
Robust validation of network designs under uncertain demands and failures

Yiyang Chang, Sanjay Rao and Mohit Tawarmalani
Purdue University

Abstract
A key challenge confronting wide-area network archi-
tects is validating that their network designs provide as-
surable performance in the face of variable traffic de-
mands and failures. Validation is hard because of the
exponential, and possibly non-enumerable, set of scenar-
ios that must be considered. Current theoretical tools
provide overly conservative bounds on network perfor-
mance since to remain tractable, they do not adequately
model the flexible routing strategies that networks em-
ploy in practice to adapt to failures and changing traf-
fic demands. In this paper, we develop an optimization-
theoretic framework to derive the worst-case network
performance across scenarios of interest by modeling
flexible routing adaptation strategies. We present an
approach to tackling the resulting intractable problems,
which can achieve tighter bounds on network perfor-
mance than current techniques. While our framework
is general, we focus on bounding worst-case link uti-
lizations, and case studies involving topology design,
and MPLS tunnels, chosen both for their practical im-
portance and to illustrate key aspects of our framework.
Evaluations over real network topologies and traffic data
show the promise of the approach.

1 Introduction
In designing wide-area networks for ISPs and cloud ser-
vice providers, it is critical to ensure predictable perfor-
mance at acceptable costs. However, achieving this goal
is challenging because links fail (both owing to planned
maintenance, and unplanned events such as fiber cuts and
equipment failures) [38, 50, 23], and network traffic is
variable [9] and constantly evolving [23].

Validating that a network can cope with a range of
traffic conditions and failure scenarios is challenging be-
cause the number of scenarios to consider are typically
exponentially many, and may even be non-enumerable.
For instance, a common requirement is to verify that a
network with N links can service demand for all com-

binations of f simultaneous link failures [50, 48, 37].
The number of failure scenarios to consider is

(N
f

)
for

each demand. Further, the set of traffic matrices are not
even enumerable, so naively considering all traffic matri-
ces and failure scenarios is prohibitive.

There is a huge gap between practice and existing the-
oretical tools. Oblivious routing [40, 41, 9, 49], and more
generally, robust optimization [12, 14] allow bounding
worst-case performance across multiple scenarios of in-
terest. However, to ensure tractability of the problem,
these techniques make the conservative assumption that
the network cannot adapt to changes in demands by re-
routing traffic [40, 41, 9, 49], or admit limited forms
of adaptation [50, 15]. In practice, networks do adapt
by re-routing traffic as demands shift or failures occur,
and such adaptation can make network operations much
more efficient. Further, the advent of Software-Defined
Networking (SDN) allows for network-wide optimiza-
tion, and facilitates the deployment of flexible re-routing
strategies [30, 31].

Given the large gap between theory and practice,
the process of validating network designs today is ad-
hoc, often requiring extensive simulations, which can be
highly time consuming as well as fall short of guarantee-
ing provable bounds on network performance. In this pa-
per, we take a first step towards tackling this by present-
ing a formal framework to provide performance bounds
on a network design across a set of scenarios (demands,
failures). The key novelty in our framework is that it
can accommodate a richer set of adaptation mechanisms,
used in practice today, for re-routing traffic on failures
and changes in demands.

When flexible routing strategies are considered, pro-
viding robust performance guarantees typically requires
solving intractable non-convex (and often non-linear) op-
timization problems. We address these difficulties by
leveraging cutting-edge techniques in the non-linear op-
timization literature [44]. An attractive aspect of these
techniques is their generality, which allows them to be

applied to a wide range of network validation problems.
We show that these techniques lead to tighter bounds on
the validation problem than existing state-of-the-art ap-
proaches in robust optimization, a finding that has appli-
cations beyond networking. Further. the bounds are tight
in practical settings of interest - e.g., when demands are
expressed as a convex combination of known historical
demands [49]. Finally, we show how the techniques may
be augmented with analysis of individual problem struc-
ture to substantially improve the quality of bounds.

For concreteness, we focus on link utilization, a
widely accepted traffic engineering metric [9, 49, 50],
which impacts application latency and throughput. We
apply our framework to two contrasting, yet practical
case studies to illustrate key aspects of our framework.
The case studies differ in the type of uncertainty (fail-
ures and demands), and the type of adaptation. Specifi-
cally, we consider (i) multi-commodity flow (MCF) rout-
ing [21, 9, 50] which provides the most flexibility and
efficiency, and (ii) MPLS-style tunneling [30, 29] which
has more limited flexibility in routing.

While we focus on validation, our framework can en-
able the synthesis of designs with performance guaran-
tees under uncertainty. We demonstrate this by showing
how our approach can aid operators in determining the
most effective ways to augment link capacities while en-
suring acceptable link utilizations under failures.

We evaluate our approach using multiple real topolo-
gies [6] and public traffic data [1]. Our framework per-
forms better than oblivious formulations for both case
studies, while surprisingly matching optimal in all the
experiments for the failure case study. Further, we show
our framework aids in (i) identifying bad failure scenar-
ios; (ii) determining how to best augment link capacity
to handle failures; and (iii) evaluating design heuristics
– e.g., we show the potential for poor performance with
common tunnel selection heuristics.

2 Motivation
2.1 Robust validation applications

A network design consists of (i) invariant parameters,
which cannot be changed (or are costly to change) across
failures and/or demands; and (ii) adaptable parameters,
which may be flexibly chosen for any scenario. Our
framework ensures that the choice of invariant parame-
ters is acceptable across a set of demands and/or failures.
Below, we present motivating examples.

Topology Design. In designing network topologies,
operators must determine what links to lease and how
much capacity to provision. While the set of links and
their capacities is difficult to change across failures and
demands, the network may adapt by re-routing traffic.

MPLS Tunnel Selection. A common traffic engineer-
ing practice is to use tunnels (e.g., MPLS [42]) between

each ingress and egress switch, to ensure a core network
that does not need to run the BGP protocol. In such set-
tings, a light-weight adaptation mechanism is to switch
traffic across k pre-selected tunnels between each source
destination pair, which only involves changing flow ta-
bles in appropriate ingress switches [29, 30]. Changing
tunnels is more heavy-weight since the flow tables of in-
ternal switches also need to be modified. A good choice
of pre-selected tunnels can lower the frequency of chang-
ing tunnels in response to fluctuations in demand.

Middlebox placement. Network policy may require
that some of the flows traverse a set of middleboxes such
as firewalls and intrusion detection systems (IDS) [39, 7].
While the placement of network middleboxes typically
occurs over relatively longer time-scales, traffic may be
re-routed to handle normal traffic fluctuations or failures.

In these examples, the topology itself, and the set of
tunnels and placement of middleboxes as applicable are
invariant parameters, while the fraction of traffic sent
along a given tunnel is an adaptable parameter.

Robust validation may be performed at initial design
time, as well as in a continual fashion as the network
evolves, and new projections on demands are available.
Robust validation may indicate the network is no longer
able to cope with the scenarios of interest, requiring the
operator to consider changes to the design (e.g., by pro-
visioning more capacity on links). Further, it can pro-
vide information on which scenario causes the network
requirements to be violated, and aid in determining de-
sign changes to address the violations.

2.2 Robust validation framework

Our framework is closely related to robust optimization.
In traditional robust optimization, input parameters be-
long to an uncertainty set, and the objective is minimized
across any parameter choice in the set [12, 14]. Further,
recourse actions may be considered that depend on the
specific parameter value. In the networking context, a
typical recourse action involves rerouting traffic to han-
dle a change in traffic matrix or failure. The robust opti-
mization literature considers limited forms of recourse
actions, primarily for tractability reasons, which may
lead to more conservative estimates of worst-case per-
formance (§4.4). In contrast, we model richer network
adaptation, and tackle the resulting intractable problems.
Prior approaches can be seen as special cases of our more
general framework discussed below:

Metrics to capture performance of network design.
Our framework can validate a variety of network metrics
such as link utilizations, and bandwidth assigned to la-
tency sensitive flows. For concreteness, in this paper, we
focus on the utilization of the most congested link (which
we will refer to as Maximum Link Utilization (MLU), a
widely used objective function [9, 49, 50]. Though we do

not discuss this extensively, our framework also applies
to other common metrics of link utilizations (e.g., sum
of penalties assigned to individual links, where penalties
are convex functions of link utilizations [48, 22, 24]). We
focus on utilizations given their extensive use in the traf-
fic engineering literature, and since they reflect applica-
tion performance (e.g., throughput for bandwidth sensi-
tive applications is inversely related to utilizations).

Characterizing uncertainty in network conditions.
We seek to validate that a network design performs well
across demands and failure scenarios of interest. A typi-
cal set of failure scenarios to consider is all simultaneous
failures of F or fewer links [50, 48]. The range of de-
mands may be specified in multiple ways. A common
model is to specify a set of historical traffic matrices,
and require that all demands based on standard prediction
models are considered. We formally discuss this model
as well as other models in §4.3 and §5.2.

