PARCEL.: Proxy Assisted BRowsing in Cellular networks
for Energy and Latency reduction

Ashiwan Sivakumart
Seungjoon Lee**

Shankaranarayanan P Nt
Sanjay Raof

Vijay Gopalakrishnant
Subhabrata Sent

TPurdue University, *AT&T Labs - Research, *Two Sigma

ABSTRACT

Today’s web page download process is ill suited to cellular
networks resulting in high page load times and radio energy
usage. While there have been notable prior attempts at
tackling the challenge with assistance from proxies (cloud),
achieving a responsive and energy efficient browsing expe-
rience remains an elusive goal. In this paper, we make a
fresh attempt at addressing the challenge by proposing PAR-
CEL. PARCEL splits functionality between the mobile de-
vice and the proxy based on their respective strengths, and
in a manner distinct from both traditional browsers and ex-
isting cloud-heavy approaches. We conduct extensive eval-
uations over an operational LTE network using a prototype
implementation of PARCEL. Our results show that PAR-
CEL reduces page load times by 49.6%, and radio energy
consumption by 65% compared to traditional mobile web
browsers. Further, our results show that PARCFEL contin-
ues to perform well under client interactions, owing to its
judicious functionality split.

Categories and Subject Descriptors

C.4 [Performance of systems|: Design studies; Measure-
ment techniques; C.2.2 [Computer communication net-
works]|: Network Protocols—Applications

Keywords

Proxy-assisted Browsing; Mobile Web; Energy Consump-
tion; Cellular Networks; Smartphones; Cloud Browsers; Web
Optimization

1 Introduction

Along with the spread of higher speed cellular technologies
like 3G and LTE, the past few years have witnessed an ex-
plosive growth in mobile Internet data traffic (projected to
increase 11-fold between 2013 and 2018 [4].) Web brows-
ing is a key activity on mobile devices, accounting for more

*This work was done when the author was employed at
AT&T Labs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

CoNEXT’ 14, December 2-5, 2014, Sydney, Australia.

Copyright 2014 ACM 978-1-4503-3279-8/14/12:$15.00.
http://dx.doi.org/10.1145/2674005.2675004.

cellular traffic than any other application, excluding multi-
media streaming [24]. There exists tremendous interest in
improving user’s Quality of Experience (QoE) for the mo-
bile web. Key challenges include the resource constraints of
common cellular devices like smartphones and tablets, and
the radio access network (RAN). While processing capabili-
ties of mobile devices have dramatically improved in recent
years, mobile device battery energy seems likely to remain
a major resource limitation for the foreseeable future.

Several factors make current approaches to web down-
loads ill-suited to cellular networks (§2). On the one hand,
web pages consist of hundreds of objects spread over multi-
ple server domains, and downloading pages involves a large
number of HTTP request-response interactions. On the
other hand, cellular networks involve large round-trip times
resulting in substantially longer download times compared
to wire-line. The delays are exacerbated since initial ob-
jects fetched during the download (e.g., HTML, style sheets
(CSS), JavaScript (JS)) may need to be processed to iden-
tify what objects to fetch subsequently. Higher download
latencies and frequent short data transfers in turn leave the
radio in a high power state for longer duration, resulting in
increased cellular radio energy usage [25].

Some notable prior attempts have been made in tackling
the challenges associated with web downloads on cellular
networks [2, 5, 6, 8, 21, 35, 36] by leveraging proxies to en-
hance performance.! However, while important first steps,
these prior efforts fall short in several ways (e.g., real-world
web page design and user interactivity can result in some
of these approaches increasing user perceived latencies and
radio energy usage [32]), as we describe in detail in §3.

In this paper, we seek to better realize the potential of
such proxy-assisted approaches by addressing the question:
what should be the right division of web download function-
ality between the mobile device and the cloud?. Our primary
goal is to improve user experience by reducing page down-
load times and radio energy consumption over the entire
user session, covering initial page download as well as sub-
sequent user interactions with the page. We focus on radio
energy consumption, since studies show that the power con-
sumed by the cellular radio interface contributes a consid-
erable fraction (1/3 to 1/2) of the total device power con-
sumption for normal workloads [26].

To this end, we present PARCEL, a new proxy-assisted
mobile web-browsing system (§4). The key ideas underlying

!By proxies, we refer to well-provisioned servers with good
network connectivity. We also use the terms proxy and cloud
interchangeably.

PARCEL are: (i) perform object identification and down-
load at the proxy, leveraging its superior network connectiv-
ity; (ii) support interactive operations locally at the client to
avoid network communications to the extent possible; and
(iii) support cellular friendly data-transfers by greatly reduc-
ing the number of HTTP request-response interactions, and
by providing the proxy with the flexibility to push objects
in a manner that balances latency and radio energy use.

Realizing PARCEL requires us to address a number of im-
portant system issues. To demonstrate our ideas, we have
implemented an initial custom Android-based browser pro-
totype of PARCEL using the Webview library, addressing
many pragmatic considerations (§5). We discuss how the
flexibility of data transfer provided by PARCFEL may be ex-
ploited by proposing multiple scheduling strategies and an-
alyzing the performance trade-off between page load time
and radio energy usage (§6).

We validate PARCEL through extensive evaluations in
live LTE network settings, and compare its performance to
both a traditional web browser, and an existing cloud-heavy
browser. We also evaluate multiple policies for scheduling
data transfers from the proxy to the client within the PAR-
CFEL framework. Our evaluations employ a carefully crafted
methodology to ensure that the performance comparisons
are not affected by variability in LTE signal strengths or the
web pages themselves (§7).

Our results are promising (§8). They show that PAR-
CEL can reduce web-page latencies by 49.6% and radio en-
ergy consumption by 65% on average compared to conven-
tional web-browsers. Further, unlike a popular cloud-heavy
browser, PARCEL continues to perform well with client in-
teractions. Overall, these results indicate that judiciously
splitting functionality between the mobile device and the
proxy can substantially enhance user browsing experience
in cellular network settings, and show that PARCEL is a
promising step towards this end.

2 Web download in cellular networks

In this section, we discuss why the web download process is
a poor fit for cellular networks.

2.1 Modern web-pages and pageload process

Modern web-pages are complex constructs, easily compris-
ing of tens to hundreds of static and dynamic objects (ban-
ners, images, style-sheets, multiple different types of JS files,
etc.) from multiple different domains. An analysis of the
Alexa top-500 web pages indicates that 40% had at least
100 objects (20 JS files). Further, the individual objects are
typically small (a few KB) to moderately sized (a few MB).
Across all the pages, the 95", 80" and 50" percentile of
the object sizes were 386,107 and 18 KB respectively.
Figure 1 depicts the various stages involved in loading a
page at a typical mobile browser. The browser first initi-
ates a DNS lookup to resolve the domain address for the
main page URL, and fetches the main page from the con-
tent web server using the HT'TP protocol. It then begins
parsing the page and dynamically builds and updates the
Document Object Model (DOM) tree (an in-memory data
structure to represent the parsed nodes in a page). As it
encounters new objects in the page that are not available lo-
cally, it initiates new HTTP requests to the relevant servers
for those objects. There are inter-dependencies among ob-
jects — e.g., downloaded JS files have to be executed, which

L

Client DNS S1 S2 S3

—Lookup St+—>|

(«—S1 Rsp.—

GET Req:—>|

GET Rsp—{
Time to
parse

p GET Req—>|
‘\{—Lookup S2—»
—Lookup S3—»
GET Rsp——
[«—S2 Rsp—
[«—S3 Rsp——
GETReg—>| .o Reqes]
GET Rsp— -
GET Rsp—]

Figure 1: Web-page load process in mobile networks.

in turn may lead to additional new objects (including more
JS files) being downloaded. The resulting network traffic
pattern typically consists of a large number of short data
transfers, related to (i) establishing distinct TCP connec-
tions per-domain; (ii) DNS lookups to resolve the poten-
tially large number of servers involved; and (iii) a HTTP
request /response associated with each object.

