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Abstract—Deploying interactive applications in the cloud is a
challenge due to the high variability in performance of cloud
services. In this paper, we present Dealer— a system that helps
geo-distributed, interactive and multi-tier applications meet their
stringent requirements on response time despite such variability.
QOur approach is motivated by the fact that, at any time, only
a small number of application components of large multi-tier
applications experience poor performance. Dealer continually
monitors the performance of individual components and com-
munication latencies between them to build a global view of
the application. In serving any given request, Dealer seeks to
minimize user response times by picking the best combination of
replicas (potentially located across different data-centers). While
Dealer requires modifications to application code, we show the
changes required are modest. Our evaluations on two multi-tier
applications using real cloud deployments indicate the 90%ile
of response times could be reduced by more than a factor of 6
under natural cloud dynamics. Our results indicate the cost of
inter-data-center traffic with Dealer is minor, and that Dealer
can in fact be used to reduce the overall operational costs of
applications by up to 15% by leveraging the difference in billing
plans of cloud instances.

Index Terms—Request Splitting, Cloud Computing, Perfor-
mance Variability, Interactive Multi-tier Applications, Geo-
distribution.

I. INTRODUCTION

LOUD computing promises to reduce the cost of IT

organizations by allowing them to purchase as much
resources as needed, only when needed, and through lower
capital and operational expense stemming from the cloud’s
economies of scale. Further, moving to the cloud greatly
facilitates the deployment of applications across multiple
geographically distributed data-centers. Geo-distributing ap-
plications, in turn, facilitates service resilience and disaster
recovery, and could enable better user experience by having
customers directed to data-centers close to them.

While these advantages of cloud computing are triggering
much interest among developers and IT managers [23], [42], a
key challenge is meeting the stringent Service Level Agreement
(SLA) requirements on availability and response times for
interactive applications (e.g. customer facing web applica-
tions, enterprise applications). Application latencies directly
impact business revenue [10], [15]- e.g., Amazon found every
100ms of latency costs 1% in sales [10]. Further, the SLAs
typically require bounds on the 90th (and higher) percentile
latencies [13], [31].
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Meeting such stringent SLA requirements is a challenge
given outages in cloud data-centers [2], [11], and the high
variability in the performance of cloud services [25], [35],
[46], [50]. This variability arises from a variety of factors
such as the sharing of cloud services across a large number
of tenants, and limitations in virtualization techniques [46].
For example, [35] showed that the 95%:le latencies of cloud
storage services such as tables and queues is 100% more than
the median values for four different public cloud offerings.

In this paper, we argue that it is critically important to
design applications to be intrinsically resilient to cloud perfor-
mance variations. Our work, which we term Dealer, is set in
the context of geo-distributed, multi-tier applications, where
each component may have replicas in multiple data-centers.
Dealer enables applications to meet their stringent SLA re-
quirements on response times by finding the combination of
replicas —potentially located across multiple data-centers— that
should be used to serve any given request. This is motivated by
the fact that only a small number of application components
of large multi-tier applications experience poor performance
at any time.

Multi-tier applications consist of potentially large number
of components with complex inter-dependencies and hundreds
of different request types all involving different subsets of
components [29]. Dealer dynamically learns a model of
the application that captures component interaction patterns.
Application structure is abstracted as a component graph,
with nodes being application components and edges capturing
inter-component communication patterns. To predict which
combination of replicas can result in the best performance,
Dealer continually monitors the performance of individual
component replicas and communication latencies between
replica pairs.

Operating at a component-level granularity offers Dealer
several advantages over conventional approaches that merely
pick an appropriate data-center to serve user requests [27],
[37], [41], [47]. Modern web applications consist of many
components, not all of which are present in each data-center,
and the costs are extremely high to over-provision each com-
ponent in every data-center to be able to handle all the traffic
from another data-center. Dealer is able to redistribute work
away from poorly performing components by utilizing the
capacity of all component replicas that can usefully contribute
to reducing the latency of requests.

In large multi-tier applications (with potentially hundreds
of components), it is possible that only a small number
of components are temporarily impacted. Hence, redirecting
entire user requests to a remote data-center leaves local
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(a) Thumbnails application architecture and data-flow.
The application is composed of a Front-End (FE),
Back-End (BE), and two Business-Logic components
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(b) StockTrader architecture and data-
flow. Components include a front-end
(FE), Business Server (BS), Order Ser-
vice (OS) (handles buys/sells), Database
(DB), and a Config Service (CS) that
binds all components. The precise data-
flow depends on request type.
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Fig. 1. Applications Testbed.

functional components (already paid for) unutilized. Such
money waste can be alleviated using Dealer which splits
requests dynamically across replicas in remote data-centers
while utilizing functional local resources to the extent possible.
Additionally, in application deployments which use instances
with different pricing plans (e.g., on-demand and long-term
reserved instances), Dealer can utilize the difference in pricing
options to even achieve more cost savings. This is because
Dealer has the potential of allowing applications to use more
instances with cheaper pricing plans across all remote data-
centers before requiring the start of the more expensive cloud
instances locally.

While much of the Dealer design is independent of the
particular application, integrating Dealer does require cus-
tomization using application-specific logic. First, stateful ap-
plications have constraints on which component replicas can
handle a given request. While Dealer proposes desired split
ratios (or probabilities with which a request must be forwarded
to different downstream component replicas), the application
uses its own logic to determine which component replicas
can handle a given request. Further, application developers
must properly instrument their applications to collect the per-
component performance data needed for Dealer. However, in
our experience, the work required by application developers
is modest.

We have evaluated Dealer on two stateful multi-tier ap-
plications on Azure cloud deployments. The first application
is data-intensive, while the second application involves in-
teractive request processing. Under natural cloud dynamics,
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Fig. 2. Box plot for total response time, and contributing processing
and communication delays for Thumbnail application.

using Dealer improves application performance by a factor
of 3 for the 90*" and higher delay percentiles, compared to
DNS-based data-center-level redirection schemes which are
agnostic of application structure. Overall, the results indicate
the importance and feasibility of Dealer.

II. PERFORMANCE AND WORKLOAD VARIABILITY

In this section, we present observations that motivate
Dealer’s design. In §II-A, we characterize the extent and
nature of the variability in performance that may be present
in cloud data-centers. Our characterization is based on our
experiences running multi-tier applications on the cloud. Then,
in §II-B, we characterize the variability in workloads of multi-
tier applications based on analyzing web server traces of a
large campus university.

A. Performance variability in the cloud

We measure the performance variability with two appli-
cations. The first application, Thumbnail [20] involves users
uploading a picture to the server (FE) and getting back either
a thumbnail (from BL1) or a rotated image (from BL2).
The second application, StockTrader [3], is an enterprise
web application that allows users to buy/sell stocks, view
portfolio, etc. Figure 1(a) and Figure 1(b) respectively show
the component architecture and data-flow for each application.

We ran each application independently in two separate
data-centers (DC1 and DC2), both located in the U.S. Each
application deployment was subjected to the same workload
simultaneously, without using any load-balancing or redirec-
tion techniques across data-centers to eliminate dependency
between them. Also, we note that all application components
were over-provisioned properly to ensure we capture perfor-
mance variability intrinsic to the cloud, rather than studying
variability that may arise due to workload fluctuations. More
details of how we configured the deployments are presented
in §V-A. We instrumented each application to measure the
total response time, as well as the delays contributing to
total response time. The contributing delays include pro-
cessing delays encountered at individual application compo-
nents, communication delay between components (internal
data-center communication delays), and the upload/download
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FE | DB | BS | OS | FE-BS |FE-CS| BS-CS |BS-OS| OS-CS TABLE 1
FE | 1 |-008/-011]-004] -031 |0.03| -032 | -0.07 | -0.04 CROSS-CORRELATION OF EACH COMPONENT’S PROCESSING TIME AND
- - - : - - - - INTER-COMPONENT COMMUNICATION DELAY ACROSS TWO
D8 1 0.5 | 0.03 | -0.01 |-0.01] 0.04 | 0.05 | 0.02 DATA-CENTERS, FOR Thumbnail AND StockTrader APPLICATIONS.
BS 1 |0.14| 0.08 |-0.02| 0.09 | 0.14 | 0.14
0s | 1 |-037 |-0.03] -04 | 0.66 | 0.74 Thumbnail
Response FE-BE BL BE-BL BL-BE
FE-BS 1 0.01| 0.87 | -0.31| -0.37
a) StockTrader 0.09 0.04 0.06 0.03 0.02
) FE-CS | 1 | -0.01 | -0.02 | -0.03
BS-CS| 1 -0.34 | -0.41 StockTrader
BS-OS 1 0.71 Response FE BS OS DB
0S-CS 1 0.04 0.27 -0.01 -0.02 0.01
FE-BE| 1 |0.49 |-0.03| 0.08 0.33 0.01 0.27 -0.01 -0.03
BL 1 |0.03]0.08
BL-BE| 1 |0.02
b Thumbnail BE-BL| 1 a data-center. It also reports that only compute services were
) Thumbnai impacted and that other resources such as storage services
Fig. 3. Performance correlation across components of the same W¢I® performing normally in the same data-center.

