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Standard convolution is inherently limited for semantic / table
point cloud segmentation due to its isotropy about features. 60— Q\O

It neglects the structure of an object, and results in poor
object delineation and small spurious regions in the seg-
mentation result. We propose a novel graph attention con-
volution (GAC), whose convolution kernels can be dynam-
ically carved into specific shapes to adapt to the structure
of an object. Specifically, by assigning specific attentional
weights to different neighboring points, GAC is designed to
selectively focus on the most relevant part of them accord-
ing to their features. The shape of the convolution kernel
is then determined by the learned distribution of the atten-
tional weights. Though simple, GAC can capture the struc-
tured features of point clouds for fine-grained segmentation
and avoid feature contamination between objects. Theo-
retically, we provide a thorough analysis on the expressive
capabilities of GAC to show how it can learn about the
features of point clouds. Empirically, with the experiments
on challenging indoor and outdoor datasets, our proposed
GAC demonstrates state-of-the-art performance over exist-
ing deep learning methods on both datasets.

1. Introduction

Semantic segmentation of point clouds aims to assign
a category label to each point, which is an important yet
challenging task for 3D understanding. Recent approaches
have attempted to generalize convolutional neural networks
(CNNs) from grid domains (i.e., speech signals, images,
and video data) to unorganized point clouds [34, 44, 33, 35,
43,23, 26, 14]. However, due to the isotropy of their con-
volution kernels about the neighboring points’ feature at-
tributes, these works are inherently limited for the semantic
point cloud segmentation. Intuitively, the learned features
of two objects’ intersecting points (i.e., point 1 in Figure 1)
actually contain features of both objects rather than the ob-
ject they truly belong to, which results in ambiguous label
assigning.

In fact, standard convolution kernels work in a regular

e

table ©) chair
table

Figure 1. Illustration of the standard convolution and GAC on a
subgraph of a point cloud. Left: The weights of standard convo-
lution are determined by the neighbors’ spatial positions, and the
learned feature at point 1 characterizes all of its neighbors indistin-
guishably. Right: In GAC, the attentional weights on “chair” (the
brown dotted arrows) are masked, so that the convolution kernel
can focus on the points of table”.

receptive field for feature response, and the convolution
weights are fixed at specific positions within the convolu-
tion window. This kind of position-determined weights re-
sults in the isotropy of the convolution kernel about the fea-
ture attributes neighboring points. For instance, in Figure 1,
the learned feature at point 1 characterize its neighboring
“table” and “chair” indistinguishably. This limitation of
standard convolution neglects the structural connection be-
tween points belonging to the same object, and results in
poor object delineation and small spurious regions in the
segmentation result.

To address this problem, the key idea of this work is as
follows: Based on the position-determined weights of the
standard convolution, we learn to mask or weaken part of
the convolution weights according to the neighbors’ feature
attributes, so that the actual receptive field of the convolu-
tion kernel for point clouds is no longer a regular 3D box
but has its own shape to dynamically adapt to the structure
of the objects.

In this paper, we realize this idea by proposing a novel
GAC to selectively focus on the most relevant parts of the
neighbors in the receptive field. Specifically, inspired by
the idea of the attention mechanism [4, 13, 46], GAC is de-
signed to dynamically assign specific attentional weights to
different neighboring points by combining their spatial po-
sitions and features. The shape of the convolution kernel
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is then determined by the learned distribution of the atten-
tional weights.

Finally, like the standard convolution in grid domain, our
GAC can also be efficiently implemented on the graph rep-
resentation of a point cloud. Referring to image segmenta-
tion network, we train an end-to-end graph attention con-
volution network (GACNet) with the proposed GAC for se-
mantic point cloud segmentation.

Notably, postprocessing of CNNs’ outputs using condi-
tional random field (CRF) has practically become a de facto
standard in semantic segmentation [44, 5, 9, 2]. However,
by combining the spatial and feature constraints for atten-
tional weights generating, GAC shares the same properties
as CREF that encourages the label agreement between simi-
lar points. Thus, CRF is no longer needed in our GACNet.

Our contributions are as follows:

e We propose a novel graph attention convolution with
learnable kernel shapes to dynamically adapt to the
structure of the objects;

e We provide thorough theoretical and empirical analy-
sis on the capability and effectiveness of our proposed
graph attention convolution;

e We train an end-to-end graph attention convolution
network for point cloud segmentation with the pro-
posed GAC and experimentally demonstrate its effec-
tiveness.

2. Related Works

In this section, we will discuss the related prior works
within three main aspects: deep learning on point clouds,
convolution on graphs, and CRF in deep learning.

Deep learning on point clouds. While deep learning
has been successfully used in 2D images, there are still
many challenges to exploring its feature learning power
for 3D point clouds with irregular data structures. Re-
cent researches on this issue can be mainly summarized as
voxelization-based [9, 25, 48], multi-view-based [42, 24],
graph-based [7, 50, 41] and set-based methods [33, 35].

