
Modeling Complexity of Enterprise Routing Design

Xin Sun
School of Computing and

Information Sciences
Florida International University

xinsun@cs.fiu.edu

Sanjay G. Rao
School of Electrical and
Computer Engineering

Purdue University
sanjay@purdue.edu

Geoffrey G. Xie
Department of Computer

Science
Naval Postgraduate School

xie@nps.edu

ABSTRACT

Enterprise networks often have complex routing designs given the
need to meet a wide set of resiliency, security and routing policies.
In this paper, we take the position that minimizing design com-
plexity must be an explicit objective of routing design. We take a
first step to this end by presenting a systematic approach for mod-
eling and reasoning about complexity in enterprise routing design.
We make three contributions. First, we present a framework for
precisely defining objectives of routing design, and for reasoning
about how a combination of routing design primitives (e.g. rout-
ing instances, static routes, and route filters etc.) will meet the
objectives. Second, we show that it is feasible to quantitatively
measure the complexity of a routing design by modeling individual
routing design primitives, and leveraging configuration complexity
metrics [5]. Our approach helps understand how individual design
choices made by operators impact configuration complexity, and
can enable quantifying design complexity in the absence of con-
figuration files. Third, we validate our model and demonstrate its
utility through a longitudinal analysis of the evolution of the rout-
ing design of a large campus network over the last three years. We
show how our models can enable comparison of the complexity of
multiple routing designs that meet the same objective, guide op-
erators in making design choices that can lower complexity, and
enable what-if analysis to assess the potential impact of a configu-
ration change on routing design complexity.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Opera-
tions—Network management

Keywords

Network complexity, Routing design, Top-down modeling

1 Introduction

Recent studies [16, 20] show that routing designs of many enter-
prise networks are much more complicated than the simple models
presented in text books and router vendor documents. Part of the
complexity is inherent, given the wide range of operational objec-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’12, December 10–13, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1775-7/12/12 ...$15.00.

tives that these networks must support, to include security (e.g.,
implementing a subnet level reachability matrix), resiliency (e.g.,
tolerating up to two component failures), safety (e.g., free of for-
warding loops), performance, and manageability. There is also ev-
idence, however, to suggest that some of the network design com-
plexity may have resulted from a semantic gap between the high
level design objectives and the diverse set of routing protocols and
low level router primitives for the operators to choose from [24].
Often, multiple designs exist to meet the same operational objec-
tives, and some are significantly easier to implement and manage
than others for a target network. For example in some cases, route
redistribution may be a simpler alternative to BGP for connect-
ing multiple routing domains [16]. Lacking an analytical model
to guide the operators, the current routing design process is mostly
ad hoc, prone to creating designs more complex than necessary.

In this paper, we seek to quantitatively model the complexity as-
sociated with a routing design, with a view to developing alternate
routing designs that are less complex but meet the same set of op-
erational objectives. Quantitative complexity models could enable
systematic abstraction-driven top-down design approaches [24], and
inform the development of clean slate network architectures [9,13],
which seeks to simplify the current IP network control and manage-
ment planes.

The earliest and most notable work on quantifying complex-
ity of network management was presented by Benson et al. [5].
This work introduced a family of complexity metrics that could
be derived from router configuration files such as dependencies
in the defintion of routing configuration components. The work
also showed that networks with higher scores on these metrics are
harder for operators to manage, change or reason correctly about.

While [5] is an important first step, it takes a bottom-up ap-
proach in that it derives complexity metrics from router configu-
ration files. This approach does not shed direct light on the in-
tricate top-down choices faced by the operators while designing a
network. Conceivably, an operator could enumerate all possible
designs, translate each into configurations, and finally quantify the
design complexity from the configurations. However, such a brute-
force approach may only work for small networks where the design
space is relatively small. Additionally, this approach still requires a
model to determine which designs actually are correct, i.e., meeting
the design objectives.

In this paper, we present a top-down approach to characterizing
the complexity of enterprise routing design given only key high-
level design parameters, and in the absence of actual configuration
files. Our model takes as input abstractions of high-level design
objectives such as network topology, reachability matrix (which
pairs of subnets can communicate), and design parameters such
as the routing instances [20] (see Section 2 for formal definition),

and choice of connection primitive (e.g., static routes, redistribu-
tion etc). Our overall modeling approach is to (i) formally abstract
the operational objectives related to the routing design which can
help reason about whether and how a combination of design prim-
itives will meet the objectives; and (ii) decompose routing design
into its constituent primitives, and quantify the configuration com-
plexity of individual design primitives using the existing bottom-up
complexity metrics [5].

A top-down approach such as ours has several advantages. By
working with design primitives directly (independent of router con-
figuration files), the model is useful not only for analyzing an ex-
isting network, but also for “what if” analysis capable of optimiz-
ing the design of a new network and similarly, a network migra-
tion [25], or evaluating the potential impact of a change to network
design. Further, our models help provide a conceptual framework
to understand the underlying factors that contribute to configuration
complexity. For example, reachability restrictions between subnet
pairs may require route filters or static routes, which in turn mani-
fest as dependencies in network configuration files.

We demonstrate the feasibility and utility of our top-down com-
plexity modeling approach using longitudinal configuration data
of a large-scale campus network. Our evaluations show that our
model can accurately estimate configuration complexity metrics
given only high-level design parameters. Discrepancies when present
were mainly due to redundant configuration lines introduced by
network operators. Our models provided important insights when
applied to analyzing a major routing design change made by the op-
erators undertaken with an explicit goal to lower design complex-
ity. Our model indicated that while some of the design changes
were useful in lowering complexity, others in fact were counter-
productive and increased complexity. Further, our models helped
point out alternate designs that could further lower complexity.

2 Dimensions of Routing Design

According to most computer networking textbooks, routing design
is nothing more than selecting and configuring a single interior
gateway protocol (IGP) such as OSPF on all routers and setting
up one or more BGP routers to connect to the Internet. In reality, as
one would quickly discover from meetings and online discussion
forums of the operational community, network operators consis-
tently rate routing design as one of the most challenging tasks.

In this section, using a toy example, we briefly break down the
challenges of routing design along two structural dimensions, each
made of a distinct logical building block. The goal is to identify
the general sources of its complexity by exposing the major design
choices that operators must make.

Consider Fig. 1, which illustrates a hypothetical company net-
work that spans two office buildings. Assume that the physical
topology has been constructed, including three subnets (Sales, Sup-
port and Data Center) in the main building and two additional sub-
nets in building 2.

2.1 Policy groups

An integral part of almost every enterprise’s security policy is to
compartmentalize the flow of corporate information in its network.
For the example network, there are two categories of users: Sales
and Support. Suppose the Data Center subnet contains accounting
servers that should be accessible only by the Sales personnel. A
corresponding requirement of routing design would be to ensure
that only the Sales subnets have good routes to reach the Data Cen-
ter subnet.

We refer to the set of subnets belonging to one user category and
have similar reachability requirements as policy group. We note

SalesSales

SalesSales

SupportSupport
SupportSupport

Data-CtrData-Ctr

ISP
main

building
building 2

Figure 1: Example enterprise network spanning two offices

that policy groups are similar to policy units introduced in [6],
though there are some differences (see Sec. 9). A primary source
of complexity for routing design is to support the fine grained reach-
ability requirements of policy groups. This is particularly challeng-
ing since business stipulations often imply that subnets of a policy
group may need to be distributed across multiple buildings, multi-
ple enterprise branches, or even multiple continents.

The operator faces several choices in designing networks to meet
these reachability requirements. The operator may choose to de-
ploy a single IGP over the entire network to allow full reachability
and then place packet filters on selected router interfaces to imple-
ment the required reachability policy. This is a viable solution for
small networks. However, for medium to large networks, a large
number of filtering rules need to be configured, and on many router
interfaces. Doing so will likely introduce performance problems
because packet filters incur per packet processing. In addition, ac-
cording to a recent study [24], proper placement of packet filters in
itself is a complex task, particularly when the solution must be re-
silient against link failures and other changes in the network topol-
ogy.