application in the same data-center.

delays (Internet communication delays between users and each
data-center). We now present our key findings:

All application components show performance variability:
Figure 2 considers the Thumbnail application and presents a
box plot for the total response time (first two) and each of the
individual contributing delays for each data-center. The X-
axis is annotated with the component or link whose delay is
being measured and the number in parenthesis represents the
data-center to which it belongs (DC1 or DC2). For example,
BL-BE(1) represents the delay between the Business-Logic
(BL) and the Back-End (BE) instances, at DC1. The bottom
and top of each box represent the 25" and 75" percentiles,
and the line in the middle represents the median. The vertical
line (whiskers) extends to the highest data points within 3 x w
of the upper quartile, where w is defined as the difference
between the 75" and 25" percentiles. Points larger than this
value are considered outliers and shown separately.

Several interesting observations are shown in Figure 2. First,
there is significant variability in all delay values. For instance,
while the 75%ile of total response time is under 5 seconds,
the outliers are almost 20 seconds. Second, while the median
delay with DCI1 is smaller than DC2, DC1 shows significantly
more variability. Third, while the Internet upload delays are a
significant portion of total response time (since the application
involves uploading large images), the processing delays at BL,
and the communication delays between the BE and BL show
high variability, and contribute significantly to total response
times. Our experiments indicate that the performance of the
application components vary significantly with time, and is
not always correlated with the performance of their replicas
in other data-centers.

Not all components in a single data-center may see poor
performance simultaneously: Public clouds are highly shared
platforms. In a single data-center, performance problems may
impact some cloud services but not others. Such heterogeneity
in performance may happen due to many factors such as
multi-tenancy, software bugs, scheduled upgrades, mainte-
nance operations, failures, etc. For example, [18] reports that
a service disruption impacted only a subset of customers inside

Figure 3 studies the cross-correlation coefficients across all

combinations of total response time and constituent delays
(i.e., component processing time and inter-component com-
munication delay) for each application, in a single data-center.
The tables show that while some constituent delays show some
correlation in performance due to inter-component dependency
(e.g., OS and BS-OS in StockTrader), we also find that
many constituent delays show weak correlation. Moreover,
we also investigated the periods of poor performance for both
Thumbnail and StockTrader. In general, we observed that only
a subset of constituent delays contribute to poor performance
at any given time.
Performance problems intrinsic to the cloud may impact
replicas differently across data-centers: We now investigate
the degree of correlation between replicas of the same com-
ponent across multiple data-centers. We note that we study
correlations in the absence of load-balancing techniques since
our focus is on studying variability intrinsic to the cloud, rather
than workload induced variability. For total response time and
every contributing delay, the average value in every 30 seconds
window is computed and cross-correlated with the value in the
other data-center.

Table I shows the correlation coefficients for each pro-
cessing and communication delay across two data-centers,
for all applications. The table shows that all delays show
low correlation across data-centers. More generally, there
have been several real world incidents where specific cloud
services (e.g., storage service) have experienced performance
degradation or failure in some data-centers but not others [2],
[11], [18], [30]. This is due to many factors (such as power
outages, software upgrades, maintenance operations, multi-
tenancy effects, etc.) that impact data-centers differently.

B. Workload Dynamics

We now show the nature and extent of short-term variability
in workload for multi-tier applications and the implications on
cloud deployments.

Short-term variability necessitates large margins even
in cloud deployments: While cloud computing allows for
dynamic invocation of resources during peak periods, start-
ing up new server instances takes several minutes (typically
10 minutes) in many commercial cloud deployments today.
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Fig. 4. Short-term variability in workload for three components in a
multi-tier web-service deployed in a large campus network. The peak
and average rates are computed during each 10 minutes window and
the peak-to-average ratio over each window is plotted as a function
of time.

Further, besides the time to provision new instances, it may
take even longer to warm up a booted server; e.g., by filling its
cache with relevant data to meet its SLA. Therefore, applica-
tions typically maintain margins (i.e., pools of servers beyond
the expected load [22], [32], [44]) to handle fluctuations
in workload. To examine workload variability and margin
requirements for multi-tier applications, we collect and study
the workload of a web-service in a large campus network. In
the service, all requests enter through a front-end, which are
then directed to different downstream components based on
the type of request (e.g., web, mail, department1, department2,
etc.) Figure 4 illustrates the variability in workload for the
front-end and two downstream components. While the peak-
to-average ratio is around 1.5 for the front-end, it is much
higher for each of the other components, and can be as high as
3 or more during some time periods. The figure indicates that
a significant margin may be needed even in cloud deployments
to handle shorter-term workload fluctuations.

Margin requirements are variable and heterogeneous

2725

across different tiers of multi-tier applications: Figure 4
also shows that different application tiers may require different
margins. While the margin requirement is about 50% for the
front-end, it is over 300% for the other components during
some time periods. In addition, the figure also illustrates that
the exact margin required even for the same component is
highly variable over time. The high degree of variability and
heterogeneity in margins make it difficult to simply over-
provision an application component on the cloud since it is
complicated to exactly estimate the extent of over-provisioning
required, and over-provisioning for the worst-case scenario
could be expensive. Moreover, failures and regular data-center
maintenance actions make the application work with lower
margins and render the application vulnerable to even modest
workload spikes.

Workload peaks happen at different times across different
tiers of multi-tier applications: We study the correlation
across workload peaks seen by the different components of
an application. For that, we measure the correlation coeffi-
cient between the traffic of Componentl and Component2
(Figure 4). We found out that the correlation coefficient for the
two components is 0.092, which indicates the traffic patterns
of the two components are not correlated and that traffic peaks
happen at different times. This may limit the effectiveness
of load-balancing techniques from utilizing idle resources in
multi-tier applications, as we shall discuss in §V.

III. Dealer DESIGN RATIONALE

In this section, we present the motivation behind Dealer’s
design, and argue why traditional approaches don’t suffice.
Dealer is designed to enable applications meet their SLA
requirements despite performance variations of cloud services.
Dealer is motivated by two observations: (i) in any data-center,
only instances corresponding to a small number of application
components see poor performance at any given time; and (ii)
the latencies seen by instances of the same component located
in different data-centers are often uncorrelated.

Dealer’s main goal is to dynamically identify a replica of
each component that can best serve a given request. Dealer
may choose instances located in different data-centers for
different components, offering a rich set of possible choices.
In doing so, Dealer considers performance and loads of
individual replicas, as well as intra- and inter-data-center
communication latencies.

