Robust validation of network designs under uncertain demands and failures

Yiyang Chang, Sanjay Rao, and Mohit Tawarmalani **Purdue University**

USENIX NSDI 2017

Validating network design

- HSA, Veriflow, Batfish, NoD, etc.
- Our goal: Validating quantitative network properties
 - - Under diverse failure/traffic scenarios
 - Use the formal approach to inform network design

 Network design today is ad-hoc, and validating design is usually an afterthought • Contrast: Tools for chip and software industry a \$10B business [Mckeown, 2012]

Much progress on verification of network data plane (e.g., reachability, security policy)

• Formal approach to guarantee network performance (e.g., bandwidth, link utilization)

Why is network validation hard? (1)

- Scenarios of interest are too many
 - Exponentially many failure scena Sigcomm '14]
 - E.g., All possible simultaneous *f* link failures
 - All possible traffic demands non-enumerable

/

• Exponentially many failure scenarios [Wang et al., Sigcomm '10, Liu et al.,

f link failures on-enumerable

Why is network validation hard? (2)

- Adaptation makes the problem intractable
- Networks increasingly agile and flexible in adaptation • E.g., SDNs and NFVs
- Tools exist to bound worst case performance
 - E.g., robust optimization, and oblivious routing [Applegate et al., Sigcomm '03]
 - Assume networks do not adapt, or consider limited forms of adaptation to make problem tractable

Network adapts: Rerouting, throttling, etc.

Demand, Failures

Better performance

- General framework for network validation
 - Find the worst performance of the network across all scenarios assuming network can adapt in **best** fashion for each scenario
- Handles intractable problems drawing on cutting-edge optimization technique
- Applies to network synthesis

5

Uncertainty Set

• All f or fewer link failures

• Flexible rerouting (multicommodity flow)

Problem:

• Given up to f links may simultaneously fail, what is the worst-case utilization of any link across all failure scenarios?

Example: Failure validation

Adaptations

Performance metric

 Utilization of most congested link

Formal formulation of a network validation problem

max **Uncertainty Set**

Adaptations Perform

Less

Inner problem: For a fixed scenario - Easy to compute online (LP) E.g., multi-commodity flow Outer problem: Potentially hard since large number of scenarios

(x, y)	Example: Validation under failu		
	X	Set of failures	
nance metric	Y(x)	Feasible routing of demar under given failure	
s is better	F(x, y)	Utilization of most conges	

Wide applicability of framework

Uncertainty Set

- All f or fewer link failures
- Shared risk link group
- Weighted averages of historical demands

- Flexible rerouting (multicommodity flow)
- Rerouting constrained to pre-selected tunnels
- Constrain with middlebox traversal requirements

Adaptations

Performance metric

- Utilization of most congested link
- Bandwidth of business critical applications

Reformulating the problem $\max_{x \in X} \quad \min_{y \in Y(x)} \quad F(x, y)$

 λ, v, x

LP dualization

 $\max \ F'(\lambda, v, x)$

Failure validation: Formulation

 $\max_{\substack{v,\lambda,x}} \sum_{\substack{t,i\neq t}} d_{it}(v_{it} - v_{tt})$

 $\langle i,j\rangle \in E$ $x^f \in X$

s.t. $v_{it} - v_{jt} \leq \lambda_{ij} \quad \forall t, \langle i, j \rangle \in E$ $\sum \lambda_{ij} c_{ij} (1 - x_{ij}^f) = 1$

$x_{ij}^f \in \{0, 1\}; \quad \lambda_{ij} \ge 0; \quad \langle i, j \rangle \in E$

Failure validation: Formulation

 $\max_{\substack{v,\lambda,x}} \sum_{\substack{t,i\neq t}} d_{it}(v_{it} - v_{tt})$

 $\bigstar x^f \in X$

Depends on failure model of interests • E.g. simultaneous *f* link failures

s.t. $v_{it} - v_{jt} \leq \lambda_{ij} \quad \forall t, \langle i, j \rangle \in E$ $\sum \lambda_{ij} c_{ij} (1 - x_{ij}^f) = 1$