Modeling how networks adapt. Networks may re-
spond to failures, and changes in demand by rerouting
traffic in the best possible fashion to keep utilizations
low. This can be achieved by determining the optimal
routing (MCF) for a given scenario. This design point
is becoming increasingly practical with the adoption of
SDNs, given that periodic reoptimization for network
state is feasible. Other models may allow adaptation,
but with constraints. For instance, in the MPLS tunnel-
ing example, the network may adapt by changing how
traffic is split across pre-selected tunnels between each
ingress and egress pair, though the tunnels themselves do
not change. This corresponds well to SDN deployments
where only edge routers are SDN enabled [17]. Finally,
policy constraints (e.g., a requirement that a set of mid-
dleboxes be traversed) may constrain how networks may
adapt [47, 39, 7].

3 Formalizing robust validation

3.1 General problem structure

Let X denote the uncertainty set (possibly continuous
and non-enumerable) of demands, or failures over which
a given network design must be validated. The design
includes all parameters that must remain invariant with
changes in demands and failures (e.g., network topology,
selection of tunnels, placement of middleboxes). For any
given scenario x ∈ X , the network may adapt by routing
traffic appropriately as described in §2.2.

Let y denote the parameters determined by the network
when adapting to scenario x. This includes how traffic is
routed – e.g., in the tunneling context, y includes param-
eters that capture how traffic must be split across tunnels
– though there may be additional variables determined
as we discuss in §3.2. Formally, the network validation

problem may be written as:
F∗ = max

x∈X
min

y∈Y (x)
F(x,y) (1)

The inner minimization captures that for any given sce-
nario x ∈ X , the network determines y in a manner that
minimizes an objective function F(x,y) from a set of per-
missible strategies Y (x). For the fully flexible routing
model, Y (x) corresponds to strategies permitted by the
standard MCF constraints [21], while for routing with
middlebox policies, only strategies that ensure the de-
sired set of middleboxes are traversed are permitted. The
outer maximization robustly captures the worst-case per-
formance across the set of scenarios X , assuming the net-
work adapts in the best possible fashion for each x.

In this paper, we focus on objective functions F(x,y)
that minimize the MLU as discussed in §2.2. We refer to
(1) as the validation problem, since it can be used to ver-
ify that a chosen design meets a desired utilization goal.
For instance, when applied to topology design, F∗ > 1
indicates the network is not sufficiently provisioned to
handle all failures and demands of interest.

For any given scenario x, the inner problem is typi-
cally easy to solve (a linear program (LP)), since the net-
work must compute y online to adapt to any failure or
shift in demand. The validation problem is however chal-
lenging since exponentially many (and potentially non-
enumerable) scenarios x must be considered.

3.2 Concrete validation problems

We next relate the general formulation (1) to two con-
crete case studies, chosen both for their practical impor-
tance and to illustrate key ideas of the framework.
• The first case study validates topology design against

failures, with the most flexible network adaptation.
• The second example validates tunnel selection across

variable demands, with network adaptivity con-
strained to splitting traffic across pre-selected tunnels.

The examples illustrate the generality of our framework
in terms of its ability to consider both failures and de-
mands (discrete and continuous uncertainty sets), and
different types of adaptivity models (flexible and more
constrained). However, our framework applies to a wider
range of applications including simultaneously varying
demands and failures, other adaptation models such as
middlebox constraints, and other ways of combining
adaptation models and uncertainty sets (§5).

We use the notation x = (x f ,xd) where x f denotes
a failure scenario and xd denotes a particular demand,
dropping superscripts when the context is clear. Like-
wise, we use y = (r,U) where r denotes how traffic is
routed, and U denotes utilization metrics computed as a
result. Since our focus is on minimizing MLU, the in-
ner problem may be expressed as miny∈Y (x) U , with con-
straints in Y (x) which express the requirement that the

Y (x) =

(r,U)

∣∣∣∣∣∣
γk(x)U ≥ ∑i∈I βik(x)ri k ∈ K
∑i∈I αi j(x)ri ≥ δ j(x) j ∈ J
r ≥ 0


F(x,r,U) =U

Figure 1: General structure of determining routes (r) for
scenario x to minimize MLU (U).

(W)max
x,v,λ

∑ j∈J δ j(x)v j

s.t. ∑ j∈J αi j(x)v j ≤∑k∈K βik(x)λk i ∈ I

∑k∈K γk(x)λk = 1

x ∈ X ,(v j) j∈J ≥ 0,(λk)k∈K ≥ 0

Figure 2: General structure of validation problem derived
from Figure 1 as a single-stage formulation.

utilization of every link is at most U . We now discuss
how constraints Y (x) are specified for our case studies.

Fully flexible routing under uncertain failures. Let
x f

i j be a binary variable which is 1 if link 〈i, j〉 ∈ E (the
set of links) has failed, and 0 otherwise. Since we do not
consider variable demands in this case study, we let dit
denote the known demand from source i to destination t.
Let ri jt denote the total traffic to t carried on link 〈i, j〉.
Let ci j denote the capacity of link 〈i, j〉. Then, Y (x) cor-
responds to the standard MCF constraints [21], and may
be expressed as:

Uci j(1− x f
i j)≥∑t ri jt 〈i, j〉 ∈ E

∑ j ri jt −∑ j r jit =

{
dit ∀t, i 6= t
−∑ j d jt ∀t, i = t

ri jt ≥ 0 ∀i, j, t

(2)

The first constraint ensures that (i) the utilization of link
〈i, j〉 is at most U for all non-failed links; and (ii) no
traffic is carried on a failed link. The second constraint
captures flow balance requirements. Specifically, the net
outflow from node i to destination t is the total traffic
destined to t when i = t, and dit otherwise.

Tunnel constraints and uncertain demands. Given
a set of pre-selected tunnels, let Ti jstk be a binary param-
eter that denotes whether the link 〈i, j〉 is on tunnel k for
traffic from the source s to destination t. Let xd

st denote
the total s− t traffic, and rstk the subset of this traffic on
tunnel k. Then, Y (x) may be expressed as:

Uci j ≥∑s,t,k rstkTi jstk 〈i, j〉 ∈ E

∑k rstk = xd
st ∀s, t; rstk ≥ 0 ∀s, t,k

(3)

The first constraint ensures that the utilization of every
link is bounded by U . The second constraint captures
that the sum of the traffic on all tunnels k for each s− t
pair must add up to the total demand of that pair.

3.3 Non-linear reformulation

The validation problem in (1) has been represented in a
form referred to as a two-stage formulation (e.g., [15]).
In the two-stage problem, the optimal second-stage vari-
ables (y) depend on the first-stage (x). We simplify this
problem by re-expressing it as a single-stage problem,
where all the variables are determined simultaneously.

In many network validation problems, including our
case studies, the inner problem miny∈Y (x) F(x,y) is an
LP in variable y = (r,U) for a fixed scenario x. This is
reasonable because online adaptations of y must be com-
putationally efficient. Figure 1 shows the general struc-
ture of the LP. Notice that the coefficients depend on sce-
nario x. For example, in the failure validation case study,
αi j(x), βik(x), and δ j(x) are constants while γk(x) is a
linear function of x. For a specific value of x, the inner
problem is an LP.

It is well known that every LP (referred to as a primal
form) involving a minimization objective may be con-
verted into an equivalent maximization LP (referred to as
a dual form) which achieves the same objective (assum-
ing the dual is feasible) [19]. The validation problem can
then be expressed as a single-stage formulation by:
1. Rewriting miny∈Y (x) F(x,y) as an equivalent maxi-

mization problem using LP duality.
2. Adding the constraints x ∈ X to the dual form to cap-

ture the set of demands or failure scenarios of interest.
Figure 2 shows the general structure of the validation
problem as a single-stage formulation. Notice that vari-
ables r and U in Figure 1 have been replaced by the dual
variables λ and v. Moreover, x is now a variable since the
problem validates utilization over all uncertain scenarios.

Formulations (F) and (V) in Figure 3 capture the vali-
dation problem for our case studies involving failures (2)
and variable demands (3) respectively. At first glance,
both formulations appear non-linear – the objective in
(V) involves products of xd and u variables, while the
second constraint of (F) involves a product of variables
x f

i j and λi j. In §4.2, we show that (F) can be written as an
integer program (IP) when X is the set of scenarios in-
volving the failure of f or fewer links simultaneously.
Regardless, both (V) and (F) are hard problems (non-
linear non-convex and IP respectively).

4 Making validation tractable
§3.3 has shown that the validation problems, including
our case studies, are typically intractable, Given the in-
tractable nature of the problems, we do not solve them to
optimality, rather seek ways to obtain upper bounds on
the true optimal of (1). Since the purpose of validation
is to ensure a design is acceptable, an upper bound that
satisfies the design criteria is sufficient.

We aim for a general approach to tackle a wide range

(F)max
v,λ ,x

∑t,i 6=t dit(vit − vtt)

s.t. vit − v jt ≤ λi j ∀t,〈i, j〉 ∈ E

∑〈i, j〉∈E λi jci j(1− x f
i j) = 1

x f ∈ X ; x f
i j ∈ {0,1}; λi j ≥ 0, 〈i, j〉 ∈ E

(V)max
v,λ ,x

∑s,t xd
stvst

s.t. vst ≤∑〈i, j〉∈E Ti jstkλi j ∀s, t,k

∑〈i, j〉∈E λi jci j = 1

xd ∈ X ; λi j ≥ 0, 〈i, j〉 ∈ E

Figure 3: Formulations of validation problems for failure case study (F), and tunnel selection case study (V).

of validation problems. In the optimization literature,
problems such as (1) are referred to as robust optimiza-
tion problems and have been tackled mostly for limited
adaptations. Instead, we use non-linear programming
techniques, and show they achieve better bounds, a find-
ing that has applications beyond networking.