The voxelization-based method [33, 24, 49, 30] aims to
discretize the point cloud space into regular volumetric oc-
cupancy grids, so that the 3D convolution can be applied
similarly as the image. These full-voxel-based methods in-
evitably lead to information loss, as well as memory and
computational consumption as it increases cubically with
respect to the voxel’s resolution. To reduce the computa-
tional cost of these full-voxel-based methods, OctNet [37]
and Kd-Net [20] were designed to resolve them by skipping
the computations on empty voxels and focusing on infor-
mative voxels. The multi-view-based method [42, 24, 18]
represents the point cloud as a set of images rendered from

multiple views. It is still unclear how to determine the num-
ber and distribution of the views to cover the 3D objects
while avoiding mutual occlusions.

The graph-based method [7, 50, 41] first represents the
point cloud as a graph according to their spatial neighbors,
and then generalizes the standard CNNs to adapt to the
graph-structural data. Shen et al. [39] defined a point-set
kernel as a set of learnable 3D points that jointly respond to
the neighboring points according to their geometric affini-
ties measured by the kernel correlation. Recently, benefiting
from the development of deep learning on sets [33, 51, 36],
researchers constructed effective and simple architecture to
directly learn on point sets by first computing individual
point features from per-point multilayer perceptron (MLP)
and then aggregating all the features as a global presenta-
tion of a point cloud [35, 23, 12]. The set-based method can
be used directly on the point level and is robust to the rigid
transformation. However, it neglects the spatial neighbor
relation between points, which contains fine-grained struc-
tural information for semantic segmentation.

Convolution on Graphs. Related works about convolu-
tion on graphs can be categorized as spectral approaches
and non-spectral approaches. Spectral approaches work
with a spectral representation of graphs that relies on the
eigen-decomposition of their Laplacian matrix [19, 10].
The corresponding eigenvectors can be regarded as the
Fourier bases in the harmonic analysis of spectral graph the-
ory, and then, the spectral convolution can be defined as
the element-wise product of two signal’s Fourier transform
on the graph [8]. This spectral convolution does not guar-
antee the spatial localization of the filter and thus requires
expensive computations [40, 17]. In addition, as spectral
approaches are associated with their corresponding Lapla-
cian matrix, a spectral CNN model learned on one graph
cannot be transferred to another graph that has a different
Laplacian matrix.

Non-spectral approaches aim to define convolutions di-
rectly on a graph with local neighbors in a spatial or man-
ifold domain. The key to non-spectral approaches is to de-
fine a set of sharing weights applied to the neighbors of each
vertex [3, 47]. Duvenaud et al. [1 1] computed a weight ma-
trix for each vertex and multiplied it to its neighbors fol-
lowing a sum operation. Niepert et al. [32] proposed select-
ing and ordering the neighbors of each vertex in heuristi-
cally so that 1D CNNs can be used. Monti et al. [31] pro-
posed a unified framework that allows the generalization of
CNN s architectures to graph using fixed local polar pseudo-
coordinates around each vertex. Hamilton et al. [16] intro-
duced an inductive framework by applying a specific aggre-
gator over the neighbors, such as the max/mean operator or
a recurrent neural network (RNN). However, their convo-
lution weights are mainly generated according to the prede-
fined local coordinate system, while neglecting the structure
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Figure 2. Left: Illustration of GAC on a subgraph of a point cloud. The output is a weighted combination of the neighbors of point 1.
Right: The attention mechanism employed in GAC for dynamically attentional weights generating. It receives the neighboring vertices’
spatial positions and features as input, and then maps them to normalized attentional weights.

of the objects for semantic segmentation.

CRF in Deep Learning. CRF [22] possesses fine-
grained probabilistic modeling capability, while CNNs have
powerful feature representation capability. The combina-
tion of CRF and CNNs has been proposed in many image
segmentation works [5, 9, 2, 29]. Recently, referring to the
mean-field algorithm [21], the iteration of CRF inference
was modeled as a stack of CNN layers [52, 28]. For 3D
point cloud, following CRF-RNN [52], SegCloud [44] ex-
tends the implementation of CRF into 3D point clouds after
a fully CNNs. However, as CRF is applied as an individual
part following the CNNEs, it is difficult to explore the power
of the combination of CNNs and CRF.

3. Method

We propose a novel graph attention convolution (GAC)
for structured feature learning of 3D point cloud and
demonstrate its theoretical advantage (section 3.1). After-
wards, we construct an end-to-end point cloud segmentation
framework (section 3.2) with our proposed GAC. The de-
tails of converting point cloud into our needed graph pyra-
mid are provided in section 3.3.

3.1. Graph attention convolution

Consider a graph G(V, E) constructed from a given
point cloud P = {py,p2,...,pn} € R? according to their
spatial neighbors, where V. = {1,2,..., N} and E C
|[V| x |V] represent the set of vertices and edges respec-
tively and N is the number of vertices (points). Denote
N@G) = {j : (4,j) € E} U{i} (including itself) as the
neighbor set of vertex i. Let h = {hq, ha, ..., hy} be a set
of input vertex features, each feature h; € R¥ is associated
with a corresponding graph vertex ¢ € V, where I is the
feature dimension of each vertex.