Measuring page latencies: We next discuss typical met-
rics used to quantify web page download latencies. An On-
load event is triggered by the browser when it has received
sufficient objects for rendering an initial version of the page.
The time from the request initiation to the time of the On-
load event, is referred to as the Onload time (OLT) of the
web page. OLT is a commonly used Key Performance In-
dicator (KPI) for measuring the latency of the page load
process and indicates the initial responsiveness of the page.
Note that objects can be requested by the page even after the
OLT [33]. This happens due to the presence of asynchronous
JS files, often used for displaying independent sections of the
page like advertisements and chat widgets in parallel to the
main web page. We define the time required to fetch all ob-
jects required by the page beyond OLT and in the absence
of any user interaction as the Total pageload time (TLT).

RRC_CONNECTED
4 7

Continuous
Reception

7

RRC_IDLE

-
_ _ _, Demotion due to
idle timer expiry

Figure 2: LTE RRC State Machine

Promotion due
to data transfer

2.2 Cellular network characteristics

A key determinant of performance in cellular networks is
how the application traffic interacts with the LTE Radio

Resource Control (RRC) State Machine [11,18] The device
consumes very different levels of radio energy in the differ-
ent RRC states(Figure 2). The device has to be in the high-
est energy state (Continuous Reception or CR in the CON-
NECTED state) for any data transfer to occur. The Discon-
tinuous Reception (DRX) modes enable the device to trade
off some responsiveness for energy savings (different trade-
offs for Short and Long DRX) within the CONNECTED
state: it actively polls for data transfers periodically and
turns off the radio at other times, thereby consuming less
power compared to CR, but higher power than the IDLE
state. For the radio to transition to IDLE, typically the de-
vice has to be idle for > 10 sec. If the device is in IDLE
or DRX states, and a packet needs to be sent/received, the
device needs to get promoted to the CR state. Research has
shown that small data transfers on LTE are very costly and
large data bursts are much more energy efficient as a device
in the CR state consumes significant base energy even if it
uses a small fraction of the available network bandwidth [25].

— Wired Download
““““ Cellular Download

(‘i é l}i lé 14
Median OLT (sec)

Figure 3: Median OLTs on Cellular and Wired
2.3 Page load performance in cellular networks

The interplay between web-page downloads and cellular net-
work characteristics leads to two key concerns:

e High latencies: Figure 3 shows a CDF of the median OLT
for a subset of the Alexa top-500 web-pages when down-
loaded using an LTE network and a wired network. The
OLT with LTE is > 6 sec for 50% of the pages, with the
maximum being about 13 sec. For the wired network, the
corresponding values are 1.1 sec and 4 sec. Web downloads
on LTE networks incur high latencies since typical RTTs
for LTE are high (of the order of 70 — 86 msec. [18]), and
since initial objects fetched during the download must be
processed to determine what objects to subsequently fetch.
The use of traditional web proxies [9] partially ameliorates
the situation since DNS resolutions are performed by the
proxy. However, the solution still involves a large number of
short data transfers due to the request-response semantics
of the HT'TP protocol.

e High radio energy usage: The typical web download pat-
tern of a large number of short data transfers over several
seconds means the device has to stay in CONNECTED state
for an extended period of time, frequently transitioning to
CR. Because of the energy characteristics of the RRC state
machine described above, such a traffic pattern can use up
a lot of radio energy.

3 Related Work

There has been interest in the industry [2,5,6,8,17] and
academia [21,35,36] to address the limitations of web brows-

ing in general and cellular networks in particular. The tech-
niques used may be classified as:

Offloading processing to the cloud: Many existing solu-
tions have advocated a cloud-heavy, thin-client approach [6,
8,36] with the cloud performing most of the compute in-
tensive tasks including parsing and rendering web pages,
and JS execution. This approach has the potential to re-
duce CPU usage on the mobile device as well as device CPU
energy consumption, since most processing is done on the
cloud. However, real world web page design and cellular
network characteristics have meant that the performance of
these browsers has not lived up to their promise. For in-
stance, recent work [32] shows that interactive user actions
(e.g., mouse hover, button clicks) with cloud-heavy browsers
incur higher latency and device radio energy consumption
than traditional browsers. This is because while conven-
tional browsers execute JS associated with the events locally,
cloud-heavy approaches require communicating these events
back to the cloud, executing JS remotely and transferring
the results back to the client. Consequently, the total de-
vice energy consumption with these browsers may in fact be
higher than conventional browsers. We present a detailed
example in § 8.2 to demonstrate these limitations of cloud-
heavy approaches and how PARCEL performs better. Our
approach with PARCEL is not to blindly offload processing
to the cloud, but rather determine the right split in func-
tionality between the cloud and the device.

Splitting functionality between cloud and device:
Silk [2] claims to run browser functions both on the device
and in the cloud. Since Silk is closed source, little is publi-
cally known about what functions Silk offloads to the cloud
or under what conditions. Moreover, in real-world testing,
several sites have recommended disabling cloud-based accel-
eration in Silk to improve page loading speed [1,3]. A recent
position paper [35] suggests off-loading partial logic to the
cloud, with the cloud sending back a page that consists of
processed and unprocessed portions back to the mobile de-
vice. The paper, however, does not provide details on how to
achieve this. In contrast, we present a detailed design and
implementation, and present comprehensive evaluations of
our approach.

Data transformation and compression: A number of
browsers [2, 5, 6] offer support for data transformation and
compression in the cloud, with the primary focus being to
reduce the amount of data downloaded. While useful, these
techniques do not address the causes for high page load la-
tencies (multiple RTTs associated with per-object http re-
quest response semantics). Further, these techniques by
themselves do not lower device energy requirements, and
can in fact hurt radio energy consumption since the time for
compression and transformation could result in the radio
staying in the high energy state for a longer duration [32].
That said, compression and transformation is orthogonal to
our work, and can be easily integrated with PARCEL.
New protocols (e.g., SPDY): There is increasing interest
in devising protocol-based approaches that overcome TCP’s
limitations. For example, SPDY [17] establishes only one
connection per server domain and multiplexes the transfer
of objects from that domain. SPDY also eliminates the need
for one outstanding request per connection and supports the
ability for the server to “push” objects to the client. There
have also been proposals to deploy cloud-based proxies that
use SPDY between the client and the proxy [2,5,35]. The

performance improvements with SPDY in the real-world,
however, are mixed [16,34]. Inter-dependencies in web pages
due to JS and CSS and the relative lack of power of mobile
browsers implies that all the objects cannot be requested in
parallel even though supported by SPDY [16,34]. Further,
each server has to explicitly support server push with SPDY.
Given that objects are requested across a range of domains,
the gains from server push are unclear. Further, the SPDY
proposal does not specify how to implement server push in
the presence of proxies.

Mobile offload beyond web-browsing Many works [14,
15,19, 20,28, 29, 31] have investigated issues around offload-
ing code of generic applications (e.g., compute intensive face
recognition applications) to the cloud, primarily to reduce
computation time and save device energy. Mobile web brows-
ing has unique issues such as multiple round-trip times asso-
ciated with data transfer, and is different in that data nat-
urally flows into mobile devices from remote servers, with
cloud servers potentially on the data path from the server
to the device. Recent work has looked at energy efficient
transfer of video streams in LTE networks [27], but web-
browsing poses issues quite different from video streaming.

4 PARCEL approach and design

We describe the design of PARCEL, our objectives behind
that design, and how our design addresses the problems with
cellular web browsing. We then discuss some of the practical
considerations in realizing our design.

4.1 Design Considerations

Our goal with PARCFEL was to improve user experience
when browsing on cellular networks by reducing page load
times and radio energy usage, a key component of total de-
vice energy consumption. To that end, our key design con-
siderations were:

Minimize per-object HTTP request-response inter-
actions: Traditional browsers involve per-object HT'TP
request-response interactions. Given the high RTTs of cel-
lular networks, we seek to avoid HTTP request-response in-
teraction with the browser for individual objects.
Responsive and radio energy efficient client inter-
actions: Cloud-heavy solutions that offload JS execution
to the proxy entail network communication with the proxy
to support client interactions. This results in lowered re-
sponsiveness and increased radio energy usage [32]. A key
consideration in designing PARCFEL was to handle dynamic
page changes and user interaction locally at the client to
avoid network communication.