Alternatively, the operator may choose to deploy a separate rout-
ing protocol instance to connect the subnets of each policy group.
For the example network, two independent OSPF instances (OSPF
10 and OSPF 20) may be used to join the subnets of Sales and Sup-
port, respectively. Such a design is not straightforward either. First,
the operator must decide which routers to include in each routing
instance, subject to additional requirements such as resiliency. Sec-
ond, the operator must select a small number of routers as border
routers and configure connecting primitives [16, 19] to “glue” the
different routing protocol instances together. (The next section has
a detailed description of the tradeoffs involved in this step.) Last
but not the least, the operator may need to configure route filters
at the border routers to implement the required reachability pol-
icy. For the example network, route filters should be configured to
prevent routes to Data Center subnets from leaking into Support.

2.2 Routing instances

In several recent papers [4, 16, 20], researchers have revealed the
common use of multiple routing protocol instances in one enter-
prise network. This is not surprising as the evolution of an enter-
prise’s computer network parallels that of its business. Networks
of different routing designs are fused at times of company merg-
ers and acquisitions. Also, large enterprises and universities are
usually made of a group of autonomous business units with quasi-
independent IT staff; each unit often has a large degree of freedom
in managing its part of the enterprise network, including the choice
of which routing protocol to use.

We adopt from these prior works the definition of a routing pro-
tocol instance, or simply routing instance, to refer to a connected
component of the network where all member routers run the same
routing protocol, use matching protocol parameters, and are con-
figured to exchange routes with each other. When dealing with a

XZ1 Z2

Z3

EIGRP 10

OSPF 10 OSPF 20

X1 X2

Y3

Y1 Y2

SalesSales

SalesSales

SupportSupport
SupportSupport

Data-CtrData-Ctr

ISP
eBGP

Figure 2: A design with multiple IGP instances

routing design with multiple routing instances, the operator must
weigh different options of joining the different routing instances
together while implementing the company’s security policy.

To illustrate, suppose the operator of the example network of
Fig. 1 has created a routing design with three routing instances, as
shown in Fig. 2. Each office building has its own routing instance
(OSPF 10 or OSPF 20) while the EIGRP 10 instance serves as the
backbone of the network.

The operator has chosen to use BGP to connect to the Internet.
It is straightforward to configure an external BGP (eBGP) peering
session and mutual route redistribution (RR) between the EIGRP
and BGP instances to allow routes to be exchanged between the
enterprise network and its ISP. The complexity increases signifi-
cantly, however, if the operator needs to configure route filters to
reject certain incoming and outgoing routes. The problem would
be compounded for multi-homed enterprise networks because of
additional policy requirements such as the designation of primary
and backup or load balancing.

For connecting the routing instances of OSPF 10 and the back-
bone, the operator has chosen to use a single border router (i.e.,
XZ1) that participates in both routing instances. (For brevity, we
do not consider the resiliency requirement in this example.) This
removes the need for BGP peering to advertise routes across the
boundaries of the instances. However, the operator must still con-
figure route redistribution and possibly route filters to allow the in-
jection of routes between the two instances. Another complication
is that multiple routing instances may simultaneously offer routes
to the same destination at a border router. The operator must imple-
ment the correct order of preference between the instances, some-
times requiring an override of some protocols’ default Administra-
tive Distance (AD) [4, 18] values on a per border router basis.

For connecting the routing instances of OSPF 20 and the back-
bone, the operator has adopted a different approach. Two border
routers (i.e., Y3 and Z2) are used as in the case of the ISP connec-
tion. However, instead of using a dynamic protocol, the operator
has configured two sets of static routes, on the two border routers
respectively, to achieve reachability across routing instances. This
design incurs considerable amount of manual configuration on a
per destination prefix basis. For example, on Y3, static routes are
required for destination prefixes not only within EIGRP 10 but also
within OSPF 10. Clearly, due to its static nature, the design may
not bode well when the subnet prefixes frequently change or dy-
namic re-routing is required. However, it has one advantage over
dynamic mechanisms like BGP or co-location of routing processes
in one border router: the packet forwarding paths across routing
instances are much easier to predict when hardcoded. In contrast,
both BGP and RR can result in routing anomalies in ways that are
difficult to identify from their configurations [18].

3 Abstractions for Modeling Routing Design

This section first presents a set of formal abstractions that capture
the routing design primitives, and design objectives and constraints.

Si subnet i Ri router i
Ii routing instance i Zi policy group i

MC connecting primitive matrix MR reachability matrix
MB border-router matrix MX route-exchange matrix
MA arc matrix Ti the internal routes that Ii has
Wi the entire set of routes that Ii

has
Krr complexity of configuring one-

way route redistribution
Ksr complexity of configuring one

static route
Kdr complexity of configuring one

default route
Kbgp complexity of configuring a

BGP session on a border router
Kobj complexity of installing object

tracking to one static route
h(i, j) a binary function denoting

whether filtering is needed
f(x) complexity of configuring a

route filter to allow a set of
routes x

|x| the size of the set x

Table 1: Notation table

These abstractions form the foundation for modeling design com-
plexity. We then describe the metrics we used for quantifying the
complexity of a given design instance that makes use of a specific
set of design primitives and targets a specific network topology.
Table 1 summarizes the notations used in this and the following
sections.

3.1 Abstracting essential elements of routing design

We use S1, S2, ... to denote the host subnets in the network. Each
subnet is assigned a unique IP prefix address (e.g., “192.168.1.0/24”).
We use R1, R2, ... to denote the routers in the network. Each sub-
net connects to a router and uses that router as its gateway (i.e. the
router routes all the packets generated by the subnet). A “route” is
considered as an IP prefix address, plus additional attributes (e.g.,
weight) that may be used for calculation of a next-hop for the route.
A router always has routes to all the connected subnets for which it
is the gateway. In addition, routes may be manually injected into a
router via configuration of static routes (Sec. 5.3). Routers may ex-
change routes by running one or more dynamic routing protocols.
To participate in each routing protocol, a router must run a separate
routing process. Each routing process maintains a separate Routing
Information Base, or RIB. The RIB contains all the routes known to
the routing process, each associated with one or more next-hops. A
router maintains a global RIB (also referred to as the forwarding in-
formation base, or FIB, in the literature), and uses selection logic to
select routes from its routing process RIBs, as well as routes to con-
nected subnets and statically configured routes, to enter the global
RIB. A router uses the global RIB to make forwarding decisions.
(Readers are referred to [20] for a more detailed description.)

We say that “a router Ri has a route to a subnet Sj”, if the pre-
fix address of Sj matches a route in the global RIB of Ri. Fur-
thermore, we say that “a subnet Si is routable from another sub-
net Sj”, if the gateway router for Sj has a route to Si. Finally,
since this paper concerns only the routing design and uses routing
as the only mechanism to implement reachability, we use the terms
“reachable” and “routable” inter-changeably.

Let I = {I1, I2, ...} denote the set of routing instances (Sec. 2.2),
an essential routing design component that abstracts route propaga-
tion in the network. As described in Sec. 2.2, routing processes in
the same routing instance exchange all their routes freely. As a
result, all the routing processes share the same set of routes. To
change this behavior, route filters are typically used to filter route
updates between routing processes (Sec. 4). On the other hand,
routing processes in different routing instances do not exchange
any route. To change this behavior, connecting primitives must be
used (e.g., static routes, route redistribution and BGP). The routers
where connecting primitives are implemented are termed border

routers.

We assume that we are given the set of routing instances I and

Router 1

1. interface GigabitEthernet 1/1

2. ip address 10.1.0.1 255.255.255.252

3. !