$x_{ij}^f \in \{0, 1\}; \quad \lambda_{ij} \ge 0; \quad \langle i, j \rangle \in E$

Failure validation: Formulation

 $\langle i,j \rangle \in E$ $x^f \in X$

Can be converted to mixed-inter linear program. In general, validation problems could be non-linear.

s.t. $v_{it} - v_{jt} \leq \lambda_{ij} \quad \forall t, \langle i, j \rangle \in E$ $\sum \lambda_{ij} c_{ij} (1 - x_{ij}^f) = 1$

$x_{ij}^f \in \{0, 1\}; \quad \lambda_{ij} \ge 0; \quad \langle i, j \rangle \in E$

Solution approach

- Focus on upper bounds (relaxation)
 - Intractable problems hard to solve to optimality
 - Upper bounds sufficient for validation use
- Goal: Develop a general approach

 - Applicable to diverse validation problems (e.g., validating failures, demands...) • Yet, amenable to problem-specific structure
- Use cutting-edge techniques from non-linear optimization

Tractable relaxations: RLT

- <u>RLT relaxations</u>: general approach to relax non-convex problems into tractable LPs
 - Family of relaxations
 - Higher levels of hierarchy
 - Converge to optimal value of the non-convex problem
 - Incur higher complexity
- For scalability, focus on the first level

$\begin{array}{c|c} \text{RLT relaxation: example} \\ \min_{x,y} & xy - x + y \\ \hline x - 2 \ge 0; & y - 3 \ge 0 \\ 3 - x \ge 0; & 4 - y \ge 0 \end{array} \xrightarrow{} xy - 2y - 3x + 6 \ge 0 \\ \hline \end{array}$

Relaxation steps:

- 1. Multiply constraints with each other
- 2. Replace products of variables xy, x^2 , y^2 by new variables

her x², y² by new variables

Z

Our results on effectiveness of RLT

Compare RLT with two theoretical benchmarks

- Both bound worst case performance across failures/demands, but with limited network adaptation
- Oblivious routing [Applegate, et al., Sigcomm '03; Wang, et al., Sigcomm '06, etc.] • Affine adaptation: a generalization of oblivious routing, studied in robust
- optimization
- Our results show
 - First-level RLT dominate oblivious/affine adaptations
 - Better results possible by exploiting problem-specific structure combined with RLT

- Real topologies
 - Abilene, GEANT, and ANS (from The Internet Topology Zoo)
- Real and synthetic traffic matrices
 - Real trace: 6-month end-to-end demand on Abilene
 - Synthetic: Gravity model

- Compare maximum link utilization (MLU)
 - The optimal IP scheme vs. our **RLT** relaxation LP
- RLT matches optimal in all our experiments

Results: Effectiveness of RLT

Abilene Network – 3 link failures

Results: Effectiveness of RLT

- Compare with R3 [Wang et al., Sigcomm '10]
 - Determines if MLU < 1 under *f* failures
 - Gives a valid bound only when MLU < 1
 - Based on oblivious approach
- Our result
 - First-level RLT dominates R3 whenever R3 provides a valid bound
- Other advantages of our approach
 - Useful to detect bad failure scenarios, and the amount of exceeded link capacity
 - Generalizes to other validation problems

Abilene Network — 3 link failures

19

Using framework to detect bad failures

- Framework allows finding failures that impact the network the most
 - Random search not efficient
 - Only 0.05% of 3-failure scenarios are bad (MLU > 1)
- Emulate to understand latency behavior

Random scenarios

Bad scenarios

with Mininet, and ONOS controller

Results: running time

 RLT relaxation LP vs. optimal IP (IP run for 2 hours) • On scaled GEANT network (32 nodes, 1000 edges), 3 link failures: RLT finished in 608 seconds, whereas IP finished in 3890 seconds Only 60% of the IP instances completed in 2 hours

Our RLT relaxation LP doesn't degrade with larger number of failures

Example: Tunnel selection validation

Uncertainty Set

- All f or fewer link failures
- Shared risk link group
- Weighted averages of historical demands

- Flexibly rerouting (Multicommodity flow)
- Rerouting constrained to pre-selected tunnels
- Constrain with middlebox traversal requirements

Problem:

demands of interest within acceptable limits?