Our GAC is designed to learn a function g : R — R,
which maps the input features h to a new set of vertex fea-
tures b’ = {h}, hy, ..., Ky} with h; € RE, while maintain-
ing the structural connection between these output features.
Meanwhile, unlike the relatively fixed neighboring relation

in image domain, the proposed GAC should also handle the
unordered and size-varying neighbors and retain the weight
sharing property.

To this end, we construct a sharing attention mechanism
a : R3*F 5 RX to focus on the most relevant parts of
the neighbors, so that the convolution kernel of GAC can
dynamically adapt to the structure of the objects. Specifi-
cally, the attentional weight of each neighboring vertex is
computed as follows:

&ij = a(Apij, Ahij), j € N(i) (1)

where Ap;; = p; — p;, and Ah;; = Mg(h;) — Mg(hs),
where M, : RF — RK is a feature mapping function
applied on each vertex, i.e., M, is a multilayer percep-
tron. ¢&;; = [&ij,ly Qij 2,5 ey dijj(] € R¥ indicates the at-
tentional weight vector corresponding to the feature vector
Mg (hj). The first term of « indicates the spatial relations
of the neighboring vertices, which helps to span the un-
ordered neighbors to meaningful patches. The second term
measures the feature distance between vertex pairs, which
guides to assign more attention to the similar neighbors.
The sharing attention mechanism can be implemented with
any differentiable architecture, we use the multilayer per-
ceptron in this work (as shown in Figure 2), which can be
formulated as follows:

a(Apij, Ahi;) = MLP([Api;||Ahij]) 2)

where || is the concatenation operation.
In addition, to handle the size-varying neighbors across

different vertices and spatial scales, the attentional weights

are normalized across all the neighbors of vertex ¢ as fol-

lows:

_ exp(Qij k)
2ien () €xp(@itk)

Qi ks 3)
where @;; 1, is the attentional weight of vertex j to vertex 4
at the k-th feature channel.

Therefore, the final output of our proposed GAC can be
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Figure 3. Flow chart of our GACNet constructed on the graph pyramid of a point cloud. GAC is applied on each scale of the graph pyramid
for local feature learning, followed by the graph pooling which reduce the resolution of point clouds in each feature channel. After that,
the learned features are interpolated back to the finest scale layer by layer.

formulated as follows:

hi= Y ojx My(hy) +b; )
JEN(4)

where * represents the Hadamard product, which produces
the element-wise production of two vectors, and b; € RX
is a learnable bias.

Relationship to standard convolution. The convolu-
tion weights of a standard convolution in the grid domain
are determined by the neighbors’ local spatial positions.
In our GAC, the attentional weights are generated accord-
ing to not only the neighbors’ spatial positions, but also
their learned features. Additionally, as GAC is designed
on the spatial neighbors of points, our GAC also retains the
key properties of the standard convolution in grid domain:
weight sharing and locality.

Relationship to prior works. Our proposed GAC is re-
lated to several prior works, mainly including GAT [46] and
PointNet [33].

Although we are inspired by the idea of attention mecha-
nism from GAT [46], our GAC is different: 1) GAC assigns
specific attentional weights to not only different neighbor-
ing points but also features at different channels, as the fea-
tures at different channels are hopefully independent; 2)
Compared to GAT, GAC incorporates the local spatial re-
lationship between neighboring points, which plays an im-
portant role in 3D shape analysis; 3) We generate the at-
tentional weights based on the feature differences rather
than the concatenation of two neighboring features, which
is more efficient and explicit to characterize the feature re-
lation.

PointNet [33] and its variations [35] have achieved
promising results for point cloud analysis by directly learn-

ing on point sets. The key to PointNet is the use of the
max operator (including an MLP). Actually, the max oper-
ator can be seen as an extreme case of GAC as “max atten-
tion”, which aggregates the neighboring features by taking
the max value at each feature channel. Thus, the max op-
erator tends to capture the most “special” features, which
damages the structural connections between the points of
an object and becomes sensitive to noise. Comparatively,
the proposed GAC aggregates the neighboring features by
assigning them specific attentional weights, so that to main-
tain the structure of the objects for fine-grained point cloud
segmentation.

Theoretical analysis. In this section, we explore the
expressive capabilities of our GAC to further understand
how GAC can efficiently learn the features of point clouds.
Specifically, we consider whether GAC can learn to pre-
cisely represent the neighboring features of each vertex.