Cellular-friendly and latency-sensitive data transfer:
To reduce radio energy consumption, it is desirable to bun-
dle data to and from the client. However, in doing so, it is
important to take the page load process into account, and
ensure page latencies are not impacted. Our goal in design-
ing PARCEL is to balance these multiple considerations.

4.2 PARCEL design

The PARCEL architecture is designed to meet the objectives
listed above. PARCEL, as shown in Figure 4, splits the
typical browser functionality between a browser installed on
the mobile device and a proxy in the cellular network. Like
with traditional browsers, when users enter or select a URL,
the browser issues a request for this URL to the proxy. On
receiving the request, the PARCEL proxy does necessary

Cellular Network
PARCEL E
Clie Proxy Internet

PARCEL
Browser @

I
N
;

(711 m“g

©

/
my

Figure 4: PARCEL Architecture

DNS lookups, and requests the URL from the corresponding
web server, much like traditional proxies (steps (1) and (2)).

This is where PARCEL starts to deviate from traditional
browsers and proxies. On receiving the response from the
web servers, rather than just forwarding it to the client, the
PARCEL proxy starts to parse the web page and identify all
the objects that are required to successfully render the page
in its entirety. This not only includes parsing the HTML
page to identify the objects in that page, but also process-
ing all JS since these objects may also refer to other depen-
dencies or point to objects that are dynamically identified
for this request. The proxy then goes ahead and requests
these identified objects without the client requesting them
(step (3) of Figure 4). In that process, the proxy may choose
to apply any necessary compression and/or transformations
(transcoding images, shrinking size, etc) to these objects as
they arrive. It then collects all these objects and transfers
them to the client.

The client, for its part, receives the main HTML page and
all the objects associated with the page from the proxy. It
then behaves like a traditional browser in that it parses the
HTML files and identifies the objects on that page. Un-
like traditional browsers, however, the PARCEL browser
does not issue requests for these objects since the objects
are proactively fetched by the proxy and made available as
part of the collection transferred to the browser. The client
browser uses the meta-data associated with the collection to
identify the right object and use it for rendering the page.
As part of this process, the client also parses all CSS files and
processes JS. While there seems to be repetition of work at
the proxy and the client, our design allows for all interactiv-
ity to be locally handled by the client browser (and therefore
keep it responsive and energy efficient). That said, our de-
sign does not preclude optimizations that allow the client to
leverage the work done by the proxy as part of its rendering
process (like using some of the JS processing).

4.3 Benefits of PARCFEL design

While conceptually simple, the PARCEL design addresses
many of the important issues with mobile web browsing.

e By sending just the URL request to the proxy and no
other requests, PARCEL reduces the number of round trips
from the client on the higher latency cellular link, thereby
reducing page load times. We envision that the proxy will
be implemented on a powerful server with lots of process-
ing power, high bandwidth and low latency to the Internet.
Consequently, having the proxy identify which objects to
download (through html parsing and JS processing) allows
for fast downloads of these objects (refer Figure 3).

e By getting the browser to just send the URL, we get the
client to not continuously use up radio energy. Similarly, by
getting the proxy to push objects, we give it the flexibility to

HTTP | SPDY Cloud PARCEL
proxies | proxies | browsers
9] | [5,16] | [6,8,36]

of TCP many single single single
connections
of HTTP per per single single
requests object object
Object client client proxy proxy
identification
Interactive client client proxy client
JS
cellular-friendly X X X v
transfer

Table 1: PARCEL vs. existing approaches.

bundle and schedule object transfers to the client efficiently,
in a cellular friendly way.
e Compared to cloud-heavy approaches, PARCEL executes
JS locally which minimizes network communications during
client session, and allows for responsive and energy efficient
client interactions [32]. Though, cloud-heavy approaches
may lower device CPU energy consumption by executing
JS remotely, this may be outweighed by the radio energy
consumed due to client interactions (§ 8.2). PARCEL does
not incur any more device CPU energy consumption than
conventional browsers or proxies, and CPU energy consump-
tion could potentially be lowered by allowing the client to
leverage the work done by the proxy.
e The advantages of PARCEL above continue to hold even if
a protocol such as SPDY is enabled between the client and
the proxy since the performance with SPDY is limited by
how quickly the (less capable) mobile client issues requests
for objects in a web-page [16].

We contrast PARCEL with existing efforts and summarize
the key differences in the approaches in Table 1.

4.4 Cellular friendly data transfer

Once the PARCEL proxy identifies and downloads the dif-
ferent objects on a specific page, it has the flexibility of
transferring the different objects to the client in a manner
that is cellular friendly. Figure 5 illustrates the different
approaches possible with PARCEL.

IND: In this scheme, shown in Figure 5(b), the proxy trans-
fers objects to the client as and when it receives the objects.
Apart from reducing the energy consumption, this has the
potential to significantly reduce OLT because it eliminates
the need for the client to make requests and allows the client
to start processing HTML and JS objects as they arrive.
ONLD: An alternate approach, shown in Figure 5(c), is for
the proxy to fetch all objects from the web servers and trans-
mit the data in a single batch to the client. This approach
trades off increased OLT (compared to IND), for the poten-
tial to further reduce energy consumption. This is because,
the client can go into idle mode when the proxy is down-
loading the data and then receive all the data as a single
bundle from the proxy.

PARCEL(X): A final approach, shown in Figure 5(d) is to
strike a balance between the latency energy benefits. With
PARCEL(X), the PARCEL proxy does not wait for all ob-
jects to arrive. Instead, it starts transferring data to the
client when a certain threshold of data (X) becomes avail-
able or if the onload event is detected. This allows us to
transfer objects quickly to the client for processing while re-
ducing the number of state transitions of the client radio.
We explore and evaluate these approaches further in § 8.

4.5 Practical challenges and solutions

In this section, we describe some of the practical challenges
that need to be addressed in the realization of PARCEL
design, and our proposed solutions.

Suppressing object requests The PARCFEL browser starts
parsing the main HTML page as soon as it is received and
identifies the objects needed to display the page. If all the
objects in the page are part of the received bundle, it can
immediately start the rendering process. The browser, how-
ever, will not have the entire set of objects when it receives
the HTML page with IND or PARCEL(X). The fact that
some objects are requested after onload can cause the bun-
dle with ONLD to also not have all the objects. Finally, in
rare cases, the use of JS can cause the object URL as deter-
mined by the PARCEL browser to differ from that by the
proxy. In all these cases, the browser has to decide when to
request the object because the missing object could well be
on flight from the proxy to the browser. Our approach is
for the browser to suppress making requests for any objects
it has identified as needed but not already available. When
the proxy determines that it has downloaded all the objects
it sends a notification to the browser of such completion.
If there are outstanding objects after such notification, the
browser can request for these missing objects.

Determining page completion: In order to send the com-
pletion notification, the proxy has to determine when it has
completed the page download (traditionally indicated by the
onload event). Since this approach would not work for pages
that request objects even after the onload, we resort to typi-
cal page statistics to make this determination. An analysis of
the Alexa top-500 web pages indicates that the inter-arrival
time of objects is less than 5 sec for 95% of the objects af-
ter onload. Based on this, our proxy implements a simple
heuristic where it waits for a short time period of inactivity
between the proxy and the server (after onload) and then
determines the page complete. In the rare event that the
proxy misses some object, the browser can still request for
those missing objects.