4. router eigrp 10

5. distribute-list prefix TO-SAT out GigabitEthernet1/1

6. !

7. ip prefix-list TO-SAT seq 5 permit 192.168.1.0/24

8. ip prefix-list TO-SAT seq 10 premit 192.168.5.0/24

Router 2

9. interface FastEthernet1/1

10. ip address 192.168.1.1 255.255.255.0

11. !

12. interface FastEthernet2/1

13. ip address 192.168.5.1 255.255.255.0

14. !

Figure 3: Configuration snippets of two routers.

their member routers and routing processes. We are also given the
connecting primitive matrixMC. Each cellMC(i, j) specifies the
connecting primitive used by Ii and Ij , to allow routes to be sent
from Ii to Ij .

In this paper, we focus on the primary use of routing design:
implementing reachability policies. The primary layer-three mech-
anisms to implement reachability are the connecting primitives and
route filters. We do not model the selection logic, which is used
to prefer one routing path over another, as this is typically used for
traffic engineering purposes, rather than implementing reachability.

3.2 Abstracting design objectives and constraints

The design objectives and constraints considered in this paper in-
clude reachability and resiliency, as well as routing path policies.
First, to capture the reachability requirements, it is assumed that
we are given the reachability matrix MR. Each cell MR(i, j) de-
notes whether the subnet Si can reach the subnet Sj . Note that
in the routing design we only consider reachability at the subnet
level. We do not consider host-level reachability as it is typically
implemented by data plane mechanisms such as packet filters.

To capture the resiliency requirement, we assume that we are
given the border-router matrix MB. Each cell MB(i, j) specifies
the set of Ii’s border routers that enable Ii to advertise routes to
Ij . Note that a routing instance may use different border routers to
communicate with different neighboring instances.

To capture the path policies, it is assumed that we are given the
route-exchange matrix MX. Each cell MX(i, j) specifies the set
of routes that Ii should advertise to Ij to meet the reachability re-
quirement. We assume that the routes in the matrix is in the most
aggregated form. Clearly the set of external routes that Ii has may
be calculated as

⋃
j
MX(j, i). Let Ti denote the set of internal

routes that Ii has (i.e., routes originated by subnets inside Ii). Let
Wi denote the entire set of routes that Ii has, which may be calcu-
lated as follows:

Wi = (
⋃

j

MX(j, i))
⋃

Ti (1)

3.3 Measuring complexity

Using these abstractions, we are able to precisely define the ob-
jectives, or the correctness criteria, of a routing design, and reason
about how a combination of routing primitives (e.g., routing in-
stances, static routes, route filters, etc.) will meet the objectives.
We then leverage metrics developed by previous work to measure
how the choice of different routing primitives may impact the com-
plexity of the resulting network.

The particular metric that we use is proposed by [5], which cap-
tures the complexity in configuring a network by counting the num-
ber of referential links in the device configuration files. Basically a
referential link is created when a network object (e.g., a route filter,

to AS2

S1

S2

S3

S4

R1

R2

R3 R4

R5

R6

R7

routing instance I1

S1 S2 S3 S4 AS2

S1 Y Y Y N Y

S2 Y Y Y N Y

S3 Y Y Y Y N

S4 N N Y Y Y

AS2 Y Y N Y Y

(a) An example network and reachability policy. The matrix has
one row (column) per subnet. Y (N) indicates the subnets can
(cannot) reach each other.

R1

R2

R3 R4

R5

R6

R7

Z1

Z2

Z3

AS2

V
R V

B

V
Z

V
X

(b) The per-instance routing graph of routing instance I1

Figure 4: Illustrating need for route filters.

a subnet) is defined in one configuration block, and is subsequently
referred to in another configuration block, in either the same con-
figuration file or a different file. As an example, consider Fig. 3
that shows configuration snippets from two routers. The referential
links are shown in italics. In line 5 in Router 1’s configuration, a
route filter named TO-SAT is applied to the interface GigabitEther-
net1/1 to filter two routes in the outgoing direction. This line intro-
duces two referential links: one to the name of the filter (defined in
lines 7-8), and the other to the name of the interface (defined in line
1). Moreover, the definition of the route filter (lines 7-8) introduces
two referential links to the two subnet prefixes, which are defined
in Router 2’s configuration file (line 10 and 13). Clearly, the exis-
tence of referential links increases the configuration complexity as
it introduces dependencies between configuration blocks either in
the same configuration file or in different configuration files.

We choose to use this metric because it has been extensively val-
idated in [5] through operator interviews. Our own interaction with
operators also suggests that the metric reflects operator perceived
complexity reasonably well. We note that other complexity metrics
have been proposed in [5] such as the number of routing instances,
and the number of distinct router roles. Many of these other met-
rics are relatively straight-forward to estimate from the design. For
example, the number of distinct router roles could be estimated
based on the insight that border and non-border routers play dif-
ferent roles. Further, we have observed in our evaluation settings
that the referential link metric shows the most variation across de-
signs, making it particularly useful in facilitating comparisons.

4 Modeling Intra-Instance Complexity

This section presents a framework for estimating complexity ex-
isting within a routing instance. We first show that such complex-
ity results from the need to install route filters inside the routing
instance, in order to implement the different reachability require-
ments of different subnets. We then present models to quantify
the complexity associated with such route filters. In doing so, our
models determine the route filter placement and the filter rules.

4.1 Source of intra-instance complexity

The complexity within a routing instance primarily comes from the
route filters installed inside the instance. By definition, all routing
processes of the same routing instance have the same routing ta-

bles. This means that all the subnets connecting to those routing
processes will have the same reachability toward other subnets. If
this is not desired, route filters must be used to implement reacha-
bility policies inside a routing instance.

As an example, consider the network shown in Fig. 4a. Routers
R1-R7 and subnets S1-S4 are placed in routing instance I1. Border
router R2 runs eBGP with another autonomous system AS2 and
injects eBGP learned routes to I1. The figure also shows the desired
reachability matrix. To implement the reachability matrix, route
filters must be carefully placed. For example, to prevent S1 and
S2 from reaching S4, while permitting S3 to reach S4, route filters
must be installed between R3 and R5, and between R3 and R6.
Similarly, a route filter must be installed between R1 and R4 to
prevent S4 from reaching S1 and S2. In addition, another route
filter must be installed between R3 and R7, to prevent S3 from
reaching the external routes of I2.

In general, the degree of diversity in terms of reachability among
subnets of the same routing instance directly impacts the amount of
filtering required, which in turn determines the complexity inside
that routing instance. To capture this degree of diversity, we lever-
age the notion of policy groups discussed in Sec 2.1.

Policy groups: Formally, let Z = {Z1, Z2, ...} denote the set of
policy groups in a network. A policy group Zi ∈ Z is a set of
subnets that (i) can reach each other, and (ii) are subject to the same
reachability treatment toward other subnets (e.g., if a subnet Sa ∈
Zi can reach another subnet Sb ∈ Zj , then all subnets inZi must be
able to reach Sb as well). Clearly, policy groups divide the set of all
subnets, and each subnet belongs to one and only one policy group.
The set of policy groups of a given network can be easily derived
from the reachability matrixMR. In the example in Fig. 4a, S1 and
S2 form a policy group, while S3 and S4 each constitute a separate
policy group.

By definition, there is no need for filtering within a policy group.
Thus if a routing instance contains only a single policy group, the
intra-instance complexity is zero. On the other hand, if a routing in-
stance contains subnets of multiple policy groups, route filters must
be installed among them to implement their different reachability
constraints, and thus incur complexity.

4.2 Modeling the complexity

Intuitively, the degree of complexity of a given routing instance Ia
depends on two factors:

• The number of route filters installed inside Ia, as each installation
of a filter creates a referential link to the name of that filter (e.g.,
line 5 of router 1 in Fig 3).