Dealer is distinguished from DNS-based [27], [41], [47]
and server-side [37] redirection mechanisms, which are widely
used to map users to appropriate data-centers. Such techniques
focus on alleviating performance problems related to Internet
congestion between users and data-centers, or coarse-grained
load-balancing at the granularity of data-centers. Dealer is
complementary and targets performance problems of indi-
vidual cloud services inside a data-center. There are several
advantages associated with the Dealer approach:

e Exploit heterogeneity in margins across different compo-
nents: In large multi-tier applications with potentially hun-
dreds of components [29], only a few services might be
temporarily impacted in any given data-center. Dealer can
reassign work related to these services to other replicas in re-
mote data-centers if they have sufficient margins. For instance,
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Fig. 5. System overview

Dealer could tackle performance problems with storage ele-
ments (e.g., a blob) by using a replica in a remote data-center,
while leveraging compute instances locally. Complete request
redirection, however, may not be feasible since instances of
other components (e.g., business-logic servers) in the remote
data-center may not be over-provisioned adequately over their
normal load to handle the redirected requests. In fact, Figure 4
shows significant variation in workload patterns of individual
components of multi-tier applications, indicating the compo-
nents must be provisioned in a heterogeneous fashion.

e Utilize functional cloud services in each data-center: Dealer
enables applications to utilize cloud services that are func-
tioning satisfactorily in all data-centers, while only avoiding
services that are performing poorly. In contrast, techniques
that redirect entire requests fail to utilize functional cloud
services in a data-center merely due to performance problems
associated with a small number of other services. Further, the
application may be charged for the unutilized services (for
example, they may correspond to already pre-paid reserved
compute instances [1]). While Dealer does incur additional
inter data-center communication cost, our evaluations in §VI-A
indicate these costs are small.

e Responsiveness: Studies have shown that DNS-based redi-
rection techniques may have latencies of over 2 hours and
may not be well suited for applications which require quick
response to link failures or performance degradations [36]. In
contrast, Dealer targets adaptations over the time-scale of tens
of seconds.

IV. SYSTEM DESIGN

In this section we present the design of Dealer. We begin
by presenting an overview of the design, and then discuss
its various components. Table II describes the summary of
notations used throughout the paper.

A. System Overview

Figure 5 describes the high level design of our system
for an application with multiple components {C7, Cs, ..}. We
consider a multi-cloud deployment where the application is
deployed across n data-centers, with instances corresponding
to each component located in every one of the data-centers.
Note that there might be components like databases which are
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only present in one or a subset of data-centers. We represent
the replica of component C; in data-center m as Cj,.

Traffic from users is mapped to each data-center using
standard mapping services used today based on metrics such
as geographical proximity or latencies [41]. Let Uy denote the
set of users whose traffic is mapped to data-center k. Traffic
corresponding to Uy can use the entire available capacity of
all components in data-center k, as well as the excess capacity
of components in all other data-centers.

For each user group Uy, Dealer seeks to determine how
application requests must be split in the multi-cloud deploy-
ment. In particular, the goal is to determine the number of
user requests that must be directed between component ¢ in
data-center m to component j in data-center n, for every
pair of <component,data-center > combinations. In doing so,
the objective is to ensure the overall delay of requests can
be minimized. Further, Dealer periodically recomputes how
application requests must be split given dynamics in behavior
of cloud services.

Complex multi-tier applications may have hundreds
of different request types all involving different subsets
of application components. The design of techniques for
determining the exact paths of all requests remains an active
area of research despite many notable recent advances [33],
[38], [43]. Dealer does not require such knowledge, and
instead, it dynamically learns a model of the application that
captures component interaction patterns. In particular, Dealer
estimates the fraction of requests that involve communication
between each pair of application components, and the
average size of requests between each component pair. In
addition, Dealer estimates the processing delays of individual
components replicas, and communication delays between
components, as well as the available capacity of component
replicas in each data-center (i.e., the load each replica can
handle). We will discuss how all this information is estimated
and dynamically updated in the later subsections.

B. Determining delays

There are three key components to the estimation algorithms
used by Dealer when determining the processing delay of
components and communication delays between them. These
include: (i) passive monitoring of components and links
over which application requests are routed; (ii) heuristics for
smoothing and combining multiple estimates of delay for
a link or component; and (iii) active probing of links and
components which are not being utilized to estimate the delays
that may be incurred if they were used. We describe each of
these in turn:

Monitoring: Monitoring distributed applications is a well
studied area, and a wide range of techniques have been
developed by the research community and industry [8], [24],
[28] that can be used for measuring application performance.
Of these techniques, X-Trace [28] is the most suitable for
our purposes, since it can track application performance at
the granularity of individual requests. However, integrating
the monitoring code with the application is a manual and
time consuming process. To facilitate easy integration of X-
Trace with the application, we automate a large part of the
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TABLE I
NOTATION TABLE.

Uy Set of users whose traffic is mapped to data-center k.

C} Application component i.

Cim Replica of component i in data-center m.

w Number of windows used for calculating the weighted moving
average (WMA).

Dim, jn(t)] Measured Delay matrix at time t. If ¢ # j, the delay represents
the communication delay from C;., to Cj,. When ¢ = 5 (m
must be equal to n), the delay represents the processing delay
of Cim .

Dim,jn(t)| Smoothed Delay matrix at time t. Each delay value is com-
puted by combining the most recent W values of D matrix
using WMA.

Nim,jn(t)] Number of delay samples obtained in window t for requests
from Cjp, to Cjp (if 4 = j, then m = n must hold).

TFim,jn | Split Ratio matrix; number of user requests that must be
directed from Cjp, to Cjjp.

DR(i, t) Damping Ratio; upper bound of fraction of requests that needs
to be assigned to combination i at time t.

Rank(i, t) | Ranking of combination i at the end of time-window t with
respect to other combinations. The combination with lowest
mean delay value gets a ranking of 1, and the best combination
gets assigned the highest possible ranking.

Req(i, 1) Number of requests sent on combination i during time t.

integration effort using Aspect Oriented Programming (AOP)
techniques [5]. We write an Aspect to intercept each function
when it is called and after it returns, which constitutes the
pointcuts. We record the respective times inside the Aspect.
The measured delay values are then reported periodically to
a central monitor. A smaller reporting time ensures greater
agility of Dealer. We use reporting times of 10 seconds in
our implementation, which we believe is reasonable.
Smoothing delay estimates: It is important to trade-off the
agility in responding to performance dips in components or
links with potential instability that might arise if the system
is overly aggressive. To achieve that, we apply smoothing on
the delay estimates collected. While several techniques exist,
we use the linearly weighted moving average (WMA) for its
simplicity and suitability. For each link and component, the
average delay and number of delay samples seen during the
last W time windows of observation is considered. Then, the
smoothed delay matrix is calculated as follows:

Dim, jn (t)
_ Ej—:twarl Dim,jn(T) * (W +7— t) * Nim,jn(T) (1)
Srmt-wir (W47 = 1) % Nign jn (7)

Briefly, the weight depends on the number of samples
seen during a time-window, and the recency of the estimate.
As Table II shows, D;p, jn(t) represents the smoothed delay
matrix calculated using WMA at time-window t, Dip, jn(t)
captures the measured delay matrix, and N, jn(t) is the
number of delay samples obtained in that window. The term
(W+7-t) is a linearly increasing function that assigns higher
weights to more recent time-windows (the oldest time-window
gets a weight of 1, and the most recent window gets a
weight of W at time ). Moreover, since request rates may
fluctuate greatly (with some time-windows potentially having
no or only a few delay samples with possible outliers), we
also incorporate Ny, jn(t) into WMA. This gives a higher
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weight for representative time-windows with more requests.
The use of WMA ensures that Dealer reacts to prolonged
performance episodes that last several seconds, while not
aggressively reacting to extremely short-lived problems within
a window. W determines the number of windows for which a
link/component must perform poorly (well) for it to be avoided
(reused). Our empirical experience has shown choosing W
values between 3 and 5 are most effective for good perfor-
mance.

Probing: Dealer uses active probes to estimate the perfor-
mance of components and links that are not currently being
used. This enables Dealer to decide if it should switch requests
to a replica of a component in a different data-center, and
determine which replica must be chosen. Probe traffic is
generated by test-clients using application workload generators
(e.g., [9]). We restrict active probes to read-only requests that
do not cause changes in persistent application state. While this
may not accurately capture the delays for requests involving
writes, we have found the probing scheme to work well for
the applications we experiment with. We also note that many
applications tend to be read-heavy and it is often more critical
to optimize latencies of requests involving reads.