We introduce the approach in §4.1, and how it ap-
plies to our case studies involving failures and vari-
able demands in §4.2 and §4.3 respectively. Although
our framework is general, analysis of problem structure
can substantially improve the quality of bounds, as we
will show for the failure case study in §4.2. Finally,
in §4.4, we compare our techniques with benchmarks
drawn from the network management and robust opti-
mization literature, and show that our techniques can ob-
tain tighter bounds than these approaches.

4.1 Relaxing validation problems

Our approach works by relaxing the validation problems
into more tractable LPs, and obtaining an upper bound
on the worst-case link utilizations across scenarios. An
optimization problem L is a relaxation of a problem N if
every feasible solution in N can be mapped to a feasible
solution in L, and the mapped solution’s objective value
in N is no better than that of its mapping in L.

Reformulation-Linearization Technique (RLT) [44] is
a general approach to relax non-linear integer problems.
The technique reformulates the problem by (i) adding
new constraints obtained by taking products of existing
constraints; and (ii) linearizing the resulting formulation
by replacing monomials with new variables. For our
problem (W), RLT can be constructed as long as αi j(x),
βik(x) and γk(x) are polynomial functions.

For example, consider a non-linear optimization prob-
lem where the objective is to minimize xy−x+y subject
to the constraints: (i) (x− 2) ≥ 0; (ii) (3− x) ≥ 0; (iii)
(y−3)≥ 0; and (iv) (4−y)≥ 0. Products of pairs of con-
straints are taken – e.g., the product of constraints (i) and
(iii) results in a new derived constraint (x−2)(y−3)≥ 0,
i.e., xy− 3x− 2y + 6 ≥ 0. The product term xy is re-
placed by a new variable z. The objective is rewritten as
z− x+ y, and the derived constraint in the previous step
expressed as z−3x−2y+6 ≥ 0. The resulting problem
is linear, as it no longer has product terms. However, it
is a relaxation in the sense that constraints (e.g., z = xy)
that must be present to accurately capture the original
problem are not included in the new problem.

The above represents the first step in a hierarchy of
relaxations and the next steps involve multiplying more
than two constraints and linearizing as discussed above.
Further, the RLT hierarchy can be tightened using convex
relaxations of monomials, which yield other well known
hierarchies. As long as the set of inequalities in the verifi-
cation problem define a bounded set, higher levels of this
hierarchy of relaxations converge to the optimal value of
the non-linear or integer program [27, 44]. Since the gen-
erated LPs can be large (more variables and constraints),
we restrict attention to the first level of this hierarchy.
Further, in practice, it often suffices to consider a sub-
set of products even for the first level, which keeps the
complexity of the resulting program manageable.

4.2 Validation across failure scenarios

Here, we discuss the RLT relaxation technique for our
failure case study (formulation (F)). For concreteness,
we consider all failure scenarios involving the simultane-
ous failure of f or fewer links. This failure model is used
commonly in practice [50]. We discuss how to general-
ize the failure model later (§5). Incorporating this model
results in replacing the constraint x f

i j ∈ X in (F) with the

constraints ∑〈i, j〉∈E x f
i j ≤ f , and x f

i j ∈ {0,1}.
Empirically, a simple RLT relaxation of the formula-

tion does not yield a sufficiently tight upper bound to the
validation problem. Instead, we reformulate the valida-
tion problem (F), and consequently derive constraints for
the RLT relaxation, as described below:

Reformulating the validation problem. We add vari-
ables to (2), in a way that gives more flexibility in choos-
ing solutions, but does not change the optimum. Adding
variables to a primal results in additional constraints to
the dual. Consequently, we derive constraints for (F) and
the associated RLT relaxation LP, which are derived from
the LP dual of (2), thus improving the bound on utiliza-
tion. Specifically, we reformulate (2) as follows:

Uci j(1− x f
i j)+ai j ≥∑t ri jt 〈i, j〉 ∈ E

∑ j ri jt −∑ j r jit =

{
d′it ∀t, i 6= t
−∑ j d′jt ∀t, i = t

ri jt ,ai j ≥ 0 ∀i, j, t

d′it =

{
di j +ai j 〈i, j〉 ∈ E
di j 〈i, t〉 6∈ E

(4)

We augment each link 〈i, j〉’s capacity with the extra

(variable) slack capacity ai j for which we reserve the ca-
pacity along alternate paths in the network. In particu-
lar, the first constraint allows up to ai j of the traffic on
link 〈i, j〉 to be bypassed on the associated virtual link
without counting it against the utilization of link 〈i, j〉.
To compensate for this, we increase the total traffic that
must be routed from i to j by ai j, as indicated by the last
constraint. It can be shown that (4) achieves the same op-
timal as (2). Further, because any feasible solution to (2)
is also feasible to (4) (with slack variables ai j being 0),
(4) is more flexible in that it admits additional solutions.

Following the procedure outlined in Figures 1 and 2,
this reformulated primal yields a reformulated validation
problem (F’) which consists of (F) with constraints λi j ≤
vi j− v j j, ∀〈i, j〉 ∈ E. Then, (F’) simplifies to:

(G)max∑i,t ditvit

vit − v jt ≤ vi j ∀t,〈i, j〉 ∈ E (5)

∑〈i, j〉∈E vi jci j(1− x f
i j) = 1

∑〈i, j〉∈E x f
i j = f (6)

vit ≥ 0,vtt = 0 ∀i, t (7)

x f
i j ∈ {0,1}, 〈i, j〉 ∈ E (8)

Proposition 1. Reformulation (G) achieves the same op-
timal value as the original validation problem (F).

The proof (see Appendix) shows that an optimal solu-
tion of (F’) satisfies vtt = 0, ∀t and vi j = λi j, ∀〈i, j〉 ∈ E.
The proposition then follows since (F) and (F’) achieve
the same optimal value having been derived respectively
from primals (2) and (4) that achieve the same optimal.

Although (G) is non-linear because the product vi jx
f
i j

is in the second constraint, we note that (G) has a finite
objective only if the minimum cardinality edge-cut set of
the topology contains more than f links, a condition that
can be verified in polynomial time [18]. Moreover, we
show (see Appendix) that if f failures cannot disconnect
the nodes of the network, vi j is bounded. Then, standard
linearization of vi jx

f
i j that uses bounds on vi j and x f

i j ∈
{0,1} reduces (G) to a mixed-integer linear program.

Relaxing the validation problem. Since the valida-
tion problem (G) is still intractable, we derive its first-
level RLT relaxation as follows. First, the binary require-
ment x f

i j ∈{0,1} is replaced by bound constraints, x f
i j ≥ 0

and (1− x f
i j)≥ 0. Next, the product of these bound con-

straints is taken with (5) and (7) and the product of (6)
and (7) is taken. Finally, the nonlinear constraints are
relaxed by introducing vx f

i ji′ j′ to denote vi jx
f
i′ j′ .

4.3 Validation across traffic demands

We now consider the tunnel selection case study (for-
mulation (V)) and the problem of verifying utilization

against uncertain demands. We discuss two models for
specifying demands, and discuss the RLT relaxations.

Specifying demands. We consider two models:
• Predicted demand: This corresponds to scenarios when
demands may be predicted from past history, a com-
monly used practice today. Consider optimizing the
system for a set of known historical traffic matrices
{dh}h∈H . As observed in [49], many predictors includ-
ing the exponential moving average estimate the traffic
matrix for a given interval as a convex combination of
previously seen matrices. It may be desirable to verify
the system for the convex hull of {d1,d2, . . .dh}, which
ensures that all such predictors can be serviced with rea-
sonable utilization. Specifically, this may be modeled by
replacing the constraint xd ∈ X in (V) by the constraints
xd = ∑h∈H xhdh, xh ≥ 0 and ∑h∈H xh = 1.
• All demands that can be handled by the topology: It
may be desirable to understand the extent to which a
topology must be over-provisioned if a tunneling solu-
tion is used compared to using an optimal MCF solution.
This may be modeled by replacing the constraint xd ∈ X
in (V) by the standard MCF constraints with xd

st denot-
ing demand from source s to destination t, and xg

i jt a flow
variable denoting traffic to t on link 〈i, j〉.

Obtaining the RLT relaxation. We obtain the RLT
relaxation by taking the product of (i) inequalities involv-
ing v and λ variables with constraints of the form x≥ 0;
(ii) inequalities involving x variables with constraints of
the for λ ≥ 0; (iii) inequalities involving v or λ with
inequalities involving x; and (iv) equalities involving x
variables with v variables.

4.4 Comparisons to alternate approaches

A key novelty of our framework is that it provides
theoretical bounds on network performance across fail-
ures/demands, while allowing flexible adaptation. We
can show that each RLT constraint we introduce in the
problem makes the adaptations more flexible in a spe-
cific way. In contrast, prior theoretical work has focused
on limited forms of adaptivity and we use them as bench-
marks for our RLT relaxation approach. We show that
our approach provides bounds that are at least as tight as
these prior theoretical works, and later show empirically
(§6) that the bounds are better in practice.