• The complexity associated with each filter, which is measured by
the number of rules in each filter, as each rule creates a referential
link to a prefix address (e.g., lines 7-8 of router 1 in Fig 3).

Below we model the two factors separately.

4.2.1 Estimating number of filters

In order to estimate the number of route filters needed to be in-
stalled inside a given routing instance Ia, we first introduce an
undirected graphGa(VR, VZ , VX , VB, E) , called the per-instance
routing graph of Ia. We then show how we use this graph to do the
estimation for different network topologies.

Per-instance routing graph: The purpose of the per-instance rout-
ing graph is to model how policy groups are inter-connected. There
are four types of nodes in the graph for a given routing design: VR,
VZ , VX and VB . VR denotes the set of routers that participate in
this routing instance. VZ denotes the set of policy groups that are
placed inside this routing instance. VX denotes networks external
to this routing instance (i.e., other routing instances in the same AS

and external ASes as well), whose routes are injected into this rout-
ing instance by one or more border routers. Finally, VB denotes the
set of border routers of this routing instance.

E denotes the set of edges. First, there is an edge between two
nodes vi, vj ∈ VR if the two routers are physically connected, and
the corresponding routing processes running on them are adjacent,
i.e., can exchange routing updates [20]. Second, there is an edge
between vi ∈ VZ and vj ∈ VR if one or more subnets in policy
group vi connect to the routing process running on vj . Finally,
there is an edge between vi ∈ VX and vj ∈ VB , if the border
router vj injects the routes of the external network vi.

For example, the per-instance routing graph of I1 in Fig. 4a is
shown in Fig. 4b.

Determine filters needed for one policy group: Using the per-
instance routing graph, we determine the route filters needed for
implementing the reachability of a policy group vi ∈ VZ toward

other subnets. First, consider every policy group vj ∈ VZ . If vj
contains one or more subnets that vi can not reach, then a route
filter must be placed on every possible path between vi and vj on
the per-instance routing graph, to filter out routing updates corre-
sponding to those subnets before they reach any gateway router of
vi. Similarly, consider every external network vk ∈ VX . If there
exist one or more subnets in vk that vi cannot reach, a route filter
must be placed on every possible path between vi and vk to filter
routing updates corresponding to those subnets as well.

Upper and lower bounds on the number of filters: In both cases
described above, the upper bound on the number of route filters
needed for policy group vi is the total number of paths between
vi and vj (vk), summed over all vj and vk for which filtering is
needed. The upper bound can always be achieved by placing the
filters on the on gateway routers of vi. The lower bound is the
number of links in the smallest edge-cut set between vi and vj (vk),
summed over all vj and vk for which filtering is needed. However,
the lower bound may not always be achievable, as some links may
be included in the smallest edge-cut sets between multiple pairs
of policy groups. For example, in Fig. 4b routing updates of Z3
must be filtered before they reach Z1, as Z1 is not allowed to reach
Z3. While one smallest edge-cut set between Z1 and Z3 is the link
R1-R3, we cannot place the filter on that link, as doing so would
wrongfully prevent Z2 from getting those routing updates.

The lower bound can be achieved for a special type of star topol-
ogy, which we believe is typical in many enterprise networks. In
this type of topology, any path between a pair of policy groups,
or between a policy group and an external network, always goes
through the core router tier. This ensures that the paths between
the core tier and different policy groups do not share any common
router. Given this special topology, it may be shown that (i) the core
tier will have the complete set of routes, and (ii) it is sufficient to
place the route filters between the core tier and each policy group.
Hence it is now feasible to place the filters on the smallest edge-cut
set between the core tier and each policy group.

4.2.2 Estimating number of rules in each filter

Consider using a route filter to implement a policy group Zj ’s
reachability constraint toward another policy group Zi. The num-
ber of rules in this filter depends on the number of routes to be
blocked from Zi to Zj , as one route translates to one filter rule (see
Fig. 3 for an illustration).

For example, as we have discussed above, a route filter must be
installed between Z1 and Z3 in the toy network (Fig. 4b), to prevent
the routes of S1 and S2 from being advertised to S4. The number
of rules in this filter will be two, as there are two prefixes to be
blocked. (Note that the number of rules may be reduced, if several

S1

S2

R1 S3

R3

I2 (EIGRP 20) S1 S2 S3

S1 Y Y N

S2 Y Y Y

S3 N Y Y

I1 (OSPF 10)

R2

Figure 5: A toy network with two routing instances.

S1

S2

R1 S3

R3

I2 (EIGRP 20) S1 S2 S3

S1 Y Y N

S2 Y Y Y

S3 N Y Y

I1 (OSPF 10)

R2

R4

(a) The network design using route redistribution.

Router 4

1. router ospf 10

2. redistribute eigrp 20

3. !

4. router eigrp 20

5. redistribute ospf 10 route-map OSPF-TO-EIGRP

6. !

7. route-map OSPF-TO-EIGRP permit 10

8. match ip address 1

9. !

10. access-list 1 permit S2

(b) Configuration snippet of the border router R4

Figure 6: Design using route redistribution for the network shown
in Fig. 5.

prefixes can be aggregated into a larger prefix. For simplicity we
do not consider such route aggregation in this work.)

5 Modeling Inter-Instance Complexity

This section presents a framework for estimating the inter-instance
complexity. We show that this complexity results from the use of
connecting primitives. We then present models for estimating the
complexity of the three typical connecting primitives described in
Sec. 2.2: route redistribution, static and default routes, and BGP.

5.1 Source of inter-instance complexity

The inter-instance complexity comes from the need for connecting
primitives to connect multiple routing instances. Consider the toy
network shown in Fig. 5 as an example. There are two routing
instances: I1 running OSPF with process ID 10, and I2 running
EIGRP with process ID 20. I1 contains subnets S1 and S2, and
I2 contains S3. The reachability policy specifies that S1 and S2
can reach each other and so do S2 and S3, but S1 and S3 can not.
Given the network as such, I1 and I2 cannot exchange any route,
and thus cannot communicate at all. To implement the reachability
between I1 and I2, one or more border routers must be deployed
to physically connect the two routing instances, and in addition, a
connecting primitive must be configured on the border routers to
enable route exchange.

An important factor that impacts the degree of inter-instance
complexity is the resiliency requirement (Sec. 3.1), which specifies
the number of border routers each routing instance should have.
While having more border routers improves resiliency, it also in-
troduces potential anomalies (e.g., routing loops) and complicates
the configuration, as we will show in the next section.

In this section we focus on the most basic scenario where each
routing instance uses a single border router (i.e., minimum resiliency).
We discuss the case with multiple border routers in the next section.

5.2 Route redistribution

The first connecting primitive we consider is route redistribution,
which dynamically sends routes from one routing instance to an-
other. Using route redistribution to connect two routing instances
requires having a common border router that runs routing processes

in both routing instances. The border router then may be config-
ured to redistribute routes from one routing instance to the other,
and vice versa. (Note that route redistribution must be separately
configured for each direction.) For example, Fig. 6a illustrates the
design using route redistribution for the network shown in Fig. 5.
Router R4 is the border router and is configured to redistribute
routes between I1 and I2.

Fig. 6b shows the relevant configuration snippet of R4 in Cisco
IOS syntax, with referential links highlighted in italics. Line 1 and
4 create two routing processes, one participating in each routing
instance. Line 2 and 5 redistribute routes from I2 to I1 and from I1
to I2 respectively.

We note that by default, route redistribution will redistribute all
the active routes [17]. For example, R4 in Fig. 6a will redistribute
routes of both S1 and S2 to I2. This enables S3 to reach both S1 and
S2, which does not conform to the reachability policy as shown. To
change the default behavior, a route filter (in the form of route-map)
must be used in conjunction with route redistribution, as shown in
line 5 in Fig. 6b. The route filter permits a subset of routes to be
redistributed as specified by the filtering rules (line 7 and 8), and
blocks the rest routes.

