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Figure: Formation Pointing

I Fixed size, shape, and orientation of the formation
I Fixed orientation of each member of the formation (deputy

spacecraft)
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Dynamical Sensitivities Near the Libration Points
I Previous investigations have focused on unconstrained continuous

control solutions
I Linear and nonlinear; feasible and optimal solutions
I Non-natural formations require extremely precise control

(< nm/s2 accelerations)
I These controls are impossible to implement with existing

actuator technology

Continuous Control

Finite Burn Implementation

Thrust Limitations

Min Thrust Mag.

Figure: Implementing a Continuous
Control Solution

I Cannot reproduce the fidelity of
continuous control

I Continuous control may even be
smaller than minimum thrust
bound
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Control Limitations for Deep-Space Imaging Formations

I Fixed thruster location on each spacecraft body
I Specified thrust acceleration magnitude

I Based on actuator performance capability
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Figure: Spacecraft Body
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Transcription Methods for Highly Constrained Problems

I The libration point formation problem motivates a unique
solution method

I Direct optimization methods serve as the foundation
I Modifications allow for creative treatment of difficult constraints

Solution methods are generalized for any number of dynamical models.
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Optimization via Direct Transcription
I Define a parameter vector consisting of state and control values

at nodes (discrete points in time)

x = [· · · yT (tj) · · · · · · uT (tj ) · · · t0 tf ]T

I Convert the Optimal Control Problem into a Parameter
Optimization Problem

Minimize

J = φ(t0,y0, tf ,yf ) +

Z tf

t0

L(t,y,u) dt ⇒

Minimize

F (x)

subject to

ẏ = f(t,y,u)

0 = ψ
0
(t0 ,y

0
)

0 = ψf (tf ,yf )

0 = β(t,y,u)

⇒

subject to

c(x) =
h

cTψ0
(x) cTψf

(x) cTβ (x) cTẏ (x)
iT

= 0

I Solve the resulting optimization problem with a standard
Nonlinear Programming (NLP) algorithm
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Multiple Segment Formulations
I Account for state or control discontinuities by dividing the

problem into segments
I Ideal treatment for finite burn control solutions

I Enforce appropriate constraints at the knots (segment
boundaries)

I Include knot times or segment durations in parameter vector
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Figure: An Example of Segments and Knots
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Impacts of Fixed Spacecraft Orientation
I A traditional finite burn formulation specifies thrust

(acceleration) magnitude, but not direction
I Assumes spacecraft can re-orient to deliver required thrust vector
I Control space U1: u

T
u = (T ∗)2

I If spacecraft orientation is predetermined (according to other
mission requirements)

I Actuator configuration must provide 3-axis maneuverability
I Assume thrusters are located on principal axes of body frame

B ≡ {x̂B, ŷB, ẑB}
I Control space U2: ui(ui − T ∗)(ui + T ∗) = 0, i = x̂B, . . . , ẑB

Fixed spacecraft orientation leads to discrete optimization, which
gradient-type NLP algorithms cannot support.

U1 U2

Figure: Control Spaces (a) U1 (Orientation Free), and (b) U2 (Orientation
Fixed)
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Managing Fixed Spacecraft Orientation
I Instead of optimizing control values (i.e. −T ∗, 0, T ∗), . . .

Prespecify control values by segment and

optimize switching times

I Knots are used to designate switching times in each control axis
I Segments are bounded by switches in any control
I The chronological ordering of knots changes at each iteration of

the optimization
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Figure: Conceptual Control Profile with Segment Divisions
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Costs and Constraints

I Constraints
I Initial time and states specified
I Final time and formation size and plane specified

I r∗
cd

= 1 km distance between chief and deputy, r∗
dd

= 1.73 km
distance between deputies

I Specified pointing r∗Ics = [1 0 0]

I State continuity (differential constraints) by segment
I State equality across segments (at knots)

I Weighted Costs
I Minimize thrust
I Minimize formation size deviations along trajectory
I Minimize formation plane deviations along trajectory

J = w1J1 + w2J2 + w3J3

F (x) = w1F1(x) + w2F2(x) + w3F3(x)
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Conclusions

I A modified collocation method with a segment-time switching
algorithm leads to highly constrained control solutions

I Generalized formulation allows users to input
I formation configuration, size, orientation, and rotation rate
I thruster capability and placement
I dynamic model and reference trajectory
I initial and terminal conditions

I Suited to aid in establishing requirements and capabilities for
highly constrained formations
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Varying Parameters to Obtain Different Solutions

I Final time

I Number of nodes and knots

I Initial guess

I Thrust magnitude

Table: Comparison of Solutions with Various Parameters

Baseline tf nk, tf Feasible Guess Thrust

nn 4 4 6 4 4
nk 10 10 20 10 10

tf (106 sec) 5.1183 10.2366 10.2366 5.1183 5.1183

Guess Baseline Baseline Baseline Feasible Baseline

wThrust
1

400
1

400
1

400
1

400
1

1600
wDistance 0.1 0.1 0.1 0.1 0.1
wPlane 1 1 1 1 1

Thrust (km/s2) 2.0e-12 2.0e-12 2.0e-12 2.0e-12 4.0e-12

n 2333 2333 6779 2333 2333
# Iterations 45 157 194 95 272
Computational Time (sec) 253.91 956.41 3000.35 575.88 1570.04
Weighted Thrust Cost 1.6233 5.8133 6.6838 10.9247 1.1324
Weighted Formation Cost 16.1818 634.3255 67.7092 35.5675 6.9286
Weighted Plane Cost 0.8591 84.6949 4.6852 4.9035 1.0632
Total Cost 18.6643 724.8338 79.0782 51.3956 9.1242

Stanton, Marchand Actuator Constrained Optimal Control 19


	Background
	Dynamic Sensitivities and Control Limitations

	Transcription Formulations
	Direct Collocation
	Multiple Segment Formulations
	Switching Segments and Time

	Applications
	Costs and Constraints
	Initial Guess
	Sample Solution

	Conclusions
	Appendix
	Appendix