To bound probes’ overhead, we limit the probe rate to
10% of the application traffic rate. Moreover, since a path
that has generally been good might temporarily suffer poor
performance, Dealer biases the probes based on the quality
of the path [30]. Biasing the probing ensures that such a path
is likely to be probed more frequently, which ensures Dealer
can quickly switch back to it when its performance improves.

We note the probing overhead may be restricted by com-
bining estimates obtained by (i) using passive user-generated
traffic to update component processing delays and inter-
component link latencies; and (ii) limiting active probes
to measuring inter-data-center latency and bandwidth only.
Further, rather than having each application measure the
bandwidth and latency between every pair of data-centers,
cloud providers could provide such services in the future,
amortizing the overheads across all applications.

C. Determining request split ratios

In this section, we discuss how Dealer uses the processing
delays of components and communication times of links to
compute the split ratio matrix TF. Here, T'F,;, jy, is the num-
ber of user requests that must be directed between component
¢ in data-center m to component j in data-center n, for every
<component, data-center > pair. In determining the split ratio
matrix, Dealer considers several factors including i) the total
response time; ii) stability of the overall system; and iii)
capacity constraints of application components.

In our discussion, a combination refers to an assignment of
each component to exactly one data-center. For instance, in
Figure 5, a mapping of C; to DC4, Cy to DCy, C; to DC,,
and C; to DC,, represents a combination. The algorithm
iteratively assigns a fraction of requests to each combination.
The TF matrix is easily computed once the fraction of requests
assigned to each combination is determined. We now present
the details of the algorithm.

Considering total response time: Dealer computes the mean
delay for each possible combination as the weighted sum
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Algorithm 1 Determining request split ratios.

Algorithm 2 Dynamic capacity estimation.

1: procedure COMPUTESPLITRATIO()

2: Let ACy, be the available-capacity matrix for Cim,, initial-
ized as described in §IV-D
3: Let T;; be the requests matrix, indicating the number of

requests per second between application components ¢ and j
4: Let T; = Y. Tji; i.e., the load on C;

5: Let FA be fraction of requests that has been assigned to
combinations, initialized as F'A < 0
6: Let L be a combination of components (described in IV-C),

where component C; is assigned to data-center d(4) (i.e., replica
Ciaaiy)

7: Goal: Find T Fi, jn: the number of requests that must be
directed between Ciy, and Cjp,

8: Foreach combination L, sorted by mean delay values

9: For each Cjy, in L

10: fi 25

11: minf — minw(fi)

12: ratio = min(ming, DR(L,t))

13: Rescale damping ratios if necessary

14: For each Cjy, in L

15: ACim + ACiym — ratiox T;

16: TFid(i),jd(j) — TFid(i),jd(j) + ratio x Ty, Vi,j

17: FA «+ FA+ratio

18: Repeat until FA = 1

19: end procedure

of the processing delays of nodes and communication delay
of links associated with that combination. The weights are
determined by the fraction of user requests that traverse
that node or link [30]. Once the delays of combinations are
determined, Dealer sorts the combinations in ascending order
of mean delay such that the best combinations get utilized the
most, thereby ensuring a better performance.

Ensuring system stability: To ensure stability of the system
and prevent oscillations, Dealer avoids abrupt changes in the
split ratio matrix in response to minor performance changes.
To achieve this, Dealer gradually increases the portion of
requests assigned to a given combination, and limits the
maximum fraction of requests that may be assigned to it. The
limit (which we refer to as the damping ratio) is based on
how well that combination has performed relative to others,
and how much traffic was assigned to that combination in
the recent past. In particular, the damping ratio (DR) for
combination i is calculated periodically as follows:

. _ Weight(i,t)
DR(Z, t) = m, where (2)

Weight(i,t) = Z‘tr:t—W+1 Rank(i, ) * Req(i, )

Here, Rank(i,t) refers to the ranking of combination 4,
and Req(i,t) describes the number of requests served by i
at time-window ¢, as shown in Table II. The idea behind
using Rank(i,t) is to give more weight for better combi-
nations. Further, to achieve stability when assigning requests
to combinations, we also use Req(i,t) to gradually increase
the number of requests a good combination is allowed to have.
The algorithm computes the weight of a combination based on
its rank and the requests assigned to it in each of the last W
windows. Similar to §IV-B, we found that T/ values between
3 and 5 results in the best performance.

Honoring capacity constraints: In assigning requests to a
combination of application components, Dealer ensures the
capacity constraints of each of the components is honored as

1: procedure COMPUTETHRESH(T', D)

2 if D > 1.1 x DelayAtT hresh then

3 if T' <= Thresh then

4: LowerThresh < 0.8 T

5: ComponentCapacity < Thresh
6 else

7 Thresh < unchanged

8: ComponentCapacity < Thresh
9: end if

10: else if D <= DelayAtThresh then

11: if T'>=Thresh then

12: Thresh < T

13: ComponentCapacity < T + 5%ofT
14: else

15: Thresh < unchanged

16: ComponentCapacity < Thresh
17: end if

18: end if

19: end procedure

described in Algorithm 1. Dealer considers the combinations
in ascending order of mean delay (line 8). It then determines
the maximum fraction of requests that can be assigned to that
combination without saturating any component (lines 9-11).
Dealer assigns this fraction of requests to the combination,
or the damping ratio, whichever is lower (line 12). The
available capacities of each component and the split ratio
matrix are updated to reflect this assignment (lines 14-16).
If the assignment of requests is not completed at this point,
the process is repeated with the next best combination (lines
17-18).

D. Estimating capacity of components

We now discuss how Dealer determines the capacity of
components (i.e., the load each component can handle). Typ-
ically, application delays are not impacted by an increase
in load up to a point which we term as the threshold.
Beyond this, application delays increase gradually with load,
until a breakdown region is entered where vastly degraded
performance is seen. Ideally, Dealer must operate at the
threshold to ensure the component is saturated while not
resulting in degraded performance. The threshold is sensitive
to request mix changes. Hence, Dealer relies on algorithms
for dynamically estimating the threshold, and seeks to operate
just above the threshold.

Dealer starts with an initial threshold value based on a
conservative stress test assuming worst-case load (i.e., requests
that are expensive for each component to process). Alternately,
the threshold can be obtained systematically (e.g., using knee
detection schemes [39]) or learnt during boot-up phase of
an application in the data-center, given application traffic
typically ramps up slowly before production workloads are
handled. Since the initial threshold can change (e.g., due
to changes in request mix), Dealer dynamically updates the
threshold using Algorithm 2. The parameter DelayAtThresh is
the delay in the flat region learnt in the initialization phase,
which is the desirable levels to which the component delay
must be restricted. At all times, the algorithm maintains an
estimate of Thresh, which is the largest load in recent memory
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where a component delay of DelayAtThresh was achieved. T'
and D represent the current request load on the component,
and the delay experienced at the component respectively. The
algorithm strives to operate at a point where D is slightly
more than DelayAtThresh, and T slightly more than thresh. If
Dealer operated exactly at thresh, it would not be possible to
know if thresh has increased, and hence discover if Dealer is
operating too conservatively.

The algorithm begins by checking if the delay is unaccept-
ably high (line 2). In such case, if T < Thresh, (line 3)
the threshold is lowered. Otherwise (line 6), the threshold
remains unchanged and the component capacity is lowered
to the threshold. If D is comparable to DelayAtThresh (line
10), it is an indication the component can take more load. If
T > Thresh (line 11), then the threshold is too conservative,
and hence it gets increased. Further, ComponentCapacity is set
to slightly higher than the threshold to experiment if the com-
ponent can absorb more requests. If however T' < T'hresh,
(line 14), then ComponentCapacity is set to Thresh to allow
more requests be directed to that component. We note that the
intuition behind the choice of parameters is to increase the
load the component sees by only small increments (5%) but
back-off more aggressively (by decreasing the load in each
round by 20%) in case the delay starts increasing beyond
the desired value. We believe the choice of parameters is
reasonable; however, we defer testing the sensitivity of the
algorithm to these parameters as a future work.