Adaptations

Performance metric

- Utilization of most congested link
- Bandwidth of business critical applications

• For a given choice of tunnels, are utilizations of all links across all traffic

Tunnel selection: Results

- Predicted demand: weighted averages of historical matrices
 - Validation problem is an LP
 - On Abilene: First-level RLT achieves optimal MLU
- Widely-used tunnel selection heuristics may perform poorly • E.g., K-shortest (SWAN, Sigcomm '13), Shortest-Disjoint heuristics More robust tunnel selection heuristic performs much better

Synthesizing valid designs

- Validation is a stepping stone for synthesis
- Example: Optimal Capacity Augmentation
 - Incrementally add capacity to existing links
 - Minimizing cost of adding capacity
 - Ensure resulting network can handle all failure scenarios
- One can use our framework for synthesis in 2 ways: 1) Get conservative solution, with a single LP 2) Iterative approach, which gives a lower bound on cost at each step

• Validate if MLU <= 1.

• If not, run augmentation LP with counter examples

Step	Counter examples	MLU	Links Augmented	Total new capacity (Gbps)

Validate if MLU <= 1. If not, run augmentation LP

with counter examples

Validate if MLU <= 1. If not, run augmentation LP with counter examples

Step	Counter examples	MLU	Links Augmented	Total new capacity (Gbps)
1	(1, 10), (2, 9)	1.274	(1, 10)	2.744

0

Validate if MLU <= 1. If not, run augmentation LP

with counter examples

Step	Counter examples	MLU	Links Augmented	Total new capacity (Gbps)
1	(1, 10), (2, 9)	1.274	(1, 10)	2.744
2	(2, 9), (10, 1)	1.274		

Validate if MLU <= 1. If not, run augmentation LP with counter examples

Step	Counter examples	MLU	Links Augmented	Total new capacity (Gbps)
1	(1, 10), (2, 9)	1.274	(1, 10)	2.744
2	(2, 9), (10, 1)	1.274	(2, 9)	5.488

0

• Validate if MLU <= 1.

• If not, run augmentation LP with counter examples

Step	Counter examples	MLU	Links Augmented	Total new capacity (Gbps)
1	(1, 10), (2, 9)	1.274	(1, 10)	2.744
2	(2, 9), (10, 1)	1.274	(2, 9)	5.488
3	(9, 8), (10, 7)	1.217		

Validate if MLU <= 1. If not, run augmentation LP with counter examples

Step	Counter examples	MLU	Links Augmented	Total new capacity (Gbps)
1	(1, 10), (2, 9)	1.274	(1, 10)	2.744
2	(2, 9), (10, 1)	1.274	(2, 9)	5.488
3	(9, 8), (10, 7)	1.217	(9, 8)	7.653

Validate if MLU <= 1. If not, run augmentation LP with counter examples

Step	Counter examples	MLU	Links Augmented	Total new capacity (Gbps)
1	(1, 10), (2, 9)	1.274	(1, 10)	2.744
2	(2, 9), (1, 10)	1.274	(2, 9)	5.488
3	(9, 8), (10, 7)	1.217	(9, 8)	7.653
4	(10, 7), (9, 8)	1.217	(10, 7)	9.818
5	(0, 2), (1, 10)	1.192	(0, 2)	11.743
6	(1, 0), (1, 10)	1.071	(1, 0)	12.452
7	(7, 6), (8, 5)	1.006	(7, 6)	12.509
8	(8, 5), (7, 6)	1.006	(8, 5)	12.566
9		1.000		

0

- Early effort at formally verifying quantitative network properties under uncertainty
- Generic framework for a wide class of network validation problems
- Modeling adaptivity results in intractable problems
 - RLT relaxations promising
 - Tighter bounds than oblivious
 - Exact in multiple failures case and predicted demand case
- Validation framework enables network synthesis

Conclusions

Thanks Questions?