Oblivious approaches and generalizations. Oblivi-
ous routing [11, 28, 16, 9, 49] bounds utilizations across
all links for a set of demands, while limiting how the
network adapts to any given demand. While oblivious
routing has mainly been considered in the context of
MCF [9, 49], the oblivious approach applies to other net-
working contexts. For instance, in our tunneling case
study, an Oblivious Tunneling formulation constrains ystk
(traffic on tunnel k from s to t) to be of the form ystk =
αstkxd

st , where αstk is invariant across demands.

The robust optimization literature has considered a
more general form of adaptation than an oblivious ap-
proach, which can enable tighter bounds on worst-case
link utilization [15]. Here, every variable yi (e.g., each
ystk variable in our tunneling example) that a network
determines for a given scenario x, is constrained to have
the form yi = αi0 + ∑ j αi jx j where all αi j coefficients
must be invariant with x. Note that x j variables capture
scenario x (e.g., in our tunneling example, x is a traffic
matrix, and each x j is a cell in the matrix). In optimiza-
tion terminology, yi is an affine function of x. Note that
an oblivious approach is a special case of affine policies
where many of the α coefficients are zero.

We say the linearity requirement has been met when
constraints Y (x), and objective F(x,y) are linear in (x,y).
For example, in the tunneling case study, the constraints
(3) and the objective, U , are linear in U , r, and xd . Fur-
ther, the conditions are satisfied by the original oblivious
routing [9, 49], and while we do not elaborate, by other
case studies such as routing with middleboxes. When
network adaptation is restricted to affine policies, and the
linearity requirement is met, an optimal set of αi j coeffi-
cients may be computed efficiently using LP to minimize
worst-case link utilizations [13]. We now state our result:

Proposition 2. When the linearity requirement is met, an
optimal affine policy can be efficiently computed. Under
these circumstances, the first-level RLT relaxation for a
validation problem is at least as tight as the bound from
the optimal affine policy.

The proof involves taking duals of the RLT relaxation.
We do not elaborate on the technical details, and focus on
the implications for validation. Further, for predicted de-
mand (§4.3), Proposition 2 already implies that the first-
level RLT can provide as tight a bound as an oblivious
approach. However, we have shown a stronger result:

Proposition 3. For the predicted demand case, the first-
level RLT relaxation is an exact solution, while the obliv-
ious solution may not always be exact.

Some of our case studies do not satisfy the linearity
requirement. In particular, the requirement is not satis-
fied for our case study involving failures (2) because the
first constraint in (2) involves a non-linear term (prod-
uct of U and x). Under these circumstances, an optimal
affine policy may not be efficiently computable, and is
thus not a viable benchmark. However, our framework
is still applicable (as our failure case study has shown),
since it only requires that the weaker condition that Y (x)
is linear in y variables for fixed x needs to be satisfied.

Benchmark for failure case study. R3 [50] tack-
les the validation problem under failures, but with the
more limited goal of determining whether a network
can handle all failures scenarios without congestion (i.e.,

whether MLU ≤ 1), and with restrictions on how the net-
work can adapt. R3 replaces failures with virtual de-
mands (the traffic to be rerouted on failures) and com-
putes an oblivious protection routing (MCF) for the vir-
tual demand associated with each link. The formulation
is only valid when MLU ≤ 1, since the virtual demand
on each link is assumed to not exceed the link capacity.
In contrast, our formulation (G), and the associated first-
level RLT relaxation is valid for any MLU, which can
aid in tasks such as determining which failure scenarios
are bad when the network is not sufficiently provisioned,
and how best to augment link capacities to handle fail-
ures (§6.3). When MLU ≤ 1, the bounds from R3 are
conservative for our validation problem owing to the re-
striction on adaptations and since the impact of the fail-
ures is over-estimated. We have been able to show:

Proposition 4. The first-level RLT relaxation of (G) pro-
vides at least as tight a bound as R3, whenever R3 pro-
vides a valid bound.

In fact, we can impose similar restrictions as R3 on
how traffic is rerouted in response to failures by appropri-
ately choosing a subset of RLT constraints. Yet, the MLU
will reduce because we optimally chose slack ai j instead
of assuming it is ci j. The proof of Proposition 4 consid-
ers a special affine policy for y = (r,U,a) in (4), where
U does not adapt with x and ai j = αi jxi j. We show that
all such policies that yield U ≤ 1 can be made feasible to
R3, and, therefore, the bound for R3 is no better than the
one obtained with this policy restriction. Since RLT en-
compasses search over these policies, the result follows.
We will show in §6 that RLT yields tighter bounds than
R3 whenever the network utilization is less than 1.

5 Aiding synthesis and generalizations
§4 has shown how our framework applies to two valida-
tion case studies. We next discuss applications to robust
design (§5.1), and to other validation problems (§5.2).

5.1 Augmenting capacities to bound utilization

To see how our validation framework can help in robust
design, consider the problem of incrementally adding ca-
pacity to existing links to ensure all failure scenarios of
interest can be handled (with U ≤ 1), while minimizing
the costs of augmented capacity. We can extend (1) to
model the capacity augmentation problem as follows:

min
δ≥0

max
x f∈X

min

{
∑
〈i, j〉∈E

wi jδi j

∣∣∣∣∣(ci j +δi j)(1− x f
i j)≥∑

t
ri jt

r is a routing for d

}
where X is the set of failure scenarios, and δi j and wi j
are respectively the incremental capacity added to link
〈i, j〉, and the cost per unit capacity. Further, r is a rout-
ing for d if r satisfies the flow balance constraints of an
MCF formulation. Then, dualizing the inner minimiza-
tion problem results in a two-stage formulation whose

inner problem is an IP since X is a discrete set. How-
ever, using the RLT relaxation technique presented in our
framework, we replace the inner problem by an upper-
bounding LP which can be dualized to upper-bound the
cost of augmentation. This yields an LP based approach
to conservatively augmenting capacity.

The above discussion also motivates an iterative ap-
proach to design. At each iteration, we solve a capac-
ity augmentation problem considering failure scenarios
identified in earlier rounds. Then, with the new capaci-
ties, we solve the failure validation problem to identify
additional failure scenarios and iterate. At any stage, this
provides a lower bound on the optimal capacity augmen-
tation. Although the iterative procedure works well em-
pirically for capacity augmentation, in other robust de-
sign problems, finding the worst uncertainty may be hard
and the procedure may require too many iterations. In
contrast, the LP based approach presented above always
yields a conservative robust design quickly.

5.2 More general validation problems

In this section, we discuss how our framework can tackle
other validation problems beyond our case studies.

Routing with middlebox constraints. Our frame-
work may be used to obtain bounds on MLU when rout-
ing is constrained to satisfy middlebox policies [39, 47,
7]. The requirement that traffic from s to t be routed
across a series of middleboxes can be modeled by asso-
ciating each flow with a state variable which indicates a
given middlebox has been traversed. The state is modi-
fied by each middlebox on the path. (2) is reformulated
by introducing variables ri jstφ which denote the flow on
link 〈i, j〉 from s to t and for packets with state φ , and
appropriately modifying the flow balance equations, and
capacity constraints. The validation problem may now
be formulated and solved across failures, or demands us-
ing the same approach as our two case studies.

Simultaneously varying failures and demands. We
may desire to ensure utilizations are acceptable across
any combination of failures and demands. This can be
achieved by directly taking (F), and replacing demand
variables dst with variables xd

st , and adding constraints
for both xd and x f using previously studied models. A
similar RLT relaxation applies in this case as well.

Handling shared risk link groups (SRLGs). We
have considered a model where at most f links fail simul-
taneously. In practice, multiple links may fail together
(e.g., a fiber cut may impact all links in the affected fiber
bundle) [48]. The set of link groups G is considered, and
each group g is associated with a set of links that may
fail together. We introduce variables x f

g which indicates
whether a particular link group has failed. The valida-
tion problem is modeled by considering formulation (F),
and replacing the constraints x f ∈ X with the constraints

Network Nodes Edges Date Link Capacity

Abilene 11 28 2004 homogeneous
ANS 18 50 2011 homogeneous

GEANT 41 118 2014 heterogeneous

Table 1: Topologies

x f
i j = 1−∏〈i, j〉∈g,g∈G(1− x f

g), where all x f
i j and x f

g vari-

ables are binary, and ∑g∈G x f
g ≤ f . This captures that link

〈i, j〉 has failed iff any group that it belongs to has failed,
and at most f link groups may fail simultaneously. To
eliminate the product terms, the first constraint can be
linearized with the constraints x f

i j ≥ x f
g ,〈i, j〉 ∈ g,g ∈ G,

and the constraint x f
i j ≤ ∑〈i, j〉∈g,g∈G x f

g . An RLT relax-
ation may now be applied as normal. Alternately, other
linearized constraints can be derived from exploiting this
relationship within the RLT scheme that we do not detail.

6 Evaluation
We evaluate the effectiveness of our framework in vali-
dating topology design under failures (§6.1), and tunnel
selection under variable demands (§6.4). We compare
our performance bounds with those obtained using ex-
isting approaches. Further, we show we can (i) identify
bad failure scenarios (§6.2), (ii) optimally augment net-
work capacity to handle failures (§6.3), and (iii) evaluate
common design heuristics for tunnel selection (§6.4).