Modeling complexity: Consider route redistribution from Ii to Ij .
Route redistribution in the other direction may be modeled simi-
larly and separately. As shown above, the configuration may in-
clude two components: (i) configuration of the route redistribution
itself, which has a constant complexity; and (ii) configuration of a
route filter, which is needed if only a subset of Ii’s routes should
be redistributed to Ij . Let Krr denote the complexity of configur-
ing the route redistribution itself. Let the function f(x) denote the
complexity of configuring and installing a route filter with x rules
(i.e., the filter permits x routes). We note that f(x) includes: (i) the
complexity of defining the route filter, which is linear to the number
of rules to be defined, and (ii) the complexity of installing the filter
by referring to its name, which is a constant factor. In addition, we
let h(i, j) be the following binary function that denotes whether a
filter is needed: (Recall that a filter is not needed if all the routes Ii
has, i.e. Wi, can be redistributed into Ij .)

h(i, j) = 0, ifMX(i, j) = Wi; (2)

h(i, j) = 1, otherwise. (3)

The overall complexity denoted by Crr(i, j) can be calculated as
follows:

Crr(i, j) = Krr + f(MX(i, j)) ∗ h(i, j) (4)

5.3 Static routes

Another way to connect two routing instances is to use static routes,
which can be viewed as manually entered routing table entries. A
design using static routes for the network in Fig. 5 is shown in
Fig. 7a. In such designs, each routing instance must have its own
border router that participates in only that routing instance. Static
routes are configured on the border routers to point to destination
subnets in the other routing instance. One static route is needed for
every destination subnet. Further, the static routes are redistributed
into the respective routing instance so that internal routers in the
routing instance also have those routes.

Fig. 7b shows the relevant configuration snippets of the two bor-
der routers R4 and R5, with referential links highlighted in italics.
On R4, a static route is configured in line 4. The static route points
to S3 as the destination, and specifies R5 as the next-hop to reach
the destination. This static route enables R4 to have a route to S3.
Further, line 2 redistributes the static route into I1, so that other
routers of I1 (i.e., R1 and R2) also have a route to reach S3. Sim-

S1

S2

R1
S3

R3

I2 (EIGRP 20) S1 S2 S3

S1 Y Y N

S2 Y Y Y

S3 N Y Y

I1 (OSPF 10)

R2

R4 R5

(a) The network design using either static routes or BGP.

Router 4

1. router ospf 10

2. redistribute static

3. !

4. ip route S3 R5

Router 5

5. router eigrp 20

6. redistribute static

7. !

8. ip route S2 R4

(b) Configuration snippets of the border routers using static
routes.

Figure 7: Design using static routes for the network shown in
Fig. 5.

Router 4

1. router ospf 10

2. redistribute bgp 64501

3. !

4. router bgp 64501

5. neighbor R5 remote-as 64502

6. neighbor R5 distribute-list 1 out

7. redistribute ospf 10

8. !

9. access-list 1 permit S2

Router 5

10. router eigrp 20

11. redistribute bgp 64502

12. !

13. router bgp 64502

14. neighbor R4 remote-as 64501

15. redistribute eigrp 20

16. !

Figure 8: Configuration snippets of the border routers using BGP,
for the network shown in Fig. 7a

ilarly, a static route to S2 is configured on R5 (line 8) and redis-
tributed to I2 (line 6).

Modeling complexity: Consider using static routes to allow Ij to
reach a set of subnets in Ii as specified byMX(i, j). Let |MX(i, j)|
denote the size of MX(i, j). Since one static route is needed for
each subnet in MX(i, j), there will be |MX(i, j)| static routes to
configure. LetKsr denote the complexity of configuring one static
route, which is a constant factor. The total complexity denoted by
Csr(i, j) can be calculated as follows:

Csr(i, j) = |MX(i, j)| ∗Ksr (5)

Finally, we note that a default route is a special case of static
routes, which injects a default gateway to the router. A default
route has a constant complexity denoted by Kdr. We refer readers
to the extended technical report [23] for more details on modeling
default routes.

5.4 BGP

A third connecting primitive is BGP, which is a dynamic routing
protocol that enables routes to be exchanged among routing in-
stances. BGP typically requires each routing instance to have its
own border router(s). The design using BGP for the same exam-
ple network is shown in Fig. 7a. Again R4 and R5 are the border
routers for I1 and I2 respectively. In addition to running the respec-
tive IGP routing process, R4 and R5 each also runs a separate BGP

S1

S2

R1 S3

R3

I2 (OSPF) I1 (RIP)

R2

R4

R5

Figure 9: Both border routers R4 and R5 are performing mutual
route redistribution between I1 and I2. Assume full reachability
among all subnets.

routing process. A BGP peering relationship is established between
R4 and R5, so that R4 can advertise S2 to R5, and R5 can advertise
S3 to R4. R4 and R5 also redistribute the BGP-learned routes to
their respective routing instance, so that other routers in the routing
instance have those routes too.

Fig. 8 shows the relevant configuration snippets of R4 and R5.
Configuring R4 involves: (i) starting a BGP routing process (line
4); (ii) redistributing routes from the IGP into the BGP process
(line 7); (iii) establishing a BGP peering session with the neigh-
boring border router R5 and exchanging routes with it (line 5); (iv)
installing an optional route filter to restrict the routes to be adver-
tised (line 6); and (v) redistributing the BGP-learned routes into
IGP (line 2). Similar configuration is done on R5 too. We wish
to note two things here. First, the BGP process does not have any
route by default, and hence routes must be explicitly redistributed
from the IGP to the BGP, i.e., the step (ii) above. Second, BGP ad-
vertises all its routes to neighbors by default. If this is not desired,
a route filter must be used to restrict routes to be advertised, i.e. the
step (iv) above.

Modeling complexity: Consider that Ii advertises a set of routes
to Ij using BGP. The complexity of configuring BGP on Ii’s border
router consists of three components: (i) the complexity of configur-
ing the BGP session itself, including configuring the BGP process
and the peering relationship with the neighbor; (ii) the complex-
ity of configuring mutual route redistribution between the IGP and
the BGP processes; and (iii) the complexity of configuring a route
filter, if it is needed (i.e., if only a subset of Ii’s routes can be ad-
vertised to Ij). LetKbgp denote the complexity of configuring the

BGP session itself, which is a constant factor. Let f(x) and h(i, j)
be the same functions as defined in Sec. 5.2. The total complexity
denoted by Cbgp(i, j) can be calculated as follows:

Cbgp(i, j) = Kbgp + 2 ∗Krr + f(MX(i, j)) ∗ h(i, j) (6)

6 Complexity With Multiple Border Routers

We now consider designs where a routing instance uses multiple
border routers to connect to another routing instance. An example
of such a design is shown in Fig. 9, where both border routers R4
and R5 are configured to perform mutual route redistribution be-
tween I1 and I2. The main benefit of using multiple border routers
is increased resiliency. For example, even if one border router in
Fig. 9 fails, I1 and I2 can still communicate through the other one.
On the other hand, using multiple border routers can cause several
routing anomalies. To prevent the anomalies, additional configura-
tion is needed, which may increase the complexity of the design.

In this section, we model the additional complexity resulting
from ensuring both safety and resiliency of designs with multiple
border routers:

• Safety: the routing must function correctly when all the border
routers are alive and running, e.g., no routing loop will occur;

• Resiliency: when one or more border routers and/or links are
down, the routing must be able to adapt and re-route traffic though
live routers and/or links.

S1

S2

R1
S3

R3

I2 (EIGRP 20) I1 (OSPF 10)

R2

R4

R7R5

R6

Figure 10: Static routes are configured on all border routers R4 -
R7. Assuming full reachability among all subnets.