Client properties and customization Web-pages have
browser-dependent code that downloads objects or renders
web page differently for different browser implementations.
Similarly it could check for the type of access device (smart-
phone vs. laptop) and send objects tailored for the screen
size. In PARCEL, since web servers receive requests from
the proxy rather than the browser, we need to inform the
proxy of the relevant attributes about the client (device)
and its browser. e.g., the client sends these attributes (
user-agent, mobile device screen information) to the proxy
when it connects to the proxy and requests the URL. The
proxy then uses this information to emulate the client while
downloading the page.

Caching and cookies The PARCEL design allows both
the browser and the proxy to cache data. However, since
the browser does not request for objects other than the main
URL, the proxy is unaware of the objects that are cached
at the client. Handling cookies and other session objects
is challenging for the same reason. One approach is for
the proxy to track the object versions sent to the client,
which helps avoid redundant transfer of objects. We pre-
fer a model where these proxies are deployed as personal-
ized proxies [12] for each user, running on virtual machines.

Client Server Client Proxy Server Client

(@) (b)

Proxy Server Client Proxy Server

=

Onload Event

(c) (d

Figure 5: Download patterns of traditional browsers (a) and PARCEL with IND, ONLD and PARCEL(X) (b-d)

This allows the proxy to easily mirror the state of the ob-
jects (cache and cookies) stored at the client. While proxies
could be located in Amazon EC2-like public clouds, they
could also be deployed similar to middle-boxes within the
cellular networks in the near future. Further, as approaches
like CloudRAN [37] get more popular, cellular operators can
deploy these proxies closer to the edge and have a tighter
coupling with the cellular base stations for optimal energy
efficiency. We hope to explore these alternatives as part of
our future work.

Handling HTTPS and POST For encrypted pages, PAR-
CEL falls back to the traditional way of downloading web
pages since the proxy cannot parse and identify objects.
However, using personalized proxies where the user trusts
the proxy, HTTPS requests can potentially be handled by
setting up independent secure channels between the browser
and server. The PARCEL proxy handles POST requests by
relaying them to the server as received from the client. If
the POST response from the server is a HTML, the proxy
processes the response as explained in § 4.2 before sending
it out to the client. For HT'TP responses that do not have
content (e.g., HT'TP 204), the proxy simply forwards them
unmodified to the client.

5 Prototype implementation

In this section, we describe the prototype implementation
of PARCEL. There are three main objectives we seek to
demonstrate with our implementation: (a) efficacy of PAR-
CEL, (b) real-world performance and energy improvements
with PARCEL and, (c) how existing software can be reused
to build PARCEL.

5.1 Proxy implementation

While many web proxy implementations exist, we cannot
simply reuse these implementations as PARCEL requires the
proxy to not only parse HTML files but also process CSS
and JS (or in essence behave like a browser). To achieve
this capability, we use an existing browser (Mozilla Fire-
fox), sufficiently extended, to act as our proxy. We used
the JS server sockets API to implement server functionality
in the proxy, which on receiving a URL request from the
browser, invokes Firefox to load the page and execute JS.
Using the Firefox extension framework, we developed an ex-
tension that intercepts HTTP responses received from the
web server. The interception mechanism helps in bundling
and scheduling the responses to the client and in minimizing
the impact of rendering of the Firefox process on the proxy’s
performance. Our extension includes an event listener that
detects onload event at the proxy and begins data transfer
to the client in the ONLD and PARCEL (X) schemes.

We use MHTML (a standard HTTP file format) to bun-
dle and transfer data from the proxy to the client browser.
MHTML is a low overhead format that allows inclusion of

HTTP headers along with the object data in the bundles.
Further, MHTML is supported by most modern browsers
(directly or through third-party libraries), which enables
them to parse and directly render bundles transferred by
PARCEL proxy. Since browsers implement single-threaded
execution of JS, we use asynchronous IO in our proxy imple-
mentation to decouple the proxy-server path from the cel-
lular path when transferring objects to the client. Further,
our implementation ensures that the proxy writes enough
data to the kernel buffer and proceeds with execution until
a callback is received when the buffer is available.

5.2 Client implementation

While the PARCEL client browser differs from traditional
browsers in how it requests/receives objects and in the infor-
mation sent to the proxy, the parsing and rendering process
do not change. Hence, our client implementation reuses ex-
isting parsing and rendering functionality of browsers while
modifying how the objects are requested and downloaded.
While it is easier to write extensions for existing browsers to
realize PARCEL functionality on clients (e.g., intercepting
and manipulating HTTP requests/responses using HTTP
Channel Observers in Firefox XUL runner framework), sup-
port for such extensions is not yet mature on mobile plat-
forms. Hence, we build our own custom browser on top of
the Webview library for Android devices. Webview allows us
to integrate browser functionality into applications and uses
the WebKit rendering engine to render the web pages. In
our implementation, the client browser application accepts
URLSs from the user and sends the request to the PARCEL
proxy over TCP. Our client also receives the MHTML bun-
dles as part of the response from the proxy and sends them
out to Webview for rendering.

6 PARCEL model and analysis

In this section, we present a simple analytical model to pro-
vide insights into the trade-offs between the various data
transfer schemes presented in § 4.4. Suppose B is the ag-
gregate object size at the time of page onload event. Let us
assume that we use n equal-sized bundles and that the proxy
sends out the n-th bundle as soon as the onload event occurs
at the proxy (We approximate IND as a case with large n).
We further assume that the (n — 1)th bundle transfer was
complete before the proxy onload event. We define s(n) to
be the download speed between PARCFEL proxy and client
with n bundles. We denote the OLT at the proxy as T),
which we assume is independent of the number of bundles.

Radio energy We first focus on the radio energy at the
time of client onload event. Let us assume that after each
bundle transfer, the client always completes C' R, and

SDRX cycles. We denote the duration of each cycle to
be d. and ds. Let us consider the aggregate duration of
LDRX cycle d;(n) before the n-th bundle arrives to the

client: di(n) = Tp(n) — "T_IS(P;L) — (n — 1)(de + ds). This
is from simply accounting for the transmission and state
transition time for (n — 1) bundles before the transmis-
sion of the n-th bundle. Then, we add up the radio en-
ergy for LDRX, state transition, and actual transmission to
obtain the total radio energy at the time of client onload:
E(n) = pidi(n) + (n —1)(pede + psds) + pe 53y, where pi, pe,
and ps are power consumption in LDRX, CR, and SDRX
states, respectively.

For ease of exposition, we assume that s(n) = s for all n
and that F(n) is a continuous and differentiable function of
n.2 By solving E’(n) = 0, we can find an optimal bundle

count n* that minimizes the radio energy: n* = l\/g,

@

where a = \/((pC —p1)de + (ps — p1)ds)/pi. Then, it follows
that the optimal bundle size b* is:

v =B — ovsB. (1)

n*

Eq. 1 matches intuition. First, for higher download speeds,
larger bundles are more acceptable since there is less penalty
in waiting longer. Second, as web pages become larger, using
larger bundle sizes ensures the total number of bundles, and
the associated state transition overhead is limited. Lastly, «
captures relative radio state transition overhead due to radio
technology and parameter settings - as transition overhead
increases, it becomes important to use fewer bundles and
reduce the state transition overheads.

Trade-off between energy and time By simply account-
ing for the transmission time of the n-th bundle after on-
load at the proxy, we get: OLT(n) = T) + %S(’i). As-
suming s(n) = s,Vn, OLT(n) is a decreasing function of
n, which agrees with our intuition that OLT is likely better
with smaller bundles. On the other hand, from Eq. 1, per-
formance in radio energy depends on various web page and
network characteristics. For example, for a 2MB page, with
download speed of 6Mbps, and a = 0.74 (derived from LTE
parameter values obtained as described in § 7), the opti-
mal bundle size is approximately 0.9MB. In our evaluation,
we experiment with different bundle sizes and explain the
findings using the analysis result (§ 8.3).

7 Evaluation Methodology

Downloading web pages over a cellular network is subject
to high variability due to dynamically changing web pages
and radio signal fluctuation. In this section, we describe our
experiment setup in which we limit the variability in both
aspects and ensure fair comparison across different schemes.