Finally, the reason behind using component’s delay is
because it gives a direct way of knowing if a component
is saturated. While other metrics such as CPU and memory
utilization could be used, using such metrics to infer response
time may not be straightforward. For example, a component
may have a limit on the number of requests it can handle, after
which all requests will get queued. In such a case, an increase
in response time due to queuing at the component may be
coupled with low CPU and memory utilization. In fact, we
observed that Azure Webrole instances (small instances, with
.NET Framework v2.0 and 3.5) can handle up to 12 concurrent
connections [7], after which response time increases, without
significantly affecting the CPU and memory utilization.

E. Integrating Dealer with applications

We integrated Dealer with both Thumbnail and StockTrader,
and we found that the overall effort involved was small.
Integrating Dealer with applications involves: 1) adding logic
to re-route requests to replicas of a downstream component
across different data-centers; and ii) maintaining consistent
state in stateful applications.

Re-routing requests. To use Dealer, application developers
need to make only a small change to the connection logic
— the code segment inside a component responsible for di-
recting requests to downstream components. Dealer provides
both push and pull API’s for retrieving split ratios (§IV-C).
Instead of forwarding all requests to a single service endpoint,
the connection logic now allocates requests to downstream
replicas in proportion to the split ratios provided by Dealer.
Integration with stateful applications. While best practices
emphasize that cloud applications should use stateless services
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whenever possible [4], [6], some applications may have
stateful components. In such cases, the application needs to
affinitize requests to component replicas so that each request
goes to the replicas that hold the state for processing the
request. Integrating Dealer with such applications does not
change the consistency semantics of the application. Dealer
does not try to understand the application’s policy for allocat-
ing requests to components. Instead, it proposes the desired
split ratios to the application, and the application uses its own
logic to determine which replicas can handle a request.

In integrating Dealer with stateful applications, it is impor-
tant to ensure that related requests get processed by the same
set of stateful replicas due to data consistency constraints. For
instance, the StockTrader application involves session state.
To integrate Dealer, we made sure all requests belonging
to the same user session use the same combination, and
Dealer’s split-ratios only determine the combination taken
by the first request of that session. StockTrader persists user
session information (users logged in, session IDs, etc.) in a
database. We modified the application so that it also stores
the list of stateful replicas for each session. We also note that
some web applications maintain the session state in the client
side through session cookies. Such information could again be
augmented to include the list of stateful replicas.

To guarantee all requests within the same session follow the
same combination, the application must be modified to prop-
agate meta-data (such as a unique session ID and the list of
stateful replicas associated with it) along all requests between
components. Many web applications (such as StockTrader)
use SOAP and RESTful services that provide Interceptors
which can be easily used to propagate meta-data with very
minimal modifications. In the StockTrader application, we
used SOAP Extensions [17] to propagate meta-data. In other
cases where Interceptors cannot be used, endpoint interfaces
can be changed or overloaded to propagate such data. The
propagated meta-data is then used by components to guide
the selection of downstream replicas [30].

While handling such state may require developer knowl-
edge, we found this required only moderate effort from
the developer in the applications we considered. As future
work, we would like to integrate Dealer with a wider set of
applications with different consistency requirements and gain
more experience with the approach.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the importance and effectiveness
of Dealer in ensuring good performance of applications in
the cloud. We begin by discussing our methodology in §V-A.
We then evaluate the effectiveness of Dealer in responding
to various events that occur naturally in a real cloud deploy-
ment (§V-B). These experiments both highlight the inherent
performance variability in cloud environments, and evaluate
the ability of Dealer to cope with them. We then evaluate
Dealer using a series of controlled experiments which stress
the system and gauge its effectiveness in coping with extreme
scenarios such as sharp spikes in application load and failure
of cloud components.
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A. Evaluation Methodology

We study and evaluate the design of Dealer by conducting

experiments on Thumbnail and StockTrader (introduced in
§1D).
Cloud testbed and application workloads: All exper-
iments were conducted on Microsoft Azure by deploying
each application simultaneously in two data-centers located
geographically apart in the U.S. (North and South Central). In
all experiments, application traffic to one of the data-centers
(referred to as DC4) is controlled by Dealer, while traffic to
the other one (DCp) was run without Dealer. The objective
was to not only study the effectiveness of Dealer in enhancing
performance of traffic to DC 4, but also ensure that Dealer did
not negatively impact performance of traffic to DCp.

We study the impact of workload dynamics using real

workload traces of a campus web-service described in §II-B.
We also use a Poisson arrival process when the focus of an
experiment is primarily to study the impact of cloud perfor-
mance variability away from workload spikes. In Thumbnail,
we set the request mix (fraction of requests to BL; and
BL5) according to the fraction of requests to Componentl
and Component?2 in the trace. Requests in Thumbnail had an
average upload size of 1.4 MB (in the form of an image) and
around 3.2 (860) KB download size for BL; (BL2) requests.
StockTrader, on the other hand, had a larger variety of requests
(buying/selling stocks, fetching quotes, etc.) with relatively
smaller data size. To generate a realistic mix of requests, we
used the publicly available DaCapo benchmark [26], which
contains a set of user sessions, with each session consisting
of a series of requests (e.g., login, home, fetch quotes, sell
stocks, and log out). A total of 66 PlanetLab users, spread
across the U.S., were used to send requests to DC 4. Further,
another set of users located inside a campus network were
used to generate traffic to DCp.
Application Deployments: Applications were deployed with
enough instances of each component so that they could handle
typical loads along with additional margins. We estimated
the capacities of the components through a series of stress-
tests. For instance, with an average load of 2 <=2 and 100%
margin (typical of real deployments as shown in §II), we found
empirically that 2/5/16 instances of FE/BL;/BL, components
were required. Likewise, for StockTrader, handling an average
load of 1 %2 (0.25 %) required 1/2/1 instances of
FE/BS/OS.

In StockTrader, we deployed the DB in both data-centers
and configured it in master-slave mode. We used SQL Azure
Data Sync [16] for synchronization between the two databases.
We note that Dealer can be integrated even if the application
uses sharding or has weaker consistency requirements (§IV-E)
— the choice of master-slave is made for illustration purposes.
While reads can occur at either DB, writes are made only at the
master DB (DCg). Therefore, requests involving writes (e.g.,
buy/sell) can only occur through the BS and OS instances in
DCpg. Thus, the BS component would see a higher number
of requests (by =~ 20%) than the FE and therefore requires
higher provisioning than FE. Further, each component can
only connect to its local CS and DB to obtain communication
credentials of other components. Finally, all requests belong-
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ing to a user session must use the same set of components
given the stateful nature of the application.

Effectiveness of existing schemes: We evaluate the effec-
tiveness of two prominent load-balancing and redirection
techniques used today and compare them to Dealer:

e DNS-based redirection: Azure provides Windows Azure
Traffic Manager (WATM) [21] as its solution for DNS-based
redirection. WATM provides Failover, Round-Robin and Per-
formance distribution policies. Failover deals with total service
failures and sends all traffic to the next available service upon
failure. Round-robin routes traffic in a round-robin fashion.
Finally, Performance forwards traffic to the closest data-center
in terms of network latency. In our experiments, we use the
Performance policy because of its relevance to Dealer. In
WATM, requests are directed to a single URL which gets
resolved through DNS to the appropriate data-center based
on performance tables that measure the round trip time (RTT)
of different IP addresses around the globe to each data-center.
We believe WATM is a good representative of DNS-based
redirection schemes for global traffic management. In our
experiments, our goal was not to compare it against Dealer,
but to show that DNS-redirection schemes do not suffice to
recover from problems that happen within an application. This
is because redirection is based solely on network latency and
is agnostic to application performance. We therefore compare
Dealer with another scheme that considers overall application
performance.

e Application-level Redirection: We implemented a per-request
load-balancer, that we call Redirection, which re-routes each
request as a single unit, served completely by a single data-
center. Redirection re-routes requests based on the overall
performance of the application, calculated as the weighted
average of total response time (excluding Internet delays)
across all requests. If it finds the local response time of
requests higher than that of the remote data-center, it redirects
clients to the remote data-center by sending a 302 HTTP
response message upon receiving a client request. It re-routes
requests as long as the remote data-center is performing better,
or until capacity limits are reached remotely (limited by the
capacity of lowest margin component). Similar to Dealer, re-
routing in Redirection does not depend on request types. We
use the same monitoring and probing infrastructure described
in §IV-B.