We examined all three connecting primitives and found that (i)
for route redistribution, additional mechanisms are required to en-
sure safety; (ii) for static routes, additional mechanisms are re-
quired to ensure resiliency; and (iii) for BGP, no additional mecha-
nism is needed. Below we focus on modeling the additional com-
plexity resulting from route redistribution and static routes. For the
case of BGP we refer readers to the extended technical report [23].

6.1 Ensuring safety with route redistribution

Consider a design scenario where route redistribution is configured
on multiple border routers to redistribute routes from Ii to Ij . The
complexity of this design depends on what connecting primitive is
used to send routes in the reverse direction (i.e., from Ij to Ii), as
we discuss below.

On the one hand, if no connecting primitive or a different con-
necting primitive than route redistribution is used in the reverse di-
rection, the complexity Crr is simply the single-border-router com-
plexity (Sec. 5.2) multiplied by the number of border routers, i.e.,

Crr(i, j) = (Krr + f(Mx(i, j)) ∗ h(i, j)) ∗ |MB(i, j)| (7)

Recall thatMB(i, j) denotes the set of border routers that Ii uses to
reach Ij , which is an input to our framework (Sec. 3.2). |MB(i, j)|
denotes the size of this set, i.e., the number of border routers.

On the other hand, if route redistribution is also used in the re-
verse direction, then a potential anomaly called route feedback may
occur. Route feedback happens when a route is first redistributed
from Ii to Ij by one border router, but then is redistributed back
from Ij to Ii by another border router. For example, in the network
in Fig. 9, S1 may be first redistributed from I1 (RIP) to I2 (OSPF)
by router R4. So router R5 may learn S1 from both RIP and OSPF.
If R5 prefers the OSPF-learned route, it will redistribute the route
back to RIP. Route feedback can lead to several problems such as
routing loops and route oscillations [17]. Clearly route feedback
can happen only when mutual route redistribution is conducted by
multiple border routers between two routing instances.

As a common conservative solution to this issue, a route filter is
used in conjunction with route redistribution to prevent any route
from re-entering a routing instance that it’s originally from. In the
above example, a route filter should be installed on R4 and R5 to
allow only the route S3 to enter I1, and prevent the routes S1 and S2
from re-entering I1. Note that such a filter may be already in place
to implement reachability as described in Sec. 5.2 (i.e., to permit
only a subset of Ij’s routes to be redistributed to Ii, and block all
other routes). In such case, there is no additional complexity in-
troduced. Only in the case where the filter is not needed otherwise
(i.e. MX(j, i) = Wj), a route filter needs to be configured for the
sole purpose of preventing route feedback. To summarize, in the
mutual route redistribution case, the total inter-instance complexity
of using route redistribution to advertise routes from Ii to Ij is:

Crr(i, j) = (Krr + f(Mx(i, j))) ∗ |MB(i, j)| (8)

The complexity on the reverse direction can be similarly modeled.

6.2 Ensuring resiliency with static routes

Consider that a routing instance Ij uses static routes to reach a
set of subnets in Ii, as is the case with routing instances I1 and

I2 in the example network in Fig. 10. On each border router of
Ij (e.g., R6 in Fig. 10), and for each destination subnet in Ii (e.g.,
S2), multiple static routes may be configured, each using a different
border router of Ii as the next-hop. For example, two static routes
may be configured on R6 to reach S2, one using R4 as the next-
hop, and the other using R5. We assume that we are also given
as input an arc matrix MA, where each cell MA(i, j) specifies
the set of arcs from the set of border routers in Ij to the set of
border routers in Ii. An “arc” is said to exist from one border router
Rb ∈ MB(j, i) to another border router Ra ∈ MB(i, j), if there
exists a static route on Rb that uses Ra as the next hop.

One limitation with static routes is that they may not be able to
automatically detect the failure of the next-hop router or the link
in between, and will continue to try to route traffic to the bad path,
even when other valid paths exist. This will result in packets being
dropped. For example, in Fig. 10, when there is no failure, R6
will load balance the two static routes and use both R4 and R5
to route traffic to I1. R7 will do the same thing. However, if R4
fails, R6 and R7 will not be able to detect the failure or remove the
corresponding static route that uses R4 as the next-hop. Instead,
they will continue to try to route half of the traffic to R4, resulting
in those packets being dropped.

A common solution to this problem is using object tracking [10]
along with each static route. In doing so, each static route involves
referring to an object tracking module. At a high level, object
tracking will periodically ping the destination subnet of the static
route, using the same next-hop router as specified in the static route.
When a failure occurs and the destination is no longer reachable
via the particular next-hop, the static route will be removed from
the RIB at that point.

Let Kobj denote the complexity of installing object tracking to

one static route. The total complexity of using static routes to en-
able Ij to reach Ii can be modeled as follows, assuming each arc
contains static routes to reach all subnets inMX(i, j):

Csr(i, j) = |MA(i, j)| ∗ |Mx(i, j)| ∗ (Ksr +Kobj) (9)

That is, the total complexity is the single-arc complexity (which
includes both the complexity of configuring the set of static routes,
and the complexity of installing object tracking to each static route),
multiplied by the total number of arcs from Ij to Ii (denoted by
|MA(i, j)|).

7 Evaluation

In this section, we evaluate our framework using configuration files
obtained from the campus network of a large U.S. university with
tens of thousands of users. Our data-set includes multiple snapshots
of the configuration files of all switches and routers from 2009 to
2011. It also includes snapshots of the complete layer-two topol-
ogy data, collected using Cisco CDP at the same time each con-
figuration snapshot was collected. The network has more than 100
routers and more than 1000 switches, all of which are Cisco de-
vices. It also has tens of thousands of user hosts, and around 700
subnets, most of which are /24.

7.1 Framework validation

We first evaluate the accuracy of our framework in estimating com-
plexity. In doing so, we run the framework on one of the config-
uration snapshots, and compare the predicted complexity numbers
with the actual numbers obtained from measuring the configuration
files directly.

Krr Ksr Kdr Kbgp Kobj f(x)
1 2 1 2 1 |x|+ 2

Table 2: Realizing framework parameters

DATA RSRCH GRID INT

DATA - H-1 × X

RSRCH X - X X

GRID × H-1-1 - ×
INT D-1 H-1-1 × -

Table 3: Each cell (row, column) shows whether the policy group
column can be reached by the policy group row. X/× means ful-
l/no reachability. D-1, H-1 and H-1-1 each denotes a subset of the
subnets in DATA and RSRCH, which can be reached by the corre-
sponding row. H-1-1 is in turn a subset of H-1.

7.1.1 Inferring model parameters and framework inputs

We only need to calculating the model parameters for the Cisco
IOS platform, as this platform is exclusively used by the campus
network. Obtaining these parameters is straightforward, as we just
need to run the heuristics proposed in [5] on corresponding config-
uration blocks that relate to each parameter, and count the number
of referential links introduced. The results are shown in Table 2.

To infer the inputs as described in Sec. 3.2, we used a methodol-
ogy that combines reverse-engineering the configuration files and
discussions with operators. We were able to identify the inputs
as follows. Table 3 shows the policy groups and the reachability
policies among them. Fig. 11a shows the topology and what policy
groups each routing instance contains. In particular the campus net-
work has two routing instances denoted as EIGRP and OSPF. There
are two policy groups in the network denoted asDATA and RSRCH.
In addition, two external AS-es (denoted as GRID and INT) peer
with this campus network. Each external AS can be viewed both as
a single policy group and as a single routing instance. Finally, the
MX matrix, i.e., the set of routes exchanged between every pair of
routing instances, is shown in Table 4.

7.1.2 Estimating intra-instance complexity

First, according to our framework, only the EIGRP instance will in-
cur intra-instance route filters as it is the only instance that contains
multiple policy groups.