7.1 Schemes for comparison

We compare PARCEL with a popular traditional mobile
browser for Android that we call DIR.® For the compari-
son with DIR, we use the IND scheduling scheme for PAR-
CFEL to help us understand the benefit of PARCEL proxy in
isolation. We also separately compare different scheduling
schemes of PARCEL to understand the relative performance

2 An alternate option of considering A(n) = E(n+1)— E(n)
provides a similar intuition with more complexity, which we
do not show here. Note also that E(n) omits some delay as-
pects that are constant across all n (e.g., propagation delay),
which does not affect the analysis result.

3We anonymize the browser to keep the focus on the scien-
tific aspects of our study.

benefits due to bundling. Finally, to evaluate PARCEL un-
der client interactivity, we contrast its energy usage with a
popular cloud browser (we call CB) that performs all JS
execution functionality in the cloud, as we discuss in § 8.2.

Metrics Our primary metrics of interest are OLT and TLT
at the client as defined in § 2. To compute these quantities,
we collect packet traces on the device for each experiment.
For OLT, we compute the time between the first SYN and
the last ACK for all objects required to generate the onload
event at the client. For TLT, we compute the time between
the first SYN and the last ACK for all objects in the trace.
For each experiment, we limit the packet collection for 60
seconds, which we found sufficiently long for all objects of
each page to be downloaded with all schemes. Note that
we do not include rendering time, which is typically small
(median rendering time is 0.436 sec) and is comparable for
PARCEL and DIR.

Another metric that we use is the radio energy consumed
by the LTE radio interface for different schemes. We calcu-
late the radio energy using the open source ARO tool [18],
which captures the Radio Resource Control (RRC) state
transitions and the corresponding energy consumption levels
by performing fine-grained simulation on the packet traces
collected from the client device using a pre-computed model.
We conducted new measurements to generate the model pa-
rameters specific to our phone (Samsung Galaxy S3) and
experimental location (since power values are device-specific
and timer values are periodically tuned by operators) by us-
ing the same methodology [18]. However, the relative power
hierarchies of the different RRC states (as described in § 2.2)
remain the same across all settings. In addition to using the
energy model, we also report actual measurements of total
device energy consumption using a power meter (See § 8.2).
Unless otherwise mentioned we compare the schemes on the
median values of all the metrics in § 8.1, 8.3 and 8.4.

7.2 Robustness to radio network variability

All experiments were conducted over a production LTE net-
work in West Lafayette, IN, using a Samsung Galaxy S3
phone. To overcome variability in production networks, tra-
ditionally experiments are conducted by emulating the prop-
erties of the network. But given the significant variability
in LTE networks, generating realistic models of latency and
throughput for emulation is challenging and such models do
not exist currently. Hence we chose to conduct all our exper-
iments in live network settings. We conducted experiments
at night, when the cell load is low, to eliminate variabil-
ity due to other users. Next, we conducted experiments in
rounds, where each round consists of back-to-back runs using
different schemes for a given web page. This minimizes the
effects of changing network conditions for different schemes.
Finally, we logged the signal strength and cellular technol-
ogy for each experiment, and only considered those rounds
where all schemes experienced comparable signal strengths.
We also filtered rounds where the device used 3G or handed
off from LTE to 3G.

To obtain statistically significant results, we needed to
collect statistics from tens of experiment rounds for a given
web page. However, due to radio signal fluctuation and cel-
lular technology hand-off, we had to filter out almost 50%
of rounds. To make our experimental process tractable, we
focused on a smaller subset of 34 web pages from the top 500
Alexa global pages (31 US sites), covering a wide range of

categories like news, sports, photo streaming, business and
science. The page sizes ranged from few KB to 5 MB. The
median page size is 1.04 MB. To put the time in perspective,
it took us multiple weeks to collect more than 20 post-filtered
runs for each of the 34 web pages and the different schemes
for Figure 9b.

We used the full versions of the web pages in our exper-
iments. These are the web pages downloaded when data
cards or tablets are used. Previous work has shown that
mobile versions of the pages are optimized for smaller screen
sizes; however, they are not significantly different from the
full versions from a network communication perspective [25].
Hence, using a mobile version does not solve the problem of
increased page load latency in cellular networks and we ex-
pect PARCEL to provide benefits even with mobile versions
of the pages. The relative gains with mobile versions, how-
ever, may be different than the full versions.

7.3 Replaying pages to control page variability

Over the course of our experiments, we observed significant
variability in the number of objects and aggregate download
size for a given web page, even over short intervals of time.
When we conducted 10 runs back-to-back during the month
of February 2014, we found that 50% of the web-pages in
our set had at least 0.5 as the coefficient of variation of the
total number of objects. A similarly high variability was
observed when considering page sizes as well.

To ensure fair comparisons in the presence of variability in
web pages, a bulk of our experiments were conducted using
an open source tool called web-page-replay [23] to record
and replay web pages. Specifically, we first accessed real web
pages from the actual web server(s) and stored the objects
in a local server. Then, the same snapshot of a given page
was replayed for all schemes in later experiments. Some web
pages still showed variability as they had JS that requested
different URLs (e.g., using a random number or date) over
different runs. We modified the web-page-replay code to
replace such occurrences with constant values to ensure the
same objects were requested for all schemes.

Since both the proxy and the replay server are at the same
location, we used dummynet [13] to emulate proxy to server
delay. While we used 20ms as the default delay value for
majority of our evaluation in the paper, we did conduct ex-
periments to study the sensitivity to different delay values
between the proxy and the server (last paragraph in § 8.3).
We used the same proxy to server delay for all objects be-
cause we wanted to minimize the effect of page and network
variability between the proxy and the server and for control-
lability of the setup. Further, web-page-replay [23] as a tool
does not support capturing different latencies to different
web servers for objects in the same page, though a recent
tool [22] may allow emulation of heterogeneous delays in the
future. For realism, we also compared the different schemes
using real web servers (without using web-page-replay or
dummynet), which captures heterogeneous delays from the
proxy to the server. Note that while the mobile device and
the proxy are in the same location, the path between the
two goes through a production LTE network and is hence
representative of a typical data session going through a LTE
packet core and the Internet.

To eliminate variability across runs due to cached objects,
all comparison experiments were conducted by flushing de-
vice cache across runs for both DIR and PARCFEL. We also

disabled proxy caching for PARCFEL proxy. Moreover, we
ignore the first run in each round and obtain the median for
the remaining runs to ensure that DNS resolution does not
impact our experiment results. Note that our experiments
in § 8.2 do consider local device caching only because the
focus of these experiments is on client interactions during a
user session.

A majority of our experiments focussed on landing pages,
though we conducted experiments involving a user session
in § 8.2. In general, since a session consists of a sequence of
webpage downloads, we expect PARCFEL’s benefits to aggre-
gate over each page download. Even though some objects
in subsequent pages of a session could potentially be cached
in the device, an approach like PARCEL is still important
since these pages too are likely to contain content that must
be explicitly fetched.

8 Results

In this section, we present results comparing PARCFEL with
DIR (§ 8.1), and CB (§ 8.2), as well as compare variants of
PARCEL (§ 8.3). All these experiments are conducted by
replaying pages using web-page-replay and the experimental
approach described in § 7. We also present results with
real web servers in § 8.4. Since CB does proprietary data
transformations not implemented in PARCEL, we limit our
comparisons with CB to § 8.2 where we wish to highlight
the benefits of local JS execution.