B. Dealer under natural cloud dynamics

In this section, we evaluate the effectiveness of Dealer in
responding to the natural dynamics of real cloud deployments.
Our goal is to explore the inherent performance variability in
cloud environments and evaluate the ability of Dealer to cope
with such variability.

We experiment with Thumbnail and compare its perfor-
mance with and without Dealer. Ideally it is desirable to
compare the two schemes under identical conditions. Since
this is not feasible on a real cloud, we ran a large number
of experiments alternating between the two approaches. The
experiment was 48 hours, with each hour split into two half-
hour runs; one without activating Dealer, and another with it.
Traffic was generated using a Poisson process with an average

request rate of 2 Z°Z to each data-center.
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Fig. 6. CDF of total response time under natural cloud dynamics.
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Fig. 7. Box-plots of total response time under natural cloud dynamics.

Figure 6 shows the CDF of the total response time for the
whole experiment. Dealer performs significantly better. The
50t", 75th 90" and 99" percentiles with Dealer are 4.6,
5.4, 6.6 and 12.7 seconds respectively. The corresponding
values without Dealer are 4.9, 6.8, 43.2 and 90.9 seconds.
The reduction is more than a factor of 6.5x for the top 10
percentiles.

Figure 7 helps understand why Dealer performs better. The
figure shows a box-plot of total response time for each run of
the experiment. The X-axis shows the run number and the Y-
axis shows the total response time in milliseconds. Figure 7(a)
shows the runs with Dealer enabled, and 7(b) shows the runs
with Dealer disabled (i.e., all traffic going to DC 4 stay within
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Fig. 8. Fraction of Dealer traffic sent from DC4 to DCp.

the data-center). In both figures, runs with the same number
indicate that the runs took place in the same hour, back to
back. The figures show several interesting observations:

e First, without Dealer, most runs had a normal range of
total response time (median ~ 5 seconds). However, the
delays were much higher in runs 13-16 and 43-48. Further
investigation showed these high delays were caused by the BL
instances in DC 4, which had lower capacity to absorb requests
during those periods, and consequently experienced significant
queuing. Such a sudden dip in capacity is an example of the
kind of event that may occur in the cloud, and highlights the
need for Dealer.

e Second, Dealer too experienced the same performance
problem with BL in DC,4 during runs 13-16 and 43-48.
However, Dealer mitigated the problem by tapping into the
margin available at DCp. Figure 8 shows the fraction of
requests directed to one or more components in DCp by
Dealer. Each bar corresponds to a run and is split according
to the combination of components chosen by Dealer. Combi-
nations are written as the location of FE, BE, BL; and BL,
components' respectively, where A refers to DC4 and B to
DCp. For example, for run 0 around 9% of requests handled
by Dealer used one or more components from DCp. Further,
for this run, 5% of requests used AAB combination, while
1% used ABA, and 3% used ABB. Further, most requests
directed to DCp during the problem take the path AAB, which
indicates the BL component in DCp is used.

e Third, we compared the performance when runs 13-16 and
43-48 are not considered. While the benefits of Dealer are
not as pronounced, it still results in a significant improvement
in the tail. In particular the 90" percentile of total response
time was reduced from 6.4 to 6.1 seconds, and the 99"
percentile was reduced from 18.1 to 8.9 seconds. Most of
these benefits come from Dealer’s ability to handle transient
spikes in workload by directing requests to the BL replica in
DCpg. There were also some instances of congestion in the
blob of DC4 which led Dealer to direct requests to the blob
of DC B-

e Finally, Figure 7(a) shows that the performance is not as
good in run 8. Further inspection revealed that the outliers
during this run were all due to the high upload delays of
the requests directed to DCp. This was likely due to Internet
congestion between the users and DCp. We note that such
performance problems are not the focus of Dealer, and should
rather be handled by schemes for Global Traffic Management
such as DNS-based redirection [27], [47].

ISince all requests in this experiment were of type BL1, we drop the 4"
tuple.
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Fig. 9. CDF of total response time for GTM vs. Dealer (Thumbnail).

C. Why is DNS-based redirection insufficient?

Global Traffic Managers (GTM) are used to route user
traffic across data-centers to get better application performance
and cope with failures. We use the WATM scheme (§V-A)
under the same setup as in previous section. Figure 9 shows
that Dealer achieves a reduction of at least 3x times in total
response time for the top 10 percentiles. Like before, we found
the BL instances had lower capacity in some of the runs
leading to a higher total response time in GTM. Since the
GTM approach only takes into account the network latency
and not the application performance, it was unable to react to
performance problems involving the BL instances. This shows
that DNS-redirection schemes do not suffice to recover from
problems that happen within an application, and that Dealer
can complement such schemes.

D. Dealer vs. application-level redirection

In this section, we evaluate the effectiveness of Dealer in
adapting to transient performance issues in the cloud and
compare it with application-level redirection described in
§V-A.

1) Reaction to transient performance problems: We replay
a real workload trace that was collected during a nine day
episode which impacted the performance of a subset of
databases (DBs) in a single data-center [30]. We emulate
this episode by taking two intervals from the trace (each 10
minutes in duration) and use the corresponding data points
to induce delay at the DB in DC4. We experiment with
StockTrader which we deploy at both data-centers, using the
master-slave mode as described in §V-A.

Figure 10 shows that during the period of performance
degradation at the DB (9-18th and 27-36th min), the average
response time of Dealer is significantly better than that of
Redirection. Figure 10(b) shows that Dealer takes ABB and
switches requests over to the BS and OS at DCp to avoid the
high latency at DB. Similarly, Figure 10(c) shows the path
(BBB) taken by Redirection and how this scheme switches a
fraction of the requests entirely to the data-center, DCp. The
fraction of traffic redirected to BBB in (c) is less than the
fraction of traffic sent through ABB in (b). This is because
Dealer is able to better utilize the margin available at the BS
by switching a larger fraction of requests to the BS in DCp.
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Fig. 10. Performance of Dealer vs. Redirection using traces collected
during the DB performance issue. A combination (FE, BS, OS) is
represented using the data-center (DC4 or DCpg) to which each com-
ponent belongs. 20% of requests perform DB writes (combination
ABB), hence we exclude them for better visualization.

On the other hand, Redirection is constrained by the available
capacity at the FE (DCpg) and hence is not able to completely
utilize the margin available at the BS (DCp).

2) Reaction to transient component overload: In this sec-
tion, we evaluate Thumbnail under natural cloud settings using
a 2 weeks real workload trace from §II. We use two intervals,
each around 30 minutes long, and replay them on DC4 and
DCp simultaneously. The two intervals are about 4 hours
away from each other, allowing us to simulate realistic load
that may be seen by data-centers in different time-zones. We
ran the experiment in a similar fashion to §V-B for 5 hours
alternating between Dealer and Redirection. We subjected BL;
and BL, to the same request rate seen by Componentl and
Component2. A total of 55 VM’s were used to deploy the
application in both data-centers. We picked the margin for
each component as the average peak-to-average ratio during
each interval. Margins ranged between 190% and 330%.

Figure 11 shows that the 90*"(99*") percentiles for Dealer
were 11.9 (14.4) seconds, compared to 13.3 (19.2) seconds
for Redirection— a reduction of over 10.5% in response times
for the top 10 percentiles. The key reason Dealer outperforms
Redirection is because traffic peaks seen by different com-
ponents are not correlated. In particular, the BL; replica in
DC4 was under a short-term traffic overload, which Dealer
was able to mitigate by splitting requests across BL; replicas
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in both data-centers. Redirection, on the other hand, could not
re-direct all excess traffic to DCp since BLy did not have
sufficient capacity in the remote data-center to handle all the
load from DC 4. Moreover, Figure 12 shows that at times 400-
500, BL; in DC4 experienced a surge in request rate, while
at the same time, BL; (BL2) in DCp had a request rate that
is lower(higher) than its average.