Second, the EIGRP instance employs the typical star topology
(Sec. 4.2.1), as shown in Fig. 11b. The border routerR1 also serves
as the core router and connects the two policy groups: DATA and
RSRCH. R1 also directly connects to the other borders R2, R3 and
R4. Note that there is no direct link between the two policy groups,
or between either policy group and R2/R3/R4.

From the reachability matrix (Table 3), it is easy to see that
intra-instance filtering is needed between the core router R1 and
the DATA policy group as only a subset of routes from R1 can be
sent toDATA. More specifically, the routes learned fromGRID can-
not be exposed to DATA. Using the model presented in Sec. 4, the
route filter placement is determined and shown in Fig. 11b. Route
filtering is not needed between R1 and RSRCH, as RSRCH has full
reachability to all other policy groups. The predicted complexity is
shown by the diagonal cells in Table 5.

Comparing with the actual configuration: We measured the ac-
tual configuration complexity in the configuration files. The result
is shown in the diagonal cells in Table 6. As predicted, only the
EIGRP routing instance incurs intra-instance route filters, and the
filter placement is exactly as predicted. Furthermore, the measured
complexity numbers also match the estimated value well.

EIGRP OSPF GRID INT

EIGRP - all H-1-1 D-1, H-1-1

OSPF all - - -

GRID all - - -

INT all - - -

Table 4: Each cell (row, column) shows the set of routes that routing
instance row should advertise to routing instance column. “All”
means that row should advertise all its routes (both internal and
external ones) to column.

EIGRP OSPF GRID INT

EIGRP 7 1 6 30

OSPF 1 0 - -

GRID 1 0 - -

INT 2 - - -

Table 5: Estimated complexity for the original design. Each non-
diagonal cell (row, column) shows the inter-instance complexity of
advertising routes from row to column. The cells on the diagonal
show the intra-instance complexity. “-” indicates that the two in-
stances are not directly connected.

7.1.3 Estimating inter-instance complexity

Using the models presented in Sec. 5, we estimate the inter-instance
complexity, and the result is shown in Table 5.

Comparing with the actual configuration: We compare the pre-
dicted inter-instance complexity with the complexity measured in
the configuration files. The differences are shown in Table 6. We
see that the majority of the predicted numbers match the actual con-
figuration well. There is a mismatch in the case of filtering routes
between GRID and EIGRP. The measured value is greater than the
prediction, which makes sense as the prediction is the minimum
necessary complexity. The actual configuration may incur higher
complexity, for example, due to redundant configurations or sub-
optimal configurations.

In particular, the outgoing routes from EIGRP to GRID are sub-
ject to filtering as only a subset of EIGRP routes can be sent to
GRID. We note that the filtering may be configured either at the re-
distribution point (i.e. permitting only the subset of routes to enter
BGP), or within the BGP session (i.e. permitting only the subset of
routes to be advertised to GRID). However, in the actual configura-
tion, the exact same filtering is implemented at both places. This is
redundant configuration, and results in unnecessary increase in the
complexity. Further, GRID can advertise all its routes to EIGRP,
so there is no route filter needed in that direction. However, in the
actual configuration, an unnecessary filter is configured, which sim-
ply allows all routes to pass. As a result, several referential links
were created.

Overall, these results confirm that our framework can accurately
estimate the complexity of a given routing design.

7.2 Case study of a routing design change

The campus network experienced a major design change recently.
The change was primarily motivated by the need to increase the
resiliency of the original design. Thus as the second part of the
evaluation, we apply our framework to compare the new routing
design with the original one. We first use our framework to analyze
the change in complexity due to the redesign. We then consider
whether alternative designs could have met the same resiliency ob-
jectives but with lower complexity.

7.2.1 Impact of redesign on complexity

Fig. 11c illustrates the new instance-level graph after the network
redesign was completed. The primary purpose of the redesign was

GRID

(GRID)
BGP

BGP

redistribution

INT (INT)

EIGRP (DATA, RSRCH)

OSPF (RSRCH)

BGP

R1

R2

R3 R4

R5

R6 R7

(a) Instance-level topology of the original de-
sign.

R1

R2

R3 R4

DATA RSRCH

EIGRP

denotes a route filter

(b) Detailed topology of EIGRP in the
original design.

GRID

(GRID)

BGP

BGP

static routes

INT (INT)

EIGRP (DATA)

OSPF (RSRCH)

BGP

R2

R3 R4

R5

R6 R7

R1

R9

default routedefault route

static routes

(c) Instance-level topology of the new design.

Figure 11: The original and new routing designs.

EIGRP OSPF GRID INT

EIGRP ǫ = 0 ǫ = 0 ǫ = −6 ǫ = 0
OSPF ǫ = 0 ǫ = 0 - -

GRID ǫ = −3 ǫ = 0 - -

INT ǫ = 0 - - -

Table 6: Difference between complexity estimated using our mod-
els and the actual complexity measured from the configuration files
for the original design.

EIGRP OSPF GRID INT

EIGRP δ = −7 δ = 7 δ = −6 δ = 0
OSPF δ = 29 δ = 0 δ = 6 -

GRID δ = −1 δ = 1 - -

INT δ = 0 - - -

Table 7: Increase in the intra- and inter-instance complexity after
the redesign.

to increase resiliency. In particular, the number of border routers
connecting the OSPF instance to EIGRP was increased to two. In
addition, two other changes were made: (i) the connecting prim-
itive between EIGRP and OSPF was changed from route redistri-
bution to static routes (configured on the EIGRP side) and default
routes (configured on the OSPF side); and (ii) the subnets of the
policy group RSRCH that were in the EIGRP instance were moved
to OSPF. As a result, in the new design, EIGRP only contains sub-
nets of the policy group DATA, while OSPF contains all subnets of
the policy group RSRCH. Finally, we note that the policy groups
and the reachability matrix were unchanged after the redesign.

Table 7 presents the change in complexity estimated by our frame-
work. Overall, the total complexity in the new design increased.
This is in part due to the fact that the resilience of the new design
also increased, i.e., it used two border routers for the OSPF routing
instance, compared to one in the old design. We note that the new
design eliminated the intra-instance complexity in the EIGRP rout-
ing instance, as now EIGRP only contained a single policy group.
On the other hand, the inter-instance complexity between EIGRP
and OSPF increased in the new design, caused by the need to im-
plement the different reachability requirements for the two policy
groups RSRCH and DATA.

7.2.2 Could alternative designs lower complexity?

In the previous section, we noted that while the primary goal of
the redesign was to improve resiliency, operators made two addi-
tional changes that were not strictly necessary to achieve this goal:
(i) changing the connecting primitive between OSPF and EIGRP
from route redistribution to static/default routes; and (ii) moving
all RSRCH subnets to OSPF. We hypothesized these changes may
have been made to lower complexity. To isolate the impact of each

EIGRP (DATA)

OSPF (RSRCH)

redistribution R2 redistribution

Hypothetical design 1 (HD-1) Hypothetical design 2 (HD-2)

EIGRP (DATA, RSRCH)

OSPF (RSRCH)

R1

R9R2

static route static route

default route default route

R1

Figure 12: The two hypothetical designs.

0 %

50 %

100 %

150 %

200 %

250 %

new HD-1 HD-2

C
om

pl
ex

ity
 re

la
tiv

e
to

 th
e

to
ta

l c
om

pl
ex

ity
of

 o
ld

 d
es

ig
n

intra-instance complexity
inter-instance complexity between EIGRP and OSPF

total complexity

Figure 13: Comparison of complexity of different designs.

of these changes, we considered two hypothetical designs termed
HD-1 and HD-2, as shown in Fig. 12. Both designs use two bor-
der routers for OSPF, to achieve the same resiliency requirement
as the new design. HD-1 uses static and default routes to connect
EIGRP and OSPF, and represents a design where only the first of
the two additional changes above were made. HD-2 involves a re-
arrangement of policy groups and represents a design where only
the second of the two additional changes above were made. Route
redistribution is used to connect the instances.