Suppose the input vertex features h are bounded, i.e.,
h C [a,b]F, where a and b indicate the lower and upper
bound respectively. In fact, we can show that the proposed
GAC is capable of aggregating the entire neighbor informa-
tion of any vertex to an arbitrary precision:

Theorem 1. Let X = {S : S C [a,b]F and S is finite},
f X — Ris a continuous set function w.r.t Hausdorff
distance dg (-, -). Denote S; = {hj : j € N (i) € X as the
set of neighbor points of vertex i € V with arbitrary order.
Ve > 0, AK € Z, and parameter 0, such that for any i € V,

[£(Si) —(ga(Si)) <€ ®)

where ~y is a continuous function, and go(S;) € R¥ is the
output of our GAC.

The full proof is provided in the Appendix. Similar to
PointNet, in the worst case, our GAC can learn to divide
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the point cloud into a volumetric representation. In Point-
Net, the representation capability is limited by the output
dimension K. However, as the attention mechanism in our
GAC actually acts as a feature encoder, GAC is capable of
approximating the set function f even though K is not suf-
ficiently large.

3.2. Graph attention convolution network

In principle, our GAC is applicable to both point cloud
classification and semantic segmentation tasks, in this paper
we mainly focus on the latter one. We follow the common
image segmentation architecture to organize our network,
coined graph attention convolution network (GACNet). The
difference is that, our GACNet is implemented on the graph
pyramid of point cloud, as shown in Figure 3. At each
scale of the graph pyramid, GAC is applied for local fea-
ture learning. Then a graph pooling operation is followed
for resolution reducing in each feature channel. After that,
the learned features are interpolated back to the finest scale
layer by layer. Inspired by [27], features at the same scale
are skip-connected. Finally, considering the loss of feature
fidelity caused by the multiple graph pooling and feature in-
terpolation layers, an additional GAC layer is applied at the
finest scale for feature refinement.

Graph pooling. Graph pooling aims to output the aggre-
gated features on the vertices of a coarsened graph. Denote
h; as the output feature set at the [-th scale of the graph
pyramid, the input feature set h; 1 of the [ + 1-th scale is
calculated as follows:

h, = pooling{h; : j € Ny(v)} ©)

where h, € h;y1 and V;(v) indicates the neighbors of ver-
tex v at the [-th scale. The pooling function can be a max
or mean function, which corresponds to the max and mean
pooling, respectively [41].

Feature interpolation. To finally obtain the feature map
that has the same number of points as the original input, we
must interpolate the learned features from the coarsest scale
to the original scale step by step. Let h; be the learned fea-
ture set at the [-th scale of the graph pyramid, P, and P;_;
are the spatial coordinates set of the [-th and [-1-th scales,
respectively. To obtain the features of the [-1-th scale, we
simply find the three nearest neighbors of P;_; in P, and
calculate the weighted sum of their features. The combina-
tion weights are acquired according to the neighbors’ nor-
malized spatial distances [35].

GACNet vs. CREF. CRF has practically become a de
facto standard as the postprocessing of the CNNs’ outputs
in semantic segmentation tasks. The key idea of CRF is
to encourage similar points to share consistent labels. In-
tuitively, spatially close and appearance-similar points are
encouraged to be assigned the same label.

Actually, our proposed GAC shares the same character-
istics as the CRF model. Specifically, GAC assigns neigh-
bors specific attentional weights according to both their spa-
tial positions and feature attributes. The spatial positions
term encourages the spatially close points to share similar
features. While, the feature attributes term aims at leading
the information propagating between points with similar at-
tributes (i.e., low-level local features or high-level semantic
labels). Therefore, the CRF model is no longer needed in
our GACNet.

Additionally, compared to formulating the CRF model
as a recurrent network [52], our GACNet has several com-
pelling advantages. First, rather than using CRF for a post-
processing which is independent of the CNNs, GACNet is
equivalent to flattening the recurrent network of CRF into
each layer of our network, which directly guides the learned
features to maintain the structural connections for object
segmentation. Second, compared to the simple message
passing and compatibility transform in the class-probability
space of CRF [21, 52], GAC also has the capability to map
the input signal into a hidden feature space for further fea-
ture extraction. We experimentally evaluate these claims in
section 4.3.

3.3. Graph pyramid construction on a point cloud

In this section, we describe how we construct the graph
pyramid on point clouds according to their neighbors.
Specifically, we search the spatial neighbors for all points
and link them as a graph. The graph pyramid with different
spatial scales is constructed by alternately applying graph
construction and coarsening techniques. Notably, the co-
variance matrix of each point’s neighbors at the finest scale
are recorded during the graph construction process, and its
eigenvalues are used as local geo-feature. The initial fea-
ture vector of a point is composed of height, RGB, and geo-
feature.

Graph construction on a point cloud. For given point
cloud P, which records the spatial coordinates of the points,
we construct a directed graph G(V, E). Here, each vertex
is associated with a point, and the edges are added between
the point and its K g neighbors. In our experiments, the
K neighbors are randomly sampled within radius p, which
shows better performance than finding their K nearest
neighbors as it is unrelated to the density of the point cloud.