Our analysis of the 2 weeks trace reveal that such abrupt
workload spikes happen naturally in the wild, and that traffic
peaks inherently occur at different times across the multiple
tiers of the application (described in §II-B). The results show
that coarse-grained load-balancing at the granularity of data-
centers may not be feasible in adapting with such dynamics,
and that a scheme like Dealer which exploits this lack of
correlation in traffic peaks can achieve significant gains.

3) Reaction to failures in the cloud: Applications in the
cloud may see failures which reduce their margins, making
them vulnerable to even modest workload spikes. Failures can
happen due to actual physical outages or due to maintenance
and upgrades. For example, Windows Azure’s SLA states that
a component has to have 2 or more instances to get 99.95%
availability [19] as instances can be taken off for maintenance
and upgrades at any time.

In Figure 13, we reproduced the case of a single fault-
domain failure at time 300 affecting BLy instances in DC B2
The combination AABA represents requests which were
served by FE, BE, BLs at DC4 and BL; at DCp. For the same

2This involved bringing 4 BLy VM’s offline since Azure deploys each
component’s VMs on 2 or more fault-domains.
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Fig. 13. Performance of Dealer vs. Redirection using real workload
trace with cloud failures (Thumbnail).

reasons described in §V-D2, Dealer maintained a significantly
lower response time during the surge in workload (130%
lower). The results show that Dealer is effective in handling
failures in the cloud.

VI. COST ANALYSIS

In this section, we present cost analysis of Dealer and
its potential in reducing operational costs of geo-distributed
multi-tier applications. In §VI-A, we first estimate the cost
increase due to inter-data-center traffic which Dealer intro-
duces when splitting requests across multiple data-centers.
Our results are based on our experiments conducted in the
evaluation section §V. We assume all instances are similar and
use the default pay-as-you-go (or on-demand) pricing option
that involves renting resources on an hourly basis with no
long-term commitment. Then, in §VI-B, we use simulation
to evaluate Dealer’s potential in reducing overall operational
costs of applications. Our simulation is motivated by the fact
that applications use a combination of instances with different
billing plans; in addition to the pay-as-you-go pricing option,
applications also use long-term, or reserved, pricing plans
which involve commitments over longer periods (e.g., six
months) with discounted prices. We evaluate the cost savings
obtained with Dealer under a wide range of configurations of
on-demand and reserved instances. A two weeks workload
trace of a real campus application is used to drive our
simulation on a geo-distributed deployment of the multi-tier
Thumbnail application in two data-centers. Finally, in our
evaluations, we use the pricing plans from both Microsoft
Azure [12] and Amazon AWS [1].

A. Inter data-center bandwidth costs

A potential concern arises due to wide-area traffic that
Dealer introduces in re-routing requests across data-centers.
In this section, we compute the cost percentage increase
for Thumbnail and StockTrader based on the experiments
conducted in §V-D1 and §V-D2.

We consider the bandwidth, storage and compute costs
based on Microsoft Azure tariffs in January, 2012. All compute
instances are of the same type (on-demand, small size) and
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incur the same hourly cost in both data-centers. The bandwidth
cost is based on all requests exiting each data-center (inbound
traffic does not incur bandwidth costs). The average size
of each request in Thumbnail (StockTrader) is 1.5MB (2
KB). StockTrader uses SQL Azure DB (Web Edition) and
Thumbnail uses Azure blobs for storage. We calculate the
storage cost for Thumbnail based on the number of storage
requests and storage size consumed. The cost of the DB
and compute instances is normalized to the duration of the
experiments.

The cost percentage increase for Thumbnail and Stock-
Trader were found to be 1.94% and 0.06% respectively.
This shows that the cost introduced due to inter data-center
bandwidth is minimal, even for data-intensive applications
such as Thumbnail. Finally, we have repeated our calculations
using the Amazon EC2 pricing scheme [1], and we have found
similar results.

B. Cost savings utilizing instance types

Most cloud infrastructures offer reserved instances which
involve long-term plans with discounted prices over the pay-
as-you-go on-demand instances. In this section, we use sim-
ulation to evaluate the cost benefit that may be achieved with
Dealer by leveraging the cost difference in billing schemes of
on-demand and reserved instances. Our simulation is based
on the Thumbnail application and is driven by a 2 weeks
workload trace of a real campus application. Furthermore,
we compare the cost benefit achieved with Dealer against a
scheme that does not use any redirection and another which
redirects traffic at the granularity of individual data-centers,
similar to conventional load-balancing techniques used today.
Reserved and on-demand instances. Reserved instances are
contracted over long time periods (e.g., one year) and usually
require the users to pay an upfront fixed cost [1], [12]. Such
billing plans incur charges whether instances are being utilized
or not by the application. Applications typically lower their
provisioning costs by leveraging both instance types; reserved
instances may be used to serve the stable part of their workload
over long periods, and any shorter-term fluctuations can be
served using (the more expensive) on-demand instances.
Simulation. In practice, it is difficult to estimate the number
of reserved and on-demand instances that achieves the best
optimal price for a deployment given the various dynamics
and complexities related to cloud applications— e.g., workload
fluctuations, traffic redirection, geo-distribution, scale of ap-
plication, etc. While there have been a few works that study
ways to provision reserved and on-demand compute instances
(e.g., [32]), they are limited to studying deployments in a
single data-center, and are usually restricted to single-tiered
applications. Hence, in our simulation, we study the impact
of different possible reserved instance configurations on cost.
Specifically, we evaluate the Thumbnail application by varying
the number of reserved instances used per component and
look at the resulting cost. We then compare the overall cost
achieved with Dealer to other schemes that may be used in
cloud deployments today.

We define reserved-percentile as the percentile of requests
that will be served using reserved instances throughout the
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simulation run. This percentile can be computed for a compo-
nent a priori using its workload trace. E.g., the 90" percentile
of request rate for the FE component is 9.5 %; hence,
a reserved-percentile of 90 means that the application will
be provisioned with reserved instances to handle 9.5 =2
Any request rate beyond the capacity of reserved instances
is either re-routed remotely (if feasible) or served using on-
demand instances. The simulation is repeated for reserved-
percentile values between 0 and 100. The same percentile is
used across all components in each simulation run (which may
map to different request rates at each component; e.g., the 90"
percentile of request rates for the BL;/BLo/FE components
are 5.8/4/9.5 %). For each replica, we compute the number
of instances required to serve a given request rate based on
stress-test capacity analysis discussed in §V-A. The same VM
size is assumed for both on-demand and reserved instances
(small in our experiments). A margin of 200% is used for
provisioning application components. Finally, we assume on-
demand instances can be started instantaneously.
Schemes. Traffic to each data-center is served first by reserved
instances in the same data-center. Any excess traffic is handled
according to the following schemes:
1) Local: on-demand instances are started locally for any
excess traffic beyond reserved instances’ capability.
2) Redirection: for excess traffic, it first checks if the remote
data-center is underutilized by checking the available capacity
of each component’s replica in the remote data-center. If
the remote data-center has available capacity, it redirects
requests to it until its capacity limit is reached. After that,
any excess traffic is handled locally using the more expensive
on-demand instances. Note that the amount of traffic redirected
remotely is limited by the bottleneck component with lowest
available capacity in the remote data-center. This scheme is
representative of the costs seen in DNS-based or application-
level redirection schemes described in §V-A.
3) Dealer: at each component, this scheme re-routes excess
traffic to the replica in the remote data-center if its capacity
permits. Note that this is done at each individual component
independently of the available capacity at other components
in the remote data-center (unlike the previous scheme which
redirects traffic at entire data-center granularity). After that,
any remaining excess traffic is handled using local on-demand
instances.
Workload and Prices. We evaluate the Thumbnail application
based on a 2 weeks workload trace described in §II-B. We
use the same workload trace for both data-centers; however,
we shift one of the workloads by 3 hours, allowing us to
simulate a realistic load seen by data-centers in different
time-zones. The components BL; and BLs are subjected to
the same request rate seen by Component]l and Component2
respectively. We use the same tariffs used in the previous
subsection. On-demand instances are paid hourly. Once an
on-demand instance is started, it is assumed to remain online
for increments of hours; at the end of each hour, instances
that are not needed any more (e.g., due to low workload) are
turned off. For reserved instances, we normalize the price of
the instances to the duration of the experiment.

