natural trajectory
yc = }(ymuC) = }(ymo)
> The lth deputy spacecraft measured relative to the chief

ycdl = ydl - Y.
ycdl = f(t ycdlvudz)

Finite Set Control T
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Reference Halo Orbit

1 x10°
:
o
o
=5 %
5
5 1
- x10°
km
10" 10"
: :
E : , :
km km

Figure: Reference Halo Orbit for Chief Spacecraft with Origin at L1

> th)ef trajectory is a Halo Orbit about L; (approx. 148 x 10° km in the
TR

> At epoch, chief is at northern most point (300,000 km in 2z )

o 5 = = : ©Dace
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Impacts of Fixed Spacecraft Orientation

> A traditional finite burn formulation specifies thrust (acceleration)
magnitude, but not direction
> Assumes spacecraft can re-orient to deliver required thrust vector
» Control space Us: ulu = (T*)?
» If spacecraft orientation is predetermined (according to other mission
requirements)
> Actuator configuration must provide 3-axis maneuverability
> Assume thrusters are located on principal axes of body frame
B = {&5,9s, 25}
> Control space Uz: ui(u; — T*)(u; +T*) =0,i = &g,...,25

Fixed spacecraft orientation leads to discrete optimization, which
gradient-type NLP algorithms cannot support.
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Figure: Control Spaces (a) Uy (Orientation Free), and (b) Uz (Orientation Fixed)
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(a) 26 Points (b) 98 Points (c) 290 Points
Figure: Formation Emphasis: Comparison of 26, 98, 290 Points
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Figure: Plane Emphasis: Comparison of 26, 98, 290 Points
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Formation vs. Plane Emphasis Comparison
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Figure: Formation vs. Plane Emphasis: Scaling for Formation Emphasis
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Formation vs. Plane Emphasis Comparison

Formation Size Cost

Thrust Cost Formation Size Cost Thrust Cost
1500 500 1500 500
1 500 500
400 400
v oo~ 200 ~ 200
200 200
Y
i 100 100
> 1
o
y Ta 0 y T« ° y T« y T« °
Formation Plane Cost “Total Weighted Cost Formation Plane Cost Total Weighted Cost
01 10 01 10
ks o0s 1 . o E o0 o
“o °% Lo ° wo o0 °
004 a 004 a
= B =
T 0.02 T 2 1 002 2
o B o ! o B
° o o o ° o o
y T4«

y T x y o4

(a) Formation Emphasis (b) Plane Emphasis

Figure: Formation vs. Plane Emphasis: Scaling for Plane Emphasis
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» A modified collocation method with a segment-time switching
algorithm leads to highly constrained control solutions
» Generalized formulation allows users to input

> thruster capability and placement

» formation configuration, size, orientation, and rotation rate
> dynamic model and reference trajectory

> initial and terminal conditions
constrained formations

» Suited to aid in establishing requirements and capabilities for highly
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method

» This investigation explores the range of applications of the FSCT
> The applicability of the method extends to all engineering disciplines
» FSCT vs. Multiple Lyapunov Functions
> Optimal control laws may be extracted whose performance exceeds
those derived using a Lyapunov argument
» Multiple independent decision inputs managed simultaneously

» Solutions derived via the FSCT method are utilized in conjunction
with a hybrid system model predictive control scheme

» Optimized control schedules can be realized in the context of potential
perturbations or other unknowns

» Some continuous control input systems may be more accurately
described as systems ultimately relying on discrete decision variables

> Continuous control variables may often be extended into a set of
continuous state variables and discrete inputs

Stanton
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