Graph coarsening. Similar to pyramid construction in
the image domain, we subsample the input point cloud P
with a set of ratios with the furthest point sampling algo-
rithm [35]. Denote the subsampled point clouds as P =
Py, P1,, Pr, where L is the number of scales for subsam-
pling and Py = P. For each P, = 0,, L, a corresponding
graph G;(V}, E;) can be constructed as described above.
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559 4. Experiments this experiment, we slice our test room into 3.6m by 3.6m 613
560 . . blocks with a maximum of 4096 x9 points. Each block is 614
561 Fn this secqon, we evaluate our proposed GACNet on individually constructed as a graph pyramid according to 615
. various 3D point cloud segmentation benchmarks, includ- section 3.3 for training or testing. 16
563 ing the Stanford Large-S.cale 3D Indoor Spaces (S3DIS) [ ] The quantitative evaluations of the experimental results 617
64 dataset and the Sen?anFlc3D [15] dataset. Three metrics are provided in Table 1. We can see that our GACNet 18
565 were used to quantlta.tlvely.evaluate the.perform.ance of performs better than other competitive methods in most 619
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567 union (IoU), mean IOU. of each class (mloU), and overall dow, table, sofa, and board. In the S3DIS dataset, the board 621
68 accuracy (OA). In adqmon, the performance of severa} key and window are pasted onto the wall and difficult to de- o
569 componenFs of GA.C is further analyzed. Our Cofle will be lineate geometrically, but our proposed GACNet can still 623
70 made publicly available to encourage further studies. segment them out according to their color features. As the 624
o 4.1. Indoor segmentation on the S3DIS dataset convolution V.Veights. (.)f GAC are assigned accordir.lg to not 625
572 only the spatial positions but also the feature attributes of 626
573 The S3DIS dataset contains 3D RGB point clouds from the neighboring points, the proposed GACNet is able to cap- 627
574 six indoor areas that originate from three different build- ture the discriminative feature of point clouds even though 628
575 ings. Each point is annotated with one of the semantic la- the spatial geometry is lost or weak. 629
576 bels from 13 categories. For a principled eva}luatlon, we fql- 4.2. Outdoor segmentation on the Semantic3D 630
577 low [44, 33, 23] to choose Area 5 as our testing set and train 631
578 our GACNet on the rest to ensure that the training model dataset 632
579 does not see any part of the testing area. Notably, Area 5 The Semantic3D dataset is currently the largest avail- 633
580 is not in the same building as other areas, and there exist able LiDAR dataset, with over 4 billion points from a va- 634
581 some differences between the objects in Area 5 and other riety of urban and rural scenes. Each point has RGB and 635
582 areas. This across-building experimental setup is better for intensity values and is labeled with one of 8 categories: 636
583 measuring the model’s generalizability, while also brings man-made terrain, natural terrain, high vegetation, low veg- 637
584 challenges to the segmentation task. etation, buildings, hard scape, scanning artefacts, and cars. 638
585 To prepare our training data, we first split the dataset Different from the S3DIS dataset, the Semantic3D dataset 639
586 room by room and then sample them into 1.2m by 1.2m contains outdoor scenes that have relatively larger objects. 640
587 blocks with a 0.1m buffer area on each side, points lying in To adapt to the size of objects, the sampled blocks for the 641
588 the buffer area are regarded as the contextual information Semantic3D dataset is set to be 4m by 4m while maintaining 642
589 and are not linked to the loss function for model training or the same maximum number of 4096 points. We provide the 643
590 class prediction. In addition, for training convenience, the evaluation results on the reduced-8 challenge of the bench- 644
591 points in each block are sampled into a uniform number of mark in Table 2. 645
592 4096 points. During the testing phase, blocks can be any Additionally, we list the overall accuracy and mean IoU 646
593 size depending on the memory of the computing device. In of our GACNet compared to other state-of-the-art algo- 647
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I man-made terrain

I natural terrain

Figure 4. Illustration of the easily-confused area (in the red circle)
which is close to the scanning station (yellow star) and similar
to natural terrain in color and geometry but is actually man-made
terrain. However, this kind of area does not appear in our training
set and is difficult to segment.

rithms. In general, our performance is on par with or
better than other competitive algorithms for many classes.
Notably, in the semantic3D dataset, most objects, such as
car, hard scape, building, and low/high-vegetation, are frag-
mented and incomplete due to the mutual occlusion among
points. However, our GACNet can still learn to capture their
discriminative features for segmentation owing to the pow-
erful structured feature learning capability of GAC. Mean-
while, we also notice that the man-made terrain and the nat-
ural terrain are relatively difficult to split for GACNet in
this experiment, as there are a large number of points in an
easily-confused area (as shown in Figure 4) and that does
not appear in the training set.

4.3. Ablation studies and analysis

To better understand the influence of various design
choices made in our framework, we further conduct several
ablation studies to demonstrate the effectiveness of GAC,
explore the effect of spatial positions and feature attributes
in GAC, compare GAC with CRF-RNN [52], and investi-
gate the influence of initial features of points.