8.1 PARCEL vs. traditional mobile browsers

e Latency Reductions: Figure 6a shows the timeline for
an example web page (taobao.com) highlighting the cumu-
lative data downloaded at PARCEL (proxy and client), and
the DIR client. From the figure, we observe that download
occurs fastest at the PARCFEL proxy, followed by the PAR-
CEL client and DIR client respectively. This is because DIR
incurs the long RTT of the cellular network for each object
it requests, while PARCEL client sends a single request to
the proxy. The DIR curve has a few long flat segments (no
objects are downloaded — these are likely because the client
was processing html and JS to figure out what objects to
fetch next) and the gap between consecutive object down-
loads is long. In contrast, PARCEL proxy leverages the
better processing power, high bandwidth and shorter RTT
to the origin servers, to download the whole page quickly
and to transfer the objects to the client faster. Observe
from Figure 6a that the time to download all objects until
onload event is 6 sec quicker at the PARCEL client (OLT
is 7.5 sec) when compared to DIR (OLT is 13.44 sec). This
result validates the intuition behind a key design element in
PARCEL: it is desirable to reduce the number of requests
from the client, and empower the PARCFEL proxy early on
in the download process to identify and download objects.
Figure 6b presents the CDF of the per-page median laten-
cies (onload and total) across all web pages for the PARCEL
client and DIR, observed over 40 runs with each scheme.
From the figure, we see that PARCEL outperforms DIR
consistently by a large margin. For 70% of the pages, the
PARCEL OLT is smaller than 3 sec and the highest observed
OLT is 8.8 sec. In contrast, only 10% of the pages have OLT
smaller than 3 sec with DIR. Also, the 70" percentile and
maximum latencies— 11 sec and 29 sec respectively are 3X
higher than the corresponding PARCEL latencies. We also
find that PARCEL reduces the OLT by > 1 sec for 90% of

-
[PARGEL Proxy 53

TPARCEL Client OLT}

Il

Cumulative Data Size in MB
-

— PARCEL Proxy Timeline
-~ PARCEL Client Timeline
-= DIR Client Timeline

?

— PARCEL OLT
“““ PARCEL TLT
+ DIROLT
- DIRTLT

Median Latency Reduction (sec)

0 5 10 15 20 0 5 10 15

Time from start in sec

20
Median Latencies(sec)

25 30 35 40

0 50 100 150 200 250 300 350 400 450

Number of HTTP Reauests

(a) page download timeline with PARCEL (b) Latencies with PARCFEL and DIR for all (c) Correlation between total latency reduc-

and DIR for taobao.com pages.

tion and number of HTTP requests.

Figure 6: Effectiveness of PARCEL in reducing latency compared to DIR.

the pages, > 5 sec for 60% of the pages, and reduces the
total latency by > 5 sec for 80% of the pages.

Figure 6¢ shows a scatter plot highlighting the correla-

tion between the median total time reduction for PARCEL
and the number of client HT'TP requests (or number of ob-
jects) for each page. From the figure, we see that latency
benefits with PARCEL increases with the increase in num-
ber of HTTP requests (correlation coefficient is 0.83). This
shows that, as pages get richer and request hundreds of ob-
jects, benefits with PARCFEL will be critical for maintaining
a good user experience.
e Radio Energy Savings Figure 7a shows the RRC states
over time for a single download (median run) of an example
web page (landing page of ebay.com). The black shade repre-
sents CR, the white shades represents DRX and the bold red
line shows the onload. From the figure, we see that with DIR
spends a longer time in CR (active) and DRX (low power
tail) states, whereas PARCEL reduces time spent in both
CR and DRX states, saving energy in both the states. For
example, the total radio energy consumed by PARCEL for
this page is 5.63.J, which is half the energy consumed by DIR
(11.16J). PARCEL benefits from the use of a single TCP
connection to the proxy to download the entire page in a
single transfer. In contrast, DIR uses multiple parallel TCP
connections (6 per domain) to download individual objects.
PARCEL delegates the effort to identify and fetch objects
to the proxy which batches object transfers through the sin-
gle TCP connection, thereby achieving higher throughput
and hence reducing the time spent in CR state. Further,
the implicit batching observed by the PARCEL proxy helps
reduce the gap between consecutive objects transferred and
thus reduces the time spent in DRX state. For the exam-
ple page shown in Figure 7a, DIR observes 22 transitions
between the CR and DRX, while PARCEL observes only 7
transitions between the states for the entire download.

Figure 7b shows the CDF of the per-page median radio
energy consumption with PARCFEL and DIR for all pages.
From the figure, we see that PARCEL consistently consumes
much lower energy when compared to DIR. With PARCEL,
the energy usage was < 4J for 80% of the pages and max-
imum of 8J. In contrast, the DIR energy usage was < 4.J
for only 38% of the pages with a maximum of 13.J.

Figure 7c shows for each page, (i) the median total radio
energy savings with PARCEL for all the pages and (ii) the
corresponding median CR energy savings, both expressed as
a fraction of the total energy consumed with DIR. From the
figure, we observe that PARCEL achieves significant energy
savings compared to DIR across all the pages. PARCEL

saves at least 20% of radio energy compared to DIR for
95% of the pages and the savings is at least 50% for 50% of
the pages. Further, we note that the savings in the energy
consumed in the CR state accounts for at least 50% of the
total energy savings for 85% of the pages (the remaining
savings are attributed to savings in DRX energy).

Overall our results show that PARCEL reduces both the
incurred latency and the radio energy consumption when
compared to traditional browsers by minimizing the HTTP
request-response interactions and delegating the download
process to the proxy.

8.2 Importance of local JS execution

A key design decision with PARCFEL was to execute JS at
the client to ensure responsive and energy efficient client in-
teractions. In this section, we illustrate the importance of
this decision by conducting experiments involving the land-
ing page of ebay.com and emulating an interactive session
where the user clicks on a button once every minute to scroll
through different product images. We compare PARCEL
with DIR as well as CB, a popular commercially available
cloud-based mobile browser, which executes all JS in the
cloud and not at the client [32].*

Figure 8 top graph shows the cumulative radio energy
consumption with PARCEL, DIR and CB over the entire
user session. Each group of bars corresponds to a particu-
lar event in the session. The left-most group corresponds to
the first download (FD), while the other groups correspond
to subsequent user click events (C1-C4). Each bar shows
the cumulative radio (total) energy consumed up to that
event for a given scheme. The figure shows that the cumula-
tive radio energy consumption grows significantly with each
click event for CB, but remains unchanged with user inter-
action for PARCEL and DIR. This is because both DIR and
PARCEL request the product images during the first-time
download of the page, and store them locally. On a click
event, JS runs locally on the client and displays the cached
images without any network interaction. In contrast, CB
issues a request to the proxy on each click event which pro-
cesses the JS and sends back a new snapshot of the page
to the client. This network communication required by CB
results in radio energy consumption on each click event.

While CB incurs higher radio energy usage, it can poten-
tially lower CPU energy usage compared to DIR and PAR-
CEL by not executing JS in the client. Figure 8 bottom

4We anonymize the browser to keep the focus on the scien-
tific aspects of our study.

1.0

RRC States

0.8
0.6
0 5 10 15 20 25 30 35 LDL

RRC States

— PARCEL Total
DIR Total

Median Radio Energy Savings (%)

[}
0.4
0.2
k AL

) 246 8101214 0 ; 2 1 6
Time in sec

Median Radio Energy(Joule)

10 12 14

5 10 15 20 25 30 35
Webpaaes

(a) Time in RRC states with DIR(top) and (b) Total radio energy of PARCEL and DIR (c) Radio energy savings with PARCEL as

PARCEL (bottom) for ebay.com. for all pages.

a fraction compared to DIR.

Figure 7: Effectiveness of PARCEL in reducing total radio energy compared to DIR.

graph provides a more complete picture by showing the to-
tal device energy consumption cumulative to each session
event. The total energy consumption was measured using
a power meter. The screen was kept in the lowest bright-
ness throughout the experiment. The baseline screen power
(626mW) was measured and deducted from the total energy
consumption. The total energy consumed by CB is indeed
lower after the first download (FD), which can be attributed
to running JS in the cloud rather than the device. However,
the total energy consumption for CB increases rapidly on
subsequent user clicks, and is higher than not only PAR-
CFEL but also DIR by the end of the session. In contrast,
the cumulative total energy consumption with PARCEL is
lower than DIR at every point in the session.