We evaluate our work using real topologies obtained
from the Internet TopologyZoo [6]. We focus on three
topologies: Abilene, ANS and GEANT [2] (Table 1),
where Abilene and ANS have homogeneous link ca-
pacities, and GEANT has heterogeneous link capacities.
All our LPs and IPs were run using CPLEX [3] (ver-
sion 12.5.1.0). Our primary performance metric is MLU
(§2.2) though we also consider how MLU impacts la-
tency through emulation on an SDN testbed (§6.2).

6.1 Validation across failure scenarios

We evaluate the efficacy of our approach for determining
MLU across failure scenarios, comparing MLU bounds
produced by our RLT-based LP (§4.2) with (i) the IP (G)
which can determine the optimal MLU value (§4.2); and
(ii) R3 [50] (§4.4), the best known current approach. (G)
is an intractable problem used only for comparison, and
the running time of both our RLT relaxation and (G) is
shown at the end of this section. We report the MLU
returned by the R3 formulation instead of just the bi-
nary decision of whether MLU ≤ 1 used in the original
work. Recall R3 only provides valid bounds on MLU
when MLU ≤ 1 (§4.4). We study failure scenarios in-
volving f arbitrary link failures, f ranging from 1 to 3,
which practitioners indicated were important to consider.
To ensure connectivity after multiple failures, we elimi-
nated one-degree nodes from ANS and GEANT topolo-
gies, and modeled each edge as consisting of 2 sub-links

00:00 06:00 12:00 18:00 23:59
0.00

0.25

0.50

0.75

1.00

1.25

1.50
M

a
x
im

u
m

 L
in

k
 U

ti
liz

a
ti

o
n
 (

M
LU

)
No failures

R3 3 failures

RLT 3 failures

(a) Abilene: baseline and 3 failures

00:00 06:00 12:00 18:00 23:59
0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
a
x
im

u
m

 L
in

k
 U

ti
liz

a
ti

o
n
 (

M
LU

)

R3 1 failure

R3 2 failures

RLT 1 failure

RLT 2 failures

(b) Abilene: 1 and 2 failures

1 2
 RLT

3 1
 R3

2 1 2
 RLT

3 1
 R3

2
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

N
o
rm

a
liz

e
d
 M

LU

f =

ANS GEANT

(c) ANS and GEANT: normalized MLU

Figure 4: Validation across failure scenarios, comparing RLT and R3, for various topologies.

of Failures RLT (sec) IP (sec) % IP Completed

1 640.58 60.50 100
2 622.60 394.97 100
3 607.68 3890.16 60
4 598.31 – 0
5 586.79 – 0

Table 2: Average running time of the RLT scheme and
the optimal IP for GEANT. For the optimal IP, the aver-
age running time is computed with instances that com-
pleted in 2 hours.

of equal capacity for all topologies. The resulting ANS
(GEANT) network has 17 (32) nodes and 96 (200) edges.

We begin by presenting results with the Abilene topol-
ogy using real traffic data [1]. Figure 4a shows the MLU
for f = 3, for the RLT and R3 schemes for all traffic
matrices measured on April 15th, 2004, a day which ex-
perienced a wide variety of traffic patterns. The MLU
under normal conditions (no failures) is shown as a base-
line. The RLT scheme matches the optimal IP scheme
for all traffic matrices, and hence we do not present the
IP scheme. The graph shows that several traffic matrices
stress the network to achieve MLU > 1, indicating it is
not provisioned to handle all three simultaneous link fail-
ures. Further, the RLT scheme achieves a tighter bound
than R3 for all cases where MLU ≤ 1, and unlike R3, it
can provide valid bounds even when MLU ≥ 1.

Figure 4b presents results for Abilene, but for f = 1
and 2. Again, the optimal IP is not shown, since RLT
matches optimal. The graph shows the MLU is under
1 for all matrices, indicating the network can handle all
possible 2 link failures. Moreover, RLT achieves a tighter
bound on MLU than R3 for all matrices. We repeat the
experiments with ANS and GEANT topologies. Since
actual traffic matrices were not available to us, we gen-
erated multiple traffic matrices for each topology using
the gravity model [52]. The traffic matrices were chosen
so as to keep the link utilizations between 0.3 and 0.45
under normal conditions. Figures 4c presents the normal-
ized MLU for R3 and RLT, relative to the optimal IP for
each f . Boxplots depict variation across the matrices.
The graph shows that for all f and all traffic matrices,

RLT always achieves a normalized MLU of 1, indicating
it always matches optimal. The normalized MLU with
R3 is higher, e.g., ranging from 1.15 to 1.57 for ANS
f = 2. Note that results for R3 are not shown for f =
3 because all traffic matrices with GEANT, and all but 2
matrices with ANS achieved an optimal MLU above 1,
indicating the network was not sufficiently provisioned
for them. In contrast, the optimal MLU was under 1 for
f = 1 and 2, for both topologies, and all traffic matrices.

A surprising aspect of our results is that across all
topologies and traffic matrices, the RLT scheme matches
the optimal IP. We have also investigated this further for
other synthetic topologies and other settings, and have
found RLT to match optimal across all the examples. We
leave to future work further investigation of whether the
first-level RLT in fact can be proven to match the optimal
for this case study, or if counter-examples exist.

Running time. We report the running time (Table 2)
from experiments with GEANT, the largest topology in
our set, on a machine with 8-core 3.00 GHz Intel Xeon
CPU and 94 GB memory. To create an even larger topol-
ogy, we modeled each edge as consisting of 10 sub-links
of equal capacity. The resulting network has 32 nodes
and 1000 edges. Table 2 shows the average running time
of RLT and the optimal IP using 10 traffic matrices gen-
erated by the gravity model. Since many IP instances
didn’t finish even after several hours, we set a 2-hour
limit to the solver. Results show that the running time
stays stable for RLT, but explodes for the optimal IP, as
the number of failures increases. At f = 3, 40% of the IP
instances did not converge. At f = 4 and 5, none of the
IP instances converged, and the gaps1 are larger than 0.5
in all the cases, indicating that the IP solutions found by
the solver within 2 hours are still far from the optimal.

6.2 Impact of failures on application performance

Our validation framework can be used to identify failure
scenarios that result in high MLU, which could then be
emulated on a network testbed to study application per-
formance metrics such as latency under such scenarios.

1gap = (UB - LB) / UB, where UB and LB denote the upper bound
and the lower bound of the optimal objective value.

0 50 100 150 200 250 300 350 400
Round Trip Time (ms)

0.2

0.4

0.6

0.8

1.0

C
D

F

MLU = 0.57

MLU = 0.40

MLU = 0.34

MLU = 1.27

MLU = 1.14

MLU = 1.13

Figure 5: Latency CDF of different failure scenarios.

Finding bad failure scenarios. In general, it is hard to
find failure scenarios for the original validation problem
(G) that result in a high MLU since it is an IP. A random
search is inefficient – e.g., for a certain Abilene traffic
matrix, a brute-force search revealed only 0.05% of 3-
failure scenarios achieved MLU > 1, while 0.08% cases
achieved MLU > 0.8.

We use a branch and bound algorithm leveraging our
RLT LP relaxation. At each exploration step, the fail-
ure status of a subset of links is fixed at each node (in
the initial step, none of the links are fixed), and the re-
laxation LP is run to determine a (possibly fractional)
solution that results in the highest MLU for the LP. The
link with the highest fractional failure (say 〈i, j〉) is con-
sidered, and the LP is rerun fixing x f

i j as each of 0 and
1. Branches where the MLU < 1 are pruned. Of the re-
maining candidate unexplored nodes, the node with the
highest MLU is visited. Ties are broken by picking the
node at the lowest level in the search tree. The process
is run until an integral solution is found, and the search
procedure could be continued to determine multiple in-
tegral solutions. If the LP relaxation is tight, the search
procedure solves at most as many LPs as the number of
edges in the topology to find a failure scenario that re-
sults in the highest MLU, and our empirical experiments
show it takes much fewer steps in practice.

Emulation on an SDN testbed. We emulated the
Abilene topology on Mininet [4]. Traffic was generated
using the Ostinato traffic generator [5], and an actual
Abilene traffic matrix snapshot. We used the procedure
above together with our validation framework to identify
multiple failure scenarios where MLU exceeded 1. Fig-
ure 5 presents measured Round Trip Time (RTT). Each
curve corresponds to a failure scenario, and shows a CDF
of the median RTT across all source-destination pairs for
that scenario. The three curves to the right (black) rep-
resent failure scenarios identified by our framework with
MLU > 1. To contrast, we show three other randomly
generated 3-link failure scenarios with lower MLU (red,
and to the left – note the curves overlap). The results
illustrate that RTTs are significantly higher for the high
MLU scenarios identified by our framework.

3

10
76

4

5

8

9

2

1 0

Figure 6: Abilene with links augmented shaded in red.

6.3 Deriving valid capacity augmentations

Our robust validation framework also guides operators in
how best to augment link capacities to guarantee MLU <
1 across failure scenarios. As discussed in §5, our frame-
work can be applied in an iterative approach that achieves
optimal, or may be formulated as a single LP that does
not guarantee optimality but solves efficiently.