Effectiveness of GAC. To further understand the effec-
tiveness of our proposed GAC, we compare it with the max
operator (including an MLP) from PointNet [33], which
has achieved promising results by directly learning on point
sets. Specifically, we only replace the attention mechanism
in GAC with the max operator while keeping the rest un-
changed in our GACNet. The testing results on the S3DIS
dataset are provided in Table 3. We can see that the mean
ToU of our GAC is 4.43% higher than the max operator,
which shows that our GAC has more advantages in discrim-
inative feature learning than the max operator. Actually,
the max operator in PointNet [33] acts as a ”max attention”
mechanism that tends to characterize the contour of point
sets in the feature space while damaging the structural con-
nections between the points of an object. It results in the

Ablation studies ‘ OA mloU
Max operator 85.47 58.42
Spatial positions only | 87.44 60.41
Feature attributes only | 87.28 60.25
CRF-RNN (1 iteration) | 87.12 61.70
CRF-RNN (3 iteration) | 87.86 61.97
CRF-RNN (5 iteration) | 87.46 61.83
No RGB 86.06 60.16

No geo-feature 86.17 60.37
Height only 83.56 58.96
GACNet 87.79 62.85

Table 3. Ablation studies on the S3DIS test set.

max operator being good at the object classification task but
poor at segmentation where the border of the object needs
to be finely delineated.

Spatial positions and feature attributes. In our GAC,
the neighboring points’ spatial positions and feature at-
tributes serve as spatial and feature guides to dynamically
generate their attentional weights. To explore their respec-
tive roles, we designed two other variations of GAC that
only use the spatial positions and the feature attributes.
Their testing results on the S3DIS dataset are reported in Ta-
ble 3 for comparing convenience. The experimental results
show that, both spatial positions and feature attributes have
played important roles in GAC for semantic point cloud seg-
mentation. The spatial positions span the unordered neigh-
boring points to meaningful object surfaces, while the fea-
ture attributes further guide GAC to adapt to the structure of
an object by assigning specific weights to different neigh-
bors. Without the constraint of the spatial positions, points
will only exchange information with neighbors with similar
initial features, which causes the final features to be piece-
meal and difficult to form meaningful objects. Without the
guidance of the feature attributes, convolution kernels can
hardly distinguish where the object’s border is, and the cur-
rent points are easily contaminated by the neighboring ob-
jects (as shown in Figure 5).

CRF-RNN. As described in section 3.2, our GACNet ac-
tually shares the same characteristics with the CRF model,
which encourages feature and label agreement between sim-
ilar points. To experimentally verify this claim, we remove
the last GAC layer in our GACNet and replace it with the
CRF-RNN [52] using different iterations. Specifically, we
use the Gaussian kernels from [21] for the pairwise poten-
tials of CRF. Their testing results on the S3DIS dataset are
also provided in Table 3 for comparing convenience. We
can see that, with one iteration, the CRF-RNN has basically
converged, and more iterations do not result in considerably
increased accuracy. Since our GACNet has shared the same
characteristics of CRF in each layer of the network (section
3.2), the recurrence of CRF is no longer needed.
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Figure 5. Illustration of the role of feature attributes in our GAC. Figures from left to right are the input point cloud, the predicted result
by GACNet, the predicted result by GACNet without the feature attributes, and the ground truth. We can see that, with the guidance of the
feature attributes, the objects are more clearly delineated and more regular.
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Figure 6. Training accuracy with or without geo-feature.

Influence of initial features. In the above experiments
on the S3DIS dataset, the initial feature vector of each point
is composed of height, RGB, and geo-feature. In this sec-
tion, we provide additional ablation studies to further under-
stand the performance of our GACNet with different initial
input features. We design three comparison experiments
where we remove the RGB information, the geo-feature,
and both of them, respectively. Their testing results on
the S3DIS dataset are provided in Table 3. By compari-
son, their mIoU drop by 2.69%, 2.48%, and 3.89% respec-
tively. However, compared to the relatively large accuracy
difference in the testing phase, we also notice that the train-
ing accuracy without geo-feature actually shows little dif-
ference from our standard GACNet (as shown in Figure 6).
The initial geo-feature serves as the low-level universal fea-
tures and is designed according to priori knowledge, which
is useful to improve the generalization ability of the net-
work.

4.4. Robustness test and stress test

We compare our GAC with the max operator [33] on ro-
bustness against random Gaussian noise, and resistance on
missing data. However, as additional noise will change the
class attribute of the point in the segmentation task, we turn
to a classification task for our robustness and stress test. We
realize this work on the ModelNet40 [49] shape classifica-
tion benchmark. There are 12,311 CAD models from 40
man-made object categories, splitting them into 9,843 for

90 —~+GAC 90 —+GAC
g% oM g - Max
g ]

g % g %
< 2 < 2

0 02 04 06 08 09 0
Missing data ratio

0.02 0.04 0.06 0.08 0.1
Perturbation noise std

Figure 7. Robustness and stress test. GAC and Max indicate that
we use graph attention convolution and the max operator in the
classification network respectively.