HCTD PARCEL
H{C= DIR
|{mmm CB

- ® ©
SoS S

S S

|. Radio Energy (Joule)
pesog

u
S

ELL W

C3 C4

Cumi

)
2

Cumul. Total Energy (Joul

FD Cit C2 C3 C4

Figure 8: Cumulative radio and total device energy consumption
for various schemes over a user session.

8.3 Exploring design knobs within PARCEL

One of the design considerations with PARCEL is to sched-
ule data transmission to the client by judiciously balanc-
ing user latencies and radio energy consumption (See 4.2).
In this section, we experiment with different bundle sizes
(512KB, 1MB, 2MB) for PARCEL (X) and present how they
perform in terms of latency and radio energy. We use the
same setup as before (§ 7) and results from 20 runs for each
page and each scheme.

In Figure 9a, we present the OLT increase for different
PARCEL bundling variants, compared to PARCEL (IND).
As expected, all the bundling variants experience higher la-
tency than PARCEL (IND), and the amount of increase in

general becomes larger with larger bundles, which is consis-
tent with our intuition and analysis in § 6. Specifically, as
shown in Figures 9a, PARCEL (ONLD) has the highest la-
tency (e.g., the increase is 0.57 sec). For PARCEL (512K),
the increase is much smaller than other variants using larger
bundles (e.g., the increase is 0.11 sec). We also observed
similar trends in the TLT. However, we note that all PAR-
CEL variants perform better than DIR.

In Figure 9b, we present the total radio energy increase for
PARCEL bundling variants compared to PARCEL (IND).
We observe that the trend is not as clear as the latency case
and there seems to be no one single bundle size that can
minimize the radio energy for all web pages. Specifically, for
around 60% of web pages, PARCEL (512K) results in less
radio energy consumption than PARCEL (IND), while the
opposite is true for the rest of the web pages. All PARCEL
variants consume less radio energy than DIR.

We further analyze the results to understand when bund-
ling helps in reducing the radio energy. In Figure 9c, we show
a scatter plot of total page size and radio energy difference
between PARCEL (512K) and PARCEL (IND). With larger
web pages (e.g., > 2MB), bundling decreases the radio en-
ergy consumption, compared to PARCEL (IND). Although
not shown here due to space constraint, we observe the simi-
lar trend when using other bundle sizes. This energy saving
is because bundling reduces the gaps between consecutive
objects and thus incurs lower transition overhead. Also,
transferring larger bundle potentially helps TCP overcome
the slow-start effects and achieve increased effective through-
put. With smaller pages (<2MB), the potential energy sav-
ing opportunity is inherently small, and the LTE network
variability makes it difficult to identify a clear trend.

Sensitivity of bundle sizes on energy savings As ex-
pected, larger bundle sizes increase the client OLT compared
to PARCEL (IND). The energy results however are more
nuanced. For instance, smaller bundle size (512KB) seems
to give more benefits than larger bundle sizes. The typical
large web-pages range anywhere between 2 and 4MB and we
observed download speeds ranging from 4 to 8 Mbps with
median of 6 Mbps in our experiments. As shown in § 6,
the optimal bundle size is around 1MB for those large web
pages. However, we observe that energy saving in practice
is largest with a bundle size slightly smaller than the opti-
mal size from Eq. 1 (e.g., 512K instead of 1M). We believe
that this is due in part to some of the assumptions we make
(e.g., full state transition per bundle transfer, fractional n).
Another reason is that in practice the observed download

w
[a)

1.0

0s — PARCEL(512K)
““““ PARCEL(1M)
+ PARCEL(2M)

06 - PARCEL(ONLD)

— PARCEL(512K) 04
““““ PARCEL(1M)
+ PARCEL(2M) 0.2
- PARCEL(ONLD)

Median Radio Energy Increase (Joule)

—3.5-3.0-25

(J.ii 0.5 1.0 15 20 25 30 35
Median OLT Increase(sec)

(a) OLT increase

1.5-1.0
Median Radio Energy Increase(Joule)

(b) Total radio energy increase

—=0.5 0.0 05 1.0 1 2 3 4
Total Web-page Size (MB)

(c) Correlation between size and radio en-
ergy increase with PARCEL (512K)

Figure 9: Performance of PARCEL bundling variants, compared to PARCEL (IND).

speed is variable and hence larger bundles are more severely
affected by sudden radio signal degradation.

Sensitivity to proxy-server delay We briefly report the
results when we use dummynet to vary the delay between
the PARCEL proxy and our web-page-replay server. In our
experiments, we used two round-trip delay values: 20 and
60 ms, representing the RTTs from the client location (Pur-
due) to the east and west coasts. We observe that with a
higher delay, PARCEL (ONLD) had higher latency penalty,
but provided more energy savings compared to PARCEL
(IND). Note that in general PARCEL (IND) will perform
better if objects reach the client close to each other and
cause lower state transition overhead. As the delay between
proxy and server increases, the object arrivals at the proxy
and with IND, at the client are likely to be more spread out,
which causes higher energy consumption due to higher state
transition overhead.

8.4 Experiments with real web servers

— PARCEL(512K) — PARCEL(512K)
o DIR e DIR

0 PR G B 10 12 0 2 4 6 8 10 12 14 16
Median OLT(sec) Median Total Radio Energy(Joule)

Figure 10: OLT with real
web servers

Figure 11: Radio energy
with real web servers

The evaluation so far has focused on understanding the
benefits of PARCEL in a controlled setting, where the pages
are hosted on a server in Purdue. In this section, we con-
duct experiments with pages served from the original do-
main servers to study the benefits of PARCFEL in the real
world. We use results from 10 runs for each page with each
scheme. In Figure 10, we observe that PARCEL (512K) con-
sistently outperforms DIR in both onload latency and radio
energy usage, which is consistent with our controlled exper-
iment results. For example, the median OLT of PARCEL
(512K) is < 2.5sec, while that of DIR is around 6sec. We
also observe that for 50% of the pages, the PARCEL (512K)
OLT was one third or less of the DIR OLT. In Figure 11,
we observe that PARCEL (512K) also reduces the total ra-
dio energy significantly compared to DIR. Specifically, with
PARCEL (512K), the radio energy consumption of all pages

is < 6.5J, while for around 40% of pages, DIR consumes sig-
nificantly more radio energy. While we do not show the re-
sults, we also conducted experiments with PARCEL (IND).
PARCEL (IND) had slightly lower OLT (0.1sec) and slightly
higher radio energy (0.5J) than PARCEL (512K), but per-
forming significantly better than DIR in both the metrics.
The above results confirm the benefits of PARCEL in real
world settings as well.

9 Conclusions

In this paper, we have shown that judiciously refactoring
functionality between mobile browsers and proxies can sig-
nificantly reduce page load times and radio energy usage
in cellular networks. We have presented PARCEL, an ini-
tial attempt at such functionality refactoring. Distinct from
traditional browsers, PARCEL moves the task of identifying
and downloading objects needed to render a web-page to a
well-provisioned proxy. Distinct from existing cloud-heavy
browsers, PARCEL retains most other functionality includ-
ing execution of JS in the client browser. Our evaluations
confirm the potential of PARCEL. Compared to a tradi-
tional mobile web-browser, PARCEL reduces OLT by 49.6%
and radio energy consumption by 65%. Unlike cloud-heavy
browsers, PARCEL continues to perform well on client in-
teractions. While our results are promising, there are many
areas for future research as discussed below:

e Combining PARCEL with page optimizations: There are
many recent efforts at webpage optimization services [7] to
be used by web developers to optimize their sites. PARCEL
can co-exist well with such optimizations, since the PARCEL
proxy only processes the page to identify the objects and
sends the objects received from the server as such to the
client without modifying the HTML. Evaluating PARCFEL in
conjunction with such techniques is an interesting direction
for future work.