Table 3 illustrates the iterative procedure for an Abi-
lene traffic matrix under three simultaneous link failures.
Recall that each iteration consists of (i) a validation step,
which either certifies MLU ≤ 1 for the topology (aug-
mented by capacity increase suggested in prior iteration),
or identifies a violating failure scenario; and (ii) an aug-
mentation step, which identifies minimum capacity aug-
mentation needed to handle all failure scenarios identi-
fied in prior iterations. The procedure terminates when
the validation step certifies MLU ≤ 1. The augmentation
step is a small variant of (2) (see Appendix for details). It
is an LP and can easily incorporate practical constraints
that limit which links can have their capacity augmented.

We have also formulated the problem as an LP with the
stricter requirement that the RLT relaxation of the valida-
tion problem achieves MLU ≤ 1 (§5). The LP achieves
the same optimal augmentation as the iterative approach
above, which is not surprising given that in all instances
we have tried the integrality gap has been 1. More gener-
ally, the design LP yields an augmentation cost no worse
than αOPT+(α − 1)BASE, where OPT is the optimal
augmentation cost, BASE is the cost of the base network
and α is the integrality gap of the RLT relaxation.

6.4 Validation across traffic demands

We next consider how our approach can validate that uti-
lizations are acceptable across demands, focusing on the
tunneling case study. For each topology, we consider
tunnels pre-selected using the following strategies:

Non-robust strategies. These strategies pick tunnels
without explicitly considering tolerance to a range of de-
mands. Specifically, we consider: (i) K-shortest: Here,
the K shortest paths between each source and destina-
tion pair are chosen. Prior works [30, 29] have used this
approach to generate an initial candidate set of tunnels,
and [30] ultimately picks a subset in a demand-sensitive
manner; (ii) Shortest-Disjoint: Here, the shortest path
is selected. Among other paths, one that overlaps the
least with prior choices is selected in an iterative fash-

2 3
 K-shortest

4 6 2 3
 Shortest-Disjoint

4 6 2 3
 Robust

4 6
1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00
M

a
x
im

u
m

 L
in

k
 U

ti
liz

a
ti

o
n
 (

M
LU

)

k =

RLT framework

OBL-TUN

(a) Abilene

2 3
 K-shortest

4 6 2 3
 Shortest-Disjoint

4 6 2 3
 Robust

4 6

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

4.4

M
a
x
im

u
m

 L
in

k
 U

ti
liz

a
ti

o
n
 (

M
LU

)

k =

RLT framework

OBL-TUN

(b) ANS

2 3
 K-shortest

4 6 2 3
 Shortest-Disjoint

4 6 2 3
 Robust

4 6
100

101

102

M
a
x
im

u
m

 L
in

k
 U

ti
liz

a
ti

o
n
 (

M
LU

)

k =

RLT framework

OBL-TUN

(c) GEANT

Figure 7: MLU of RLT framework and Oblivious Tunneling (OBL-TUN) for different tunnel designs and topologies.

ion. Combining path lengths and disjointness is a natural
approach to tunnel selection [46].

Robust strategies. We also consider a heuristic called
Robust, which derives tunnels by decomposing the op-
timal oblivious routing [25] (details in the Appendix).
Since oblivious routing derives an MCF that performs
well across all demands, tunnels derived from such a flow
have the potential to perform well across demands.

For each tunnel selection approach, our goal is to de-
termine MLU with an adaptive strategy, where traffic is
split optimally across tunnels for each demand by solv-
ing (3). Since the associated validation problem is non-
linear, we obtain bounds on MLU using (i) our RLT-
based framework and (ii) an Oblivious Tunneling for-
mulation (abbreviated as OBL-TUN) which minimizes
MLU across all demands under the constraint that the
fraction of traffic on each tunnel cannot vary with de-
mand (§4.4). While both the RLT framework and OBL-
TUN provide upper-bounds on the actual MLU, our
framework can also be used to derive a lower bound.
Specifically, we solve (V) after fixing the demand to the
worst-performing demand for the RLT (or oblivious) re-
laxation. While this already provides a lower bound, we
improve the initial lower bound using a local search pro-
cedure on (V), which involves alternating minimization
on (v,λ) and xd . These are tractable problems since (V)
is linear if either (v,λ) or xd are fixed.

Results. We evaluate a total of six schemes, com-
bining our three tunnel selection heuristics with the two
ways to obtaining bounds on MLU. For the set of de-
mands, we consider all demands that can be routed with
given capacities (§4.3). An MLU higher than 1 indi-
cates the amount of over-provisioning required if tunnel-
ing were used to support all demands that the topology
could handle with MCF routing.

Figures 7a, 7b and 7c present the MLU across all traf-
fic demands for each of three strategies and three topolo-
gies, and different number of selected tunnels (K). Each
cross shows the upper bound determined by OBL-TUN,
while the vertical bar shows the upper and lower bounds
obtained with our RLT-based framework. For GEANT,
our current RLT implementation had a high memory re-
quirement that can be addressed using standard decom-

Step Counter Examples MLU Total New Capacity

1 (1,10,H), (2,9,F) 1.274 2.744 Gbps
2 (2,9,H), (1,10,F) 1.274 5.488 Gbps
3 (9,8,H), (10,7,F) 1.217 7.653 Gbps
4 (10,7,H), (9,8,F) 1.217 9.818 Gbps
5 (0,2,H), (1,10,F) 1.192 11.743 Gbps
6 (1,0,H), (1,10,F) 1.071 12.452 Gbps
7 (7,6,H), (8,5,F) 1.006 12.509 Gbps
8 (8,5,H), (7,6,F) 1.006 12.566 Gbps
9 – 1.000 –

Table 3: Iterative optimal capacity augmentation for Abi-
lene (Figure 6). Each row shows MLU and counter
example generated by the validation step, and the total
capacity that must be added across all links as per the
augmentation step to address all prior counter-examples.
H (F) indicates one (both) sub-link(s), (each initially 5
Gbps) associated with the edge fails.

position techniques [36] in the future – hence we only
report upper bounds achieved by OBL-TUN.

Several points can be made. First, our RLT frame-
work often obtains tighter upper bounds than OBL-
TUN strengthening Proposition 2. For example, for Abi-
lene with K = 2, and Shortest-Disjoint tunnel selection,
the upper bounds with OBL-TUN and the RLT frame-
work are 3 and 2.4 respectively. Second, by providing
lower bounds as well, our framework can exactly solve
the non-linear problem (V) in quite a few cases. For in-
stance for Abilene and the K-shortest heuristic, a single
horizontal line is shown for K = 3 and higher, indicating
that our framework can determine the optimal MLU.

Third, through a combination of lower and upper
bounds, our framework can provide valuable insights on
tunnel selection heuristics used by system practitioners.
For example, for K-shortest K = 6, not only does our
framework determine exact MLU, but also the MLU is
the same as OBL-TUN. This indicates that when tun-
nels are selected using K-shortest, adapting how traffic
is split across tunnels with demand performs no better
than a non-adaptive approach. The trend is particularly
pronounced for GEANT where our framework indicates
the lower-bounds on MLU are higher than 16 even for
K = 6, and very close to the oblivious solution. While

recent work has suggested picking the K shortest tunnels
and then picking a subset in a demand-sensitive man-
ner [30], this result shows the possibility for this heuris-
tic to perform poorly under certain demand patterns. The
Shortest-Disjoint heuristic performs much better for Abi-
lene and ANS, but performs poorly for GEANT – for
K = 6, the lower bound is 7.05, close to the MLU of
7.59 with an oblivious approach.

While the non-robust design strategies perform poorly,
Robust performs much better. The benefits are particu-
larly stark for GEANT, e.g., for K = 6, the MLU ranges
between 1.54 and 2.05. We have also experimented with
robust tunnels and predicted demands obtained from real
traffic matrices that are scaled so as to stress the Abilene
network. The RLT framework achieves the optimal MLU
(Proposition 3). OBL-TUN however results in MLU that
is 6.84 times worse than optimal. Overall, these results
show the value of our RLT-based framework.

7 Related work
Like work on network verification (e.g., [34, 33]), ro-
bust validation ensures that network designs meet oper-
ator intent. While verification efforts have focused on
correctness of the network data-plane, and switch con-
figurations, robust validation is an early attempt at ver-
ifying quantifiable network properties. Our framework
complements topology synthesis tools [43] by allowing
specification of robust design requirements, and provid-
ing the underlying optimization substrate.

Prior work on traffic engineering has focused on adap-
tive settings [20, 32] or has derived a robust routing that
optimizes for multiple demands assuming that the rout-
ing does not change across demands [9, 8, 49, 51]. Ro-
bust routing schemes include oblivious schemes which
do not use prior traffic data (e.g., [9, 8]), that route based
on multiple historical traffic matrices (e.g., [51]), and
those that combine these techniques [49]. Oblivious
schemes arose from pioneering work in the theoretical
computer science community [40, 41]. In contrast, we
obtain worst-case utilization bounds for network designs,
where topology and tunnels are invariant, but routing
may adapt in practical yet richer ways. It has been shown
that adaptive tunnels may, in the worst-case, not benefit
much relative to oblivious routing [25]. Instead, we show
that provable gains are achieved for specific topologies
which have also been observed in practice [35].