training and 2,468 for testing. We uniformly sample 1024
points on their mesh and normalize them into a unit sphere
as inputs for our framework. Our classification framework
is built by simply replacing the feature interpolation lay-
ers in GACNet with a global pooling layer, and the input
of the network is just the height information of each point.
All models are trained without data augmentation. During
the robust test, input points are added with Gaussian noise
with a series of standard deviations and zero means. For
the stress test, a series of ratios of input points are randomly
dropped out. From Figure 7, we can see that the max op-
erator is more sensitive to noise because it actually tends to
capture the most “special” feature (probably noise), while
GAC is robust to noise due to its spatial and feature con-
straints. For missing data, the accuracy of GAC drops by
13.66% when the missing ratio is 40%, while the max oper-
ator drops by 26.48%.

5. Conclusion

We propose a novel graph attention convolution (GAC)
with learnable kernel shapes for structured feature learning
of 3D point cloud. Our GAC is a universal and simple mod-
ule maintaining the weight sharing property of the standard
convolution and can be efficiently implemented on graph
data. We have applied our GAC to train an end-to-end net-
work for semantic point cloud segmentation. Both theo-
retical analysis and empirical experiments have shown the
effectiveness and advantage of our proposed GAC.

CVPR
#4649

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863



CVPR
#4649

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

CVPR 2019 Submission #4649. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]
(17]

(18]

I. Armeni, O. Sener, A. R. Zamir, H. Jiang, 1. Brilakis,
M. Fischer, and S. Savarese. 3d semantic parsing of large-
scale indoor spaces. In CVPR, pages 1534-1543, 2016. 6
A. Arnab, S. Jayasumana, S. Zheng, and P. H. S. Torr. Higher
order conditional random fields in deep neural networks. In
ECCV,2016. 2,3

J. Atwood and D. Towsley. Diffusion-convolutional neural
networks. In NIPS, 2015. 2

D. Baddanau, K. Cho, and Y. Bengio. Neural machine trans-
lation by jointly learning to align and translate. In ICLR,
2015. 1

L. Bao, Y. Song, Q. Yang, and N. Ahuja. An edge-preserving
filtering framework for visibility restoration. In /CPR, 2012.
2,3

A. Boulch, J. Guerry, B. Le Saux, and N. Audebert. Snapnet:
3d point cloud semantic labeling with 2d deep segmentation
networks. Computers and Graphics (Pergamon), pages 189—
198, 2018. 6

M. M. Bronstein, J. Bruna, Y. Lecun, A. Szlam, and P. Van-
dergheynst. Geometric deep learning: Going beyond eu-
clidean data. IEEE Signal Processing Magazine, 2017. 2

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spec-
tral networks and locally connected networks on graphs.
arXiv:1312.6203,2013. 2

L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Deeplab: Semantic image segmentation with
deep convolutional nets, atrous convolution, and fully con-
nected crfs. TPAMI, 40(4):834-848, 2018. 2, 3

M. Defferrard, X. Bresson, and P. Vandergheynst. Convolu-
tional neural networks on graphs with fast localized spectral
filtering. In NIPS, 2016. 2

D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre,
R. Gmez-Bombarelli, T. Hirzel, and A. Aspuru-Guzik. Con-
volutional networks on graphs for learning molecular finger-
prints. In NIPS, 2015. 2

F. Engelmann, T. Kontogianni, A. Hermans, and B. Leibe.
Exploring spatial context for 3d semantic segmentation of
point clouds. In ICCV Workshop, pages 716-724,2017. 2

J. Gehring, M. Auli, D. Grangier, and Y. N. Dauphin. A
convolutional encoder model for neural machine translation.
arXiv:1611.02344,2016. 1

B. Graham, M. Engelcke, and L. van der Maaten. 3d se-
mantic segmentation with submanifold sparse convolutional
networks. In CVPR, 2018. 1

T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner,
K. Schindler, and M. Pollefeys. Semantic3d.net: A new
large-scale point cloud classification benchmark. In ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 2017. 6

W. L. Hamilton, R. Ying, and J. Leskovec. Inductive repre-
sentation learning on large graphs. In NIPS, 2017. 2

M. Henaft, J. Bruna, and Y. LeCun. Deep convolutional net-
works on graph-structured data. arXiv:1506.05163, 2015. 2
E. Kalogerakis, M. Averkiou, S. Maji, and S. Chaudhuri. 3d
shape segmentation with projective convolutional networks.
In CVPR, pages 6630-6639, 2017. 2

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]

T. N. Kipf and M. Welling. Semi-supervised calssification
with graph-concoluational neural networks. In ICML, 2017.
2

R. Klokov and V. Lempitsky. Escape from cells: Deep kd-
networks for the recognition of 3d point cloud models. In
CVPR, pages 863-872, 2017. 2

P. Krihenbiihl and V. Koltun. Efficient inference in fully
connected crfs with gaussian edge potentials. In NIPS, pages
109-117,2012. 3,5,7

J. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional
random fields: Probabilistic models for segmenting and la-
beling sequence data. In /ICML, pages 282-289, 2001. 3

L. Landrieu and M. Simonovsky. Large-scale point cloud
semantic segmentation with superpoint graphs. In CVPR,
2018. 1,2,6

T. Le, G. Bui, and Y. Duan. A multi-view recurrent neural
network for 3d mesh segmentation. 2017. 2

T. Le and Y. Duan. Pointgrid: A deep network for 3d shape
understandings. In CVPR, 2018. 2

Y. Li, S. Pirk, H. Su, C. R. Qi, and L. J. Guibas. Fpnn: Field
probing neural networks for 3d data. In NIPS, 2016. 1

T.-Y. Lin, P. Doll, R. Girshick, K. He, B. Hariharan, and
S. Belongie. Feature pyramid networks for object detection.
In CVPR, pages 936-944, 2017. 5

Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang. Deep learn-
ing markov random field for semantic segmentation. TPAMI,
40(8):1814-1828, 2018. 3

P. Luo, X. Wang, and X. Tang. Pedestrian parsing via deep
decompositional network. In ICCV, pages 2648-2655, 2013.
3

D. Maturana and S. Scherer. Voxnet: A 3d convolutional
neural network for real-time object recognition. Intelligent
Robots and Systems (IROS), pages 922-928, 2015. 2

F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and
M. M. Bronstein. Geometric deep learning on graphs and
manifolds using mixture model cnns. In CVPR, pages 5425—
5434,2017. 2

M. Niepert, M. Ahmed, and K. Kutzkov. Learning convolu-
tional neural networks for graphs. In ICML, 2016. 2

C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
In CVPR,2017. 1,2,4,6,7, 8

C. R. Qi, H. Su, M. Niessner, A. Dai, M. Yan, and L. J.
Guibas. Volumetric and multi-view cnns for object classifi-
cation on 3d data. In CVPR, pages 5648-5656, 2016. 1
C.R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space.
In NIPS, 2017. 1,2,4,5

S. Ravanbakhsh, J. Schneider, and B. Poczos. Deep learning
with sets and point clouds. arXiv:1611.04500, 2016. 2

G. Riegler, A. O. Ulusoy, and A. Geiger. Octnet: Learning
deep 3d representations at high resolutions. In CVPR, pages
6620-6629, 2017. 2

X. Roynard, J.-E. Deschaud, and F. Goulette. Classification
of point cloud scenes with multiscale voxel deep network. In
3DV, 2018. 6

CVPR
#4649

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971



CVPR
#4649

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

(39]

[40]

(41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

(49]

(501

(51]

[52]

CVPR 2019 Submission #4649. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Y. Shen, C. Feng, Y. Yang, and D. Tian. Mining point cloud
local structures by kernel correlation and graph pooling. In
CVPR, 2018. 2

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst. The emerging field of signal processing
on graphs: Extending high-dimensional data analysis to net-
works and other irregular domains. /EEE Signal Processing
Magazine, 30(3):83-98, 2012. 2

M. Simonovsky and N. Komodakis. @ Dynamic edge-
conditioned filters in convolutional neural networks on
graphs. In CVPR, 2017. 2,5

H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-
view convolutional neural networks for 3d shape recognition.
In ICCV, 2015. 2

M. Tatarchenko, J. Park, V. Koltun, and Q.-Y. Zhou. Tangent
convolutions for dense prediction in 3d. In CVPR, 2018. 1
L. P. Tchapmi, C. B. Choy, I. Armeni, J. Gwak, and
S. Savarese. Segcloud: Semantic segmentation of 3d point
clouds. In 3DV, 2017. 1, 2,3, 6

H. Thomas, J.-E. Deschaud, B. Marcotegui, F. Goulette,
and Y. L. Gall. Semantic classification of 3d point clouds
with multiscale spherical neighborhoods. arXiv:1808.00495,
2018. 6

P. Velickovié, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio. Graph attention networks. In /CLR, 2018. 1,
4

N. Verma, E. Boyer, and J. Verbeek. Dynamic filters in graph
convolutional networks. arXiv:1706.05206, 2017. 2

P-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong.
O-cnn: Octree-based convolutional neural networks for 3d
shape analysis. ACM Transactions on Graphics, 36(4), 2017.
2

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, and X. Tang. 3d
shapenets: A deep representation for volumetric shapes. In
CVPR, pages 1912-1920, 2015. 2, 8

L. Yi, H. Su, X. Guo, and L. Guibas. Syncspeccnn: Syn-
chronized spectral cnn for 3d shape segmentation. In CVPR,
2017. 2

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos,
R. Salakhutdinov, and A. Smola. Deep sets. In NIPS, 2017.
2

S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,
Z. Su, D. Du, C. Huang, and P. H. S. Torr. Conditional
random fields as recurrent neural networks. In ICCV, pages
1529 - 1537, 2015. 3, 5,7

10

CVPR
#4649

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079