e Comparisons with other proxy-assisted approaches: In this
paper, we have demonstrated the benefits of PARCEL over
the CB proxy (§ 8.2) and discussed its benefits over SPDY
proxies (§ 4). A quantitative comparison with SPDY proxies
is an interesting direction for future research, though we note
that previous work [16] has already shown SPDY protocol
alone does not outperform HTTP in the cellular setting.
A fair comparison is complicated since the most noteable
SPDY proxy [5] not only uses SPDY [17] to communicate
with the clients, but also performs webpage optimization
and data reduction [7], a feature not implemented in our
PARCEL prototype. Integrating PARCEL with such page

optimization techniques as described above will facilitate a
fair head-to-head comparison in the future.

e Adapting PARCEL for traffic encryption: Today 67.2%
of the top 151,509 Alexa pages still use HTTP [10] and
only 7.25% of the mobile traffic in NorthAmerica is en-
crypted [30]. However, recent reports do suggest that the
aggregated encrypted traffic is increasing throughout the
globe [30]. Dealing with HTTPS traffic is an issue not
only for PARCEL but also for many proxy-assisted solu-
tions([5,6]) that involve web-page parsing. While our cur-
rent PARCEL implementation lets HTTPS traffic follow the
normal path without using our proxy, one approach to han-
dling HTTPS traffic is using a trusted, per-client proxy, as
we have discussed in the design section (§ 4.5). In the future,
we hope to investigate potential issues around personaliz-
ing PARCFEL proxies, and tackle questions around how they
must be deployed, placed, and managed. Understanding
the cost of running personalized proxies with large number
of users is an interesting direction for future research.

10 Acknowledgments

We thank our shepherd David Choffnes and the anonymous
reviewers for their constructive feedback and comments. We
also thank Oliver Spatscheck for his valuable inputs during
discussions. This work was supported in part by the Na-
tional Science Foundation (NSF) under Career Award No.
0953622 and NSF Award No. 1162333. Any opinions, find-
ings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily re-
flect the views of NSF.

11 References

[1] The amazon kindle fire: Benchmarked, tested, and reviewed.
http://www.tomshardware.com/reviews/
amazon-kindle-fire-review, 3076-7.html.

[2] Amazon silk split browser architecture. https:
//s3.amazonaws.com/awsdocs/AmazonSilk/latest/silk-dg.pdf.

[3] Amazon’s silk browser acceleration tested: Less bandwidth
consumed, but slower performance.
http://tinyurl.com/84br5tc.

[4] Cisco visual networking index: Global mobile data traffic
forecast update, 2013-2018. http://www.cisco.com/c/en/us/
solutions/collateral/service-provider/
visual-networking-index-vni/white_paper_c11-520862.html.

[5] Data compression proxy in android chrome.
https://developer.chrome.com/multidevice/data-compression.

[6] Opera mini architecture and javascript. http:
//dev.opera.com/articles/view/opera-mini-and-javascript/.

[7] Pagespeed optimization service.
https://developers.google.com/speed/pagespeed/.

[8] Skyfire - cloud based mobile optimization browser.
http://www.skyfire.com/operator-solutions/whitepapers.

[9] Squid web proxy. Available at http://www.squid-cache.org.
[10] SSL Pulse. https://www.trustworthyinternet.org/ssl-pulse/.
[11] 3GPP TS 36.331: Radio Resource Control (RRC) (v10.3.0).

2011.

[12] R. Céceres, L. Cox, H. Lim, A. Shakimov, and A. Varshavsky.
Virtual Individual Servers as Privacy-Preserving Proxies for
Mobile Devices. In Proc. ACM MobiHeld, 2009.

[13] M. Carbone and L. Rizzo. Dummynet Revisited. In ACM
SIGCOMM Computer Communication Review, March 2010.

[14] B.-G. Chun, S. Thm, P. Maniatis, M. Naik, and A. Patti.
CloneCloud: Elastic Execution between Mobile Device and
Cloud. In Proc. ACM Eurosys, 2011.

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. MAUI:Making Smartphones Last
Longer with Code Offload. In Proc. ACM MobiSys, 2010.

J. Erman, V. Gopalakrishnan, R. Jana, and

K.K. Ramakrishnan. Towards a SPDY’ier mobile web? In Proc.
CoNEXT, Dec 2013.

Google. SPDY: An experimental protocol for a faster web.
http://www.chromium.org/spdy/spdy-whitepaper.

J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and

O. Spatscheck. A Close Examination of Performance and Power
Characteristics of 4G LTE Networks. In Proc. ACM Mobisys,
2012.

R. Kemp, N. Palmer, T. Kielmann, and H. Bal. Cuckoo: a
Computation Offloading Framework for Smartphones. In Proc.
MobiCASE, 2010.

S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang.
ThinkAir: Dynamic resource allocation and parallel execution
in cloud for mobile code offloading. In Proc. IEEE INFOCOM,
2012.

K. Matsudaira. Making the mobile web faster.
Communications of the ACM, Vol 56. No 3., 2013.

R. Netravali, A. Sivaraman, K. Winstein, S. Das, A. Goyal, and
H. Balakrishnan. Mahimahi: A Lightweight Toolkit for
Reproducible Web Measurement (Demo). In ACM SIGCOMM
2014, Chicago, IL, August 2014.

‘Web-page-replay. Record and play back web pages with
simulated network conditions.
https://www.code.google.com/p/web-page-replay/.

F. Qian, K.S.Quah, J.Huang, J.Erman, A.Gerber, Z.M.Mao,
S.Sen, and O.Spatscheck. Web Caching on Smartphones: Ideal
vs. Reality. In Proc. ACM MobiSys, 2012.

F. Qian, S. Sen, and O. Spatscheck. Characterizing Resource
Usage for Mobile Web Browsing. In Proc. ACM MobiSys, 2014.
F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and

O. Spatscheck. Profiling Resource Usage for Mobile
Applications: A Cross-layer Approach. In Proc. ACM Mobisys,
2011.

S. Rajaraman, M. Siekkinen, V. Virkki, and J. Torsner.
Bundling Frames to Save Energy While Streaming Video from
LTE Mobile Device. In Proc. ACM MobiArch, 2013.

A. Saarinen, M. Siekkinen, Y. Xiao, J. K. Nurminen, and

M. Kemppainen. Smartdiet: Offloading Popular Apps to Save
Energy(Poster). In Proc. ACM Sigcomm, 2012.

A. Saarinen, M. Siekkinen, Y. Xiao, J. K. Nurminen,

M. Kemppainen, and P. Hui. Can Offloading Save Energy for
Popular Apps. In Proc. ACM MobiArch, 2012.

Sandvine. Global internet phenomena report 1h-2014. Available
at https://www.sandvine.com/downloads/general/
global-internet-phenomena/2014/
1h-2014-global-internet-phenomena-report.pdf.

M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The
Case for VM-based Cloudlets in Mobile Computing.
IEEE/Trans. Pervasive Computing, 2009.

A. Sivakumar, V. Gopalakrishnan, S. Lee, S. Rao, S. Sen, and
O. Spatscheck. Cloud is not a silver bullet: A case study of
cloud-based mobile browsing. In Proceedings of ACM
HotMobile, 2014.

S. Souders. Onload event and post-onload requests.
http://www.stevesouders.com/blog/2012/10/30/
qa-nav-timing-and-post-onload-requests.

X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and

D. Wetherall. How Speedy is SPDY? In Proc. NSDI, April
2014.

X. S. Wang, H. Shen, and D. Wetherall. Accelerating the Mobile
Web with Selective Offloading. In Proc. ACM MCC, 2013.

B. Zhao, B. C. Tak, and G. Cao. Reducing the Delay and
Power Consumption of Web Browsing on Smartphones in 3G
Networks. In Proc. ICDCS, 2011.

Z. Zhu, P. Gupta, Q. Wang, S. Kalyanaraman, Y. Lin,

H. Franke, and S. Sarangi. Virtual base station pool: towards a
wireless network cloud for radio access networks. In Proc. of
the 8th ACM International Conference on Computing
Frontiers, 2011.