Figure 14 illustrates the total cost and constituent com-
pute and network costs for Dealer. The figure shows that
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Fig. 14. Total cost for Dealer with various reserved-percentile values.
Constituent costs are also shown for compute instances (on-demand
and reserved) and inter-data-center bandwidth. Costs are calculated
for a workload trace of 2 weeks duration using Microsoft Azure
prices. Same trends were also observed for Local and Redirection.

as reserved-percentile values increase, the application uses
more reserved instances to serve higher request rates, thus
incurring higher reserved cost and lower on-demand cost—
e.g., at reserved-percentile value of 100, Reserved(on-demand)
cost contributes to 100%(0%) of total cost. Varying reserved-
percentile value gives different composition of reserved and
on-demand instances which impacts the total overall price. For
instance, the figure shows that the optimal costs were obtained
with reserved-percentile values of either 70 or 90. Similar
trends were also observed for both Local and Redirection
schemes. Finally, we also run our simulation using Amazon
EC2 prices [1]. The same trends were observed for all schemes
(though, the overall cost using Amazon was lower by about
$159 on average).

Figure 15 further illustrates the cost increase percentage
for Local and Redirection schemes in comparison to Dealer’s
cost, using both Microsoft Azure and Amazon EC2 prices.
The figure shows that Dealer achieved the best cost savings
for all reserved-percentile values. For instance, in Figure 15(a),
choosing reserved instances to serve up to the 60" percentile
of request rates at all components yields a cost increase of
about 15% for Local and 11% for Redirection over Dealer.
Using the prices of Amazon EC2 gave even better results; Lo-
cal(Redirection) exhibited a cost increase of up to 17%(12%)
over Dealer’s price. Local always corresponds to the worst
operational costs because any workload surge that cannot be
handled locally (using reserved instances) will always result in
the creation of new on-demand instances. Further, Redirection
results in higher costs than Dealer since it is limited by
the replica with minimum available capacity in the remote
data-center. Dealer, on the other hand, re-routes traffic at the
granularity of individual components and can thus leverage
reserved instances to the maximum extent possible.

We note that the cost benefit of Dealer is small when
reserved-percentile is low (close to 0) because there are few
reserved instances that Dealer can leverage. The cost benefit
is also small when reserved-percentile is high (close to 100)
because the application is highly over-provisioned and thus
has sufficient reserved instances to handle peak loads without
requiring redirection. Dealer provides the best cost benefit
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when reserved-percentile is around 60. This, in fact, represents
the most practical operating point for all schemes (as shown
in Figure 14).

Overall, our results show that the cost increase due to inter-
data-center traffic in Dealer is minor and, in fact, Dealer can
be used to reduce overall costs by leveraging the difference
in tariffs between on-demand and reserved instances in an
application.

VII. RELATED WORK

Several researchers have pointed out the presence of perfor-
mance problems with the cloud (e.g., [25], [35], [46], [50]).
Recently, [50] highlighted the long tail of response time in
Amazon EC2 and related it to the co-scheduling of CPU-
bound and latency-sensitive tasks on the same hypervisor. In
contrast, our focus is on designing systems to adapt to short-
term variability in the cloud.

The cloud industry already provides mechanisms to scale
up or down the number of server instances in the cloud (e.g.,
[12], [14]). However, it takes tens of minutes to invoke new
cloud instances in commercial cloud platforms today. Recent
research has shown the feasibility of starting new VMs at
faster time scales (e.g., [34]). While such schemes are useful
for handling variability in performance due to excess load on
a component, they cannot handle all types of dynamics in
the cloud (e.g., problems in blob storage, network congestion,
etc.) Further, ensuring the servers are warmed up to serve
requests after instantiation (e.g., by filling caches, running
checks, copying state, etc.) demands additional time. In con-
trast, Dealer enables faster adaptation at shorter time-scales,
and is intended to complement dynamic resource invocation
solutions.

Live VM migration techniques (e.g., [48], [49]) handle
a workload increase on a VM by migrating the VM to a
less loaded physical server. Although migrations may involve
short downtimes, they may incur additional overhead that
may impact application’s performance (e.g., due to iterative
memory pre-copying, network bandwidth overhead, cache
warm-up, etc.) Further, VM migration across data-centers in
WAN environments is even more challenging (due to disk and
memory state transfer, network reconfigurations, etc.) [49]. In
contrast, Dealer does not involve VM migration, and its light-
weight nature enables adaptation at shorter time-scales. Dealer
offers several advantages in that it can be used in PaaS cloud
platforms (e.g., Microsoft Azure) where VM migrations are
not possible. Moreover, techniques like [48] rely on VM-level
utilization metrics which may not suffice to detect and adapt
to all types of poor performance episodes in the cloud (e.g.,
storage or network related problems). For instance, a network
congestion may negatively impact the performance between
two inter-connected VMs; however, VM-level metrics such as
network utilization may still be low. On the contrary, Dealer
focuses on overall application performance and can detect and
adapt to such issues by appropriately reassigning requests to
the best combination of replicas.

DNS-based techniques [27], [41], [47] and server-side
redirection mechanisms [37] are widely used to map users
to appropriate data-centers coarsely at the granularity of
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individual IPs or entire user sessions. In contrast, Dealer
targets performance problems of individual cloud components
and links within an application, and may choose components
that span multiple data-centers to service an individual user
request. This offers significant performance benefits and addi-
tional cost savings over other schemes, as we extensively show
in §V and §VI. We note that [37] mentions doing redirection
at the level of the bottleneck component; however, Dealer is
distinguished in that it makes no a priori assumption about
which component is the bottleneck, and dynamically reacts to
whichever component or link that is performing poorly.

Several works [40], [45], [51] study utility resource plan-
ning and provisioning for applications. For example, [45]
aims at handling peak workloads by provisioning resources at
two levels; predictive provisioning that allocates capacity at
the time-scale of hours or days, and reactive provisioning that
operates at time scales of minutes. While such techniques are
complementary to Dealer, their focus is not applications de-
ployed in public clouds. Dealer not only deals with workload
variability, but also handles all types of performance variability
(such as service failures, network congestion, etc.) in geo-
distributed multi-tier applications, deployed in commercial
public clouds. Dealer provides ways to avoid components with
poor performance and congested links via re-routing requests
to replicas in other data-centers at short time scales.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that it is important and
feasible to architect latency-sensitive applications in a manner
that is robust to the high variability in performance of cloud
services. We have presented Dealer, a system that can enable
applications to meet their SLA requirements by dynamically
splitting requests for each component among its replicas
in different data-centers. Under natural cloud dynamics, the
90th and higher percentiles of application response times
were reduced by more than a factor of 3 compared to a
system that used traditional DNS-based redirection. Further,
Dealer not only ensures low latencies but also significantly
out-performs application-level redirection mechanisms under
a range of controlled experiments. Although Dealer incurs
additional cost due to re-routing requests across data-centers,
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our results show that such costs are minimal even for data-
intensive applications such as Thumbnail. In fact, Dealer can
be used to reduce the overall operational costs of applications
by up to 15% by leveraging the difference in billing plans of
on-demand and reserved instances. Finally, integrating Dealer
with two contrasting applications only required a modest level
of change to code.

As future work, we plan to explore and gain more experi-
ence integrating Dealer with a wider set of cloud applications
with various consistency constraints. Further, we intend to
study ways for reducing probing overhead by limiting active
probes to measuring inter-data-center bandwidth and latency
only. Moreover, rather than relying on empirical experience
to tune the parameters of the system, we believe a system-
atic investigation of heuristics that can result in the optimal
operating points is an interesting area of future work. Finally,
we will evaluate the performance of Dealer under scale and
explore more cloud infrastructures (such as Amazon EC2 and
Google App Engine).
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