Several works have looked at traffic engineering in the
presence of failures [8, 48, 50, 37], and we have exten-
sively compared our work with [50]. [8, 48] studied par-
tial adaptation to failures as a way to balance flexible
adaptation with the cost for adaptation. [37] optimizes
bandwidth assignments to flows, guaranteeing that no
congestion occurs with failures. While we do not elabo-
rate, this model can be expressed using our framework.

Prior work [22] developed ways to choose OSPF weights
which are robust to single link failures. In contrast, we
allow flexible adaptation, minimize MLU, and aid robust
design of networks that cope well with failures.

Many recent works have looked at how traffic must be
routed in the presence of middleboxes (e.g., [39, 47, 7]).
There is a growing trend for virtualization of middle-
boxes, which may allow placements to change on the
fly [45, 7]. Our framework can accommodate problems
that adapt routing to handle uncertain demands/failures
while satisfying middlebox constraints both for fixed
placements, and when allowing placements to adapt
along with routing.

Beyond networking, the complexity status of ro-
bust optimization formulations has been investigated
and tractable formulations derived for various special
cases [12, 14]. Recent literature has considered limited
adaptability in robust binary programming applications
including supply chain design and emergency route plan-
ning [26, 10]. Instead, our work considers more general
forms of adaptivity, focuses on the networking domain,
and brings relaxation hierarchies from non-convex opti-
mization to bear on robust optimization problems.

8 Conclusions
In this paper, we have made three contributions. First,
we have presented a general framework that network
architects can use to validate that their designs per-
form acceptably across a (possibly exponential and non-
enumerable) set of failure and traffic scenarios. Second,
by explicitly modeling richer ways in which networks
may adapt to failures, and traffic patterns, we have ob-
tained tighter bounds on MLU than current theoretical
tools, which consider more limited forms of adaptation
for tractability reasons. Third, we have demonstrated the
practical applicability of our framework. While the first-
level RLT can provably solve the validation problem for
predicted demand, surprisingly, it also determines opti-
mal MLU for for all our experiments with the failure case
study. Empirical results confirm that our techniques con-
sistently out-perform oblivious methods that can be un-
duly conservative. Finally, our framework can enable op-
erators to understand performance under failures, guide
incremental design refinements, and shed new light on
commonly accepted design heuristics. Our initial results
encourage us to explore larger networks, study the qual-
ity of bounds on other validation problems, and consider
network design more extensively in the future.

Acknowledgements
We thank our shepherd Nate Foster, and the reviewers
for their insightful feedback. This work was supported in
part by the National Science Foundation (Award Number
1162333), and by a Google Research Award.

A Appendix
Proof of Proposition 1: Clearly, the optimal value of (G)
is no more than that of (F’) because (G) has the follow-
ing additional constraints (i) for all 〈i, j〉 ∈ E, λi j = vi j,
and (ii) and for all nodes t, vtt = 0. Therefore, we
only need to show that the optimal value of (F’) is no
more than that of (G). Let (λ ∗,v∗,x f ∗) be optimal in
(F’). Denote by SPit(λ) the shortest path between i and t
with edge-lengths λ . For any path Pit connecting nodes
i and t, it follows from the first constraint in (F) that
v∗it − v∗tt ≤ ∑〈i,t〉Pit λ ∗i j and, so, minimizing rhs over paths
yields v∗it − v∗tt ≤ SPit(λ

∗). For any link 〈i, j〉 this im-
plies that λ ∗i j ≤ v∗i j−v∗j j ≤ SPi j(λ

∗)≤ λ ∗i j, where the first
inequality is from the slack-induced constraint, the sec-
ond inequality follows from discussion above, and the
third inequality because 〈i, j〉 is a valid path from i to
j. Therefore, equality holds throughout. Now, consider
the solution (v′,x f ∗) such that v′it = SPit(λ

∗). We show
that this solution is feasible to (G). Clearly, v′it−v′jt ≤ v′i j
because the shortest path from j to t can be augmented
with 〈i, j〉 to yield a path from i to t. Next, because
v′i j = SPi j(λ

∗) = λ ∗i j, where the last equality was shown
above, it follows that ∑〈i, j〉 v′i jci j(1− x f ∗

i j) = 1. More-
over, v′it = SPit(λ

∗) ≥ 0 because λ ∗i j ≥ 0 and, trivially,
v′tt = SPtt(λ

∗) = 0. Therefore, (v′,x f ∗) is feasible to (G).
Finally, ∑i,t ditv′it = ∑i,t ditSPit(λ

∗) ≥ ∑i,t dit(v∗it − v∗tt),
where the equality follows from the definition of v′ and
the inequality by summing products of SPit(λ

∗)≥ (v∗it−
v∗tt) with dit ≥ 0. Therefore, the optimal value of (G) is
at least as large as that of (F’).

Proof that (G) can be formulated as an Integer Pro-
gram after a polynomial time verification of graph
connectivity: The objective of (G) is not finite if the
minimum edge-cut set contains f or fewer links, a fact
that can be verified in polynomial time [18]. Now con-
sider that the topology is not disconnected after any si-
multaneous set of f link failures. We show that vit ≤ 1

cmin
,

where cmin = min〈i, j〉∈E ci j. To prove the bounds, let NF
denote the set of links that do not fail when the opti-
mal value of (G) is achieved. For any pair of nodes
i and t, there exists a path (whose edges we denote
as P) on the failure of this set of links. By adding
the first constraint of (G) for all edges along P, vit =

∑〈i, j〉∈P vi j ≤ ∑〈i, j〉∈NF vi j. From the second constraint
of (G), ∑〈i, j〉∈NF vi jci j = 1, and hence ∑〈i, j〉∈NF vi j ≤
1/cmin. The bounds follow.

Multiplying the bound constraints 0 ≤ vi j ≤ 1
cmin

with

x f
i j and 1− x f

i j allows us to linearize the above mixed-
integer non-linear program into an integer program. This
is achieved by replacing vi jx

f
i j with a new variable vx f

i j
and observing that it is automatically constrained to be
vi jx

f
i j when x f

i j ∈ {0,1}.
Capacity augmentation procedure. For a given sce-

nario, the capacity augmentation problem is easy to
model and solve as a linear program. Specifically, (2)
is modified by setting the utilization bound U = 1, and
replacing capacity ci j with ci j + δi j, where δi j is the in-
cremental capacity that must be added to link 〈i, j〉. The
objective is ∑i j wi jδi j, where wi j is the cost associated
with each unit of capacity added to link 〈i, j〉. The formu-
lation is easily extended to multiple scenarios, by repli-
cating the set of constraints (2) modified as above, for
each scenario. Practical cabling constraints that con-
strain which links can have their capacity augmented and
by how much are easily incorporated by adding bounds
to δi j.

Robust tunnel design heuristic. To generate a set
of tunnels by decomposing the optimal oblivious rout-
ing, a derived graph is considered which has the same
nodes and edges as the original topology, but with each
edge having a weight equal to the flow from the oblivi-
ous routing. The widest path (the path with the highest
bottleneck link capacity) is chosen as a tunnel. The bot-
tleneck capacity of this path is now decremented from
all other edges on this path in the derived graph. This
procedure is repeated until k tunnels are obtained.

References
[1] Abilene traffic matrices. http://www.cs.

utexas.edu/~yzhang/research/AbileneTM/.

[2] GEANT network. http://geant3.archive.

geant.net/Network/NetworkTopology/

pages/home.aspx.

[3] IBM ILOG CPLEX optimization studio.
http://www-01.ibm.com/software/

commerce/optimization/cplex-optimizer.

[4] Mininet. http://mininet.org/.

[5] Ostinato network traffic generator and analyzer.
http://ostinato.org/.

[6] Topology zoo. http://www.topology-zoo.

org/.

[7] B. Anwer, T. Benson, N. Feamster, and D. Levin.
Programming slick network functions. In Proceed-
ings of ACM SIGCOMM Symposium on Software
Defined Networking Research, pages 14:1–14:13,
2015.

[8] D. Applegate, L. Breslau, and E. Cohen. Coping
with network failures: Routing strategies for op-
timal demand oblivious restoration. In Proceed-
ings of ACM Special Interest Group on Measure-
ment and Evaluation (SIGMETRICS), pages 270–
281, 2004.

http://www.cs.utexas.edu/~yzhang/research/AbileneTM/
http://www.cs.utexas.edu/~yzhang/research/AbileneTM/
http://geant3.archive.geant.net/Network/NetworkTopology/pages/home.aspx
http://geant3.archive.geant.net/Network/NetworkTopology/pages/home.aspx
http://geant3.archive.geant.net/Network/NetworkTopology/pages/home.aspx
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer
http://mininet.org/
http://ostinato.org/
http://www.topology-zoo.org/
http://www.topology-zoo.org/

[9] D. Applegate and E. Cohen. Making intra-domain
routing robust to changing and uncertain traffic de-
mands: Understanding fundamental tradeoffs. In
Proceedings of ACM Special Interest Group on
Data Communication (SIGCOMM), pages 313–
324, 2003.

[10] P. Awasthi, V. Goyal, and B. Y. Lu. On the
adaptivity gap in two-stage robust linear optimiza-
tion under uncertain constraints. http://www.

columbia.edu/~vg2277/column-wise.pdf,
2015.

[11] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and
H. Räcke. Optimal oblivious routing in polynomial
time. J. Comput. Syst. Sci., 69(3):383–394, 2004.

[12] A. Ben-Tal, L. E. Ghaoui, and A. Nemirovski.
Robust Optimization. Princeton University Press,
Princeton, NJ, 2009.

[13] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Ne-
mirovski. Adjustable robust solutions of uncer-
tain linear programs. Mathematical Programming,
99(2):351–376, 2004.

[14] D. Bertsimas, D. B. Brown, and C. Caramanis. The-
ory and applications of robust optimization. SIAM
Review, 53(3):464–501, 2011.

[15] D. Bertsimas and V. Goyal. On the power and
limitations of affine policies in two-stage adap-
tive optimization. Mathematical programming,
134(2):491–531, 2012.

[16] M. Bienkowski, M. Korzeniowski, and H. Räcke. A
practical algorithm for constructing oblivious rout-
ing schemes. In Proceedings of the Fifteenth An-
nual ACM Symposium on Parallelism in Algorithms
and Architectures, pages 24–33, 2003.

[17] M. Casado, T. Koponen, S. Shenker, and
A. Tootoonchian. Fabric: A retrospective on evolv-
ing sdn. In Proceedings of ACM SIGCOMM Work-
shop on Hot Topics in Software-Defined Networks,
pages 85–90, 2012.

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to algorithms. MIT press
Cambridge, 2001.

[19] G. Dantzig. Linear Programming and Extensions.
Princeton University Press, Princeton, NJ, 1963.

[20] A. Elwalid, C. Jin, S. Low, and I. Widjaja. MATE:
MPLS adaptive traffic engineering. In Proceedings
of IEEE INFOCOM, pages 1300–1309, 2001.

[21] S. Even, A. Itai, and A. Shamir. On the complex-
ity of time table and multi-commodity flow prob-
lems. In Proceedings of Symposium on Foundations
of Computer Science, pages 184–193, 1975.

[22] B. Fortz, M. Thorup, et al. Robust optimization
of OSPF/IS-IS weights. In Proceedings of Inter-
national Network Optimization Conference, pages
225–230, 2003.

[23] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and
A. Vahdat. Evolve or die: High-availability design
principles drawn from googles network infrastruc-
ture. In Proceedings of ACM Special Interest Group
on Data Communication (SIGCOMM), pages 58–
72, 2016.

[24] A. Gupta, M. T. Hajiaghayi, and H. Räcke. Obliv-
ious network design. In Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms,
pages 970–979, 2006.

[25] M. T. Hajiaghayi, R. D. Kleinberg, and T. Leighton.
Semi-oblivious routing: Lower bounds. In Pro-
ceedings of the Annual ACM-SIAM Symposium on
Discrete Algorithms, 2007.

[26] G. A. Hanasusanto, D. Kuhn, and W. Wiesemann.
K-adaptability in two-stage robust binary program-
ming. Operations Research, 63(4):877–891, 2015.

[27] D. Handelman. Representing polynomials by pos-
itive linear functions on compact convex polyhe-
dra. Pacific Journal of Mathematics, 132(1):35–62,
1988.

[28] C. Harrelson, K. Hildrum, and S. Rao. A
polynomial-time tree decomposition to minimize
congestion. In Proceedings of Annual ACM Sym-
posium on Parallelism in Algorithms and Architec-
tures, pages 34–43, 2003.

[29] V. Heorhiadi, M. K. Reiter, and V. Sekar. Sim-
plifying software-defined network optimization us-
ing SOL. In Proceedings of USENIX Symposium
on Networked Systems Design and Implementation,
pages 223–237, 2016.

[30] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer. Achieving
high utilization with software-driven WAN. In Pro-
ceedings of ACM Special Interest Group on Data
Communication (SIGCOMM), pages 15–26, 2013.

[31] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4:

http://www.columbia.edu/~vg2277/column-wise.pdf
http://www.columbia.edu/~vg2277/column-wise.pdf

Experience with a globally-deployed software de-
fined wan. In Proceedings of ACM Special Inter-
est Group on Data Communication (SIGCOMM),
2013.

[32] S. Kandula, D. Katabi, B. Davie, and A. Charny.
Walking the tightrope: Responsive yet stable traffic
engineering. In Proceedings of ACM Special Inter-
est Group on Data Communication (SIGCOMM),
pages 253–264, 2005.

[33] P. Kazemian, G. Varghese, and N. McKeown.
Header space analysis: Static checking for net-
works. In Proceedings of USENIX Symposium
on Networked Systems Design and Implementation,
pages 113–126, 2012.

[34] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey. Veriflow: Verifying network-wide invari-
ants in real time. In Proceedings of USENIX Sym-
posium on Networked Systems Design and Imple-
mentation, pages 15–27, 2013.

[35] P. Kumar, Y. Yuan, C. Yu, N. Foster, R. Kleinberg,
and R. Soulé. Kulfi: Robust traffic engineering
using semi-oblivious routing. arXiv:1603.01203
[cs.NI], 2016.

[36] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov.
New variants of bundle methods. Mathematical
programming, 69(1-3):111–147, 1995.

[37] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and
D. Gelernter. Traffic engineering with forward fault
correction. In Proceedings of ACM Special Inter-
est Group on Data Communication (SIGCOMM),
pages 527–538, 2014.

[38] R. Potharaju and N. Jain. When the network crum-
bles: An empirical study of cloud network fail-
ures and their impact on services. In Proceedings
of ACM Annual Symposium on Cloud Computing,
pages 15:1–15:17, 2013.

[39] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar,
and M. Yu. Simple-fying middlebox policy en-
forcement using sdn. In Proceedings of ACM Spe-
cial Interest Group on Data Communication (SIG-
COMM), pages 27–38, 2013.

[40] H. Räcke. Minimizing congestion in general net-
works. In IEEE Symposium on Foundations of
Computer Science, pages 43–52, 2002.

[41] H. Räcke. Optimal hierarchical decompositions for
congestion minimization in networks. In Proceed-
ings of Annual ACM Symposium on Theory of Com-
puting, pages 255–264, 2008.

[42] E. Rosen, A. Viswanathan, and R. Callon. Mul-
tiprotocol label switching architecture. RFC
3031, 2001. https://tools.ietf.org/html/

rfc3031.

[43] B. Schlinker, R. N. Mysore, S. Smith, J. C. Mogul,
A. Vahdat, M. Yu, E. Katz-Bassett, and M. Ru-
bin. Condor: Better topologies through declara-
tive design. In Proceedings of ACM Special Inter-
est Group on Data Communication (SIGCOMM),
pages 449–463, 2015.

[44] H. D. Sherali and W. P. Adams. A reformulation-
linearization technique for solving discrete and
continuous nonconvex problems. Springer Science
& Business Media, Dordrecht, 1999.

[45] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,
S. Ratnasamy, and V. Sekar. Making middleboxes
someone else’s problem: Network processing as
a cloud service. In Proceedings of ACM Spe-
cial Interest Group on Data Communication (SIG-
COMM), pages 13–24, 2012.

[46] D. Sidhu, R. Nair, and S. Abdallah. Finding disjoint
paths in networks. In Proceedings of ACM Spe-
cial Interest Group on Data Communication (SIG-
COMM), pages 43–51, 1991.

[47] R. Soulé, S. Basu, P. J. Marandi, F. Pedone,
R. Kleinberg, E. G. Sirer, and N. Foster. Merlin:
A language for provisioning network resources. In
Proceedings of ACM CoNEXT Conference, pages
213–226, 2014.

[48] M. Suchara, D. Xu, R. Doverspike, D. Johnson, and
J. Rexford. Network architecture for joint failure
recovery and traffic engineering. In Proceedings of
ACM Special Interest Group on Measurement and
Evaluation (SIGMETRICS), pages 97–108, 2011.

[49] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang,
and A. Greenberg. COPE: Traffic engineering in
dynamic networks. In Proceedings of ACM Spe-
cial Interest Group on Data Communication (SIG-
COMM), pages 99–110, 2006.

[50] Y. Wang, H. Wang, A. Mahimkar, R. Alimi,
Y. Zhang, L. Qiu, and Y. R. Yang. R3: Resilient
routing reconfiguration. In Proceedings of ACM
Special Interest Group on Data Communication
(SIGCOMM), pages 291–302, 2010.

[51] C. Zhang, Z. Ge, J. Kurose, Y. Liu, and D. Towsley.
Optimal routing with multiple traffic matrices
tradeoff between average and worst case perfor-
mance. In Proceedings of International Conference
on Network Protocols, 2005.

https://tools.ietf.org/html/rfc3031
https://tools.ietf.org/html/rfc3031

[52] Y. Zhang, Z. Ge, A. Greenberg, and M. Roughan.
Network anomography. In Proceedings of ACM
Internet Measurement Conference, pages 30–30,
2005.

	Introduction
	Motivation
	Robust validation applications
	Robust validation framework

	Formalizing robust validation
	General problem structure
	Concrete validation problems
	Non-linear reformulation

	Making validation tractable
	Relaxing validation problems
	Validation across failure scenarios
	Validation across traffic demands
	Comparisons to alternate approaches

	Aiding synthesis and generalizations
	Augmenting capacities to bound utilization
	More general validation problems

	Evaluation
	Validation across failure scenarios
	Impact of failures on application performance
	Deriving valid capacity augmentations
	Validation across traffic demands

	Related work
	Conclusions
	Appendix