We apply our framework to estimate the complexity for both hy-
pothetical designs. The results are shown in Fig 13. For ease of
comparison, we normalized all bars to the total complexity of the
original campus design. We see that while HD-1 is a worse alter-
native design as its total complexity (third bar) increases compared
to the actual new design, HD-2 is a better alternative as its total
complexity decreases compared to the actual new design.

We next seek to better understand why HD-1 has higher com-
plexity than the actual new design. The main difference between
the two designs is whether the policy group RSRCH is placed en-
tirely in the OSPF routing instance (actual new design), or split
across both OSPF and EIGRP (HD-1). We observe that by placing
RSRCH entirely in OSPF, the address space of OSPF is more uni-
fied, which allows better aggregation of its routes. This results in a
reduction of the size of MX(OSPF, EIGRP) from 9 to 3, which
translates to fewer static routes needed, and thus results in less

static route redistribution BGP

default route 38 20 25

redistribution 38 20 25

BGP 43 25 26

Table 8: Complexity associated with different choices of connect-
ing primitive between EIGRP and OSPF. Each cell (row, column)
shows the complexity of the design that uses the row (column) con-
necting primitive on the OSPF (EIGRP) side.

inter-instance complexity (second bar in Fig. 13). In addition, HD-
1 incurs significant intra-EIGRP complexity (first bar), while the
actual new design eliminates that complexity.

Next, we compare the actual new design and HD-2. The main
difference between the two is the connecting primitive used to con-
nect OSPF and EIGRP. We found that using route redistribution
(HD-2) lowers the complexity compared to using static routes (ac-
tual new design). This indicates that by changing the connecting
primitive from redistribution to static/default routes during the re-
design process, the operators introduced unnecessary design com-
plexity.

Given these insights, we next want to find out whether mutual
route redistribution is the best connecting primitive to use to con-
nect EIGRP and OSPF, and if alternative primitives could further
lower complexity. For this purpose, we enumerate all possible con-
necting primitives, and apply our framework to estimate the com-
plexity associated with each alternative design choice. The results
are shown in Table 8. Note that it is not feasible to use static routes
(default routes) on the OSPF (EIGRP) side, so the corresponding
column and row are omitted. The table shows that mutual route
redistribution indeed achieves the minimum complexity. A simi-
lar complexity could have also been obtained through a design that
uses a combination of default routes and route redistribution. We
also see that different choices of connecting primitive may lead to
significant difference in resulting complexity.

In summary, these results show that (i) the design change of
moving subnets of the policy group RSRCH from EIGRP to OSPF
greatly reduced both intra- and inter-instance complexity; and (ii)
the change of connecting primitive actually made the network more
complex and thus should have been avoided; and (iii) different de-
sign choices may result in significantly different complexity. Over-
all, this case study highlights the power of our framework in sys-
tematically comparing multiple design alternatives and in guiding
operators towards approaches that lower complexity while meeting
the same design objectives.

7.3 Operator interview

We discussed the above results with the operators of the campus
network, and they were able to confirm many of our observations.
In particular, they confirmed that moving the RSRCH subnets from
EIGRP to OSPF significantly reduced the management complex-
ity. In fact, the motivation of that change was to make the RSRCH
network more unified and simplify the network design. In addi-
tion, the operators also acknowledged that our hypothetical design
2 (HD-2 in Fig. 12) that uses route redistribution instead of static
routes could indeed be a less complex design. The primary reason
they decided to use static routes in the new design was because this
particular operator team consisted of people with varying expertise
and skill levels (including senior operators, part-time student work-
ers, and new hires), all of whom could potentially alter configura-
tion files. While configuring static routes did not require extensive
prior knowledge, configuring route redistribution required greater
knowledge and expertise, particularly given the potential for rout-
ing loops. The operators indicated however that they would prefer

route redistribution if only a small number of senior operators man-
aged the network. Overall, these results confirm that our framework
provides useful guidance to operators. An open question for future
work is whether current complexity metrics must be refined to take
operator skill levels into account.

8 Discussion and Open Issues

Incorporating other design objectives and constraints: In putting
together a routing design, operators must reconcile a variety of ob-
jectives and constraints such as performance, complexity, hardware
constraints etc. This paper focuses on the design complexity, given
that it is very important, is difficult to quantify, and has received
limited attention from the community. In future, it would be inter-
esting to also factor in other important requirements. For example,
hardware constraint may restrict the number of route filters that a
router can support. Such restriction may in turn impact both intra-
and inter-instance route filter placements. We believe our frame-
work can be easily enhanced to systematically determine the best
filter placements, so that the hardware constraint is honored, while
the total design complexity is minimized. In addition, it may be
interesting to consider other design objectives such as performance
(e.g., measured as average hop counts between any two subnets),
and costs (restricting the number and hardware capacity of devices
that can be used). While some of these objectives and constraints
may not be critical in a typical over-provisioned enterprise environ-
ment, they are nevertheless worthwhile to consider.

Joint optimization of multiple design tasks: This work builds
upon a “divide and conquer” network design strategy that is com-
monly practiced by the operational community [24]. In particular,
such a design process consists of four distinct stages: (i) wiring
and physical topology design; (ii) VLAN design and IP address al-
location; (iii) routing design; and (iv) deployment of services such
as VoIP and IPsec. We further break down the task of routing de-
sign into two sequential steps: (1) creating routing instances and
determining the set of routes to be exchanged between each pair
of these instances, and then (2) configuring policy groups and the
necessary glue logic. Step (1) is relatively straightforward, typi-
cally influenced by factors such as the proximity of routers (e.g., in
the same building, city, etc.), administrative boundaries (e.g., dif-
ferent network segments are managed by different operators), and
equipment considerations (e.g., EIGRP is available only on Cisco
routers). Therefore, this work focuses on the second step while
assuming that the first step has been accomplished. In future, it
should be beneficial to consider multiple design stages and steps in
one framework and explore ways to improve routing design further
through joint optimization of all pertinent design choices.

Complexity-aware top-down design: The complexity models pre-
sented in this paper pave the way for complexity-aware top-down
routing design. Such top-down design takes as input the high-level
design objectives and constraints, and seeks to minimize design
complexity while meeting other design requirements. In doing so,
our complexity models can be used to guide the search of the de-
sign space to systematically determine (i) how policy groups should
be grouped into routing instances; (ii) optimum placement of route
filters; and (iii) what primitives should be used to connect each pair
of routing instances. We defer the development of such a top-down
design framework to future work.

Emerging architectures and configuration languages: In recent
years, researchers have started investigating new network archi-
tectures based on logically centralized controllers (e.g., software
defined networking [2]), and declarative configuration languages
(e.g., Frenetic [11]). These approaches have the potential to sim-
plify network management by shifting complexity away from the

configuration of individual devices to programming of the central-
ized controllers. While these approaches have much potential, hard
problems remain such as the need to update network devices in
a consistent fashion [22], and building appropriate coordination
mechanisms across multiple controllers. Further exploration of the
opportunities and challenges of utilizing these new architectures to
simplify network design complexity is an important area of future
work.

9 Related Work

In recent years, there has been much interest in both industry [1],
and academia [5] in developing formal metrics to capture network
configuration complexity. We have discussed in detail how our
work differs from [5] in Sec. 1. Similarly, our work also differs
from other research [7, 15] that measures the configuration com-
plexity in longitudinal configuration data-sets in a bottom-up fash-
ion. There is a considerable amount of prior work on modeling in-
dividual routing protocols, particularly BGP [3, 8, 12, 14], and also
OSPF [21], to ensure correct, safe, and efficient behaviors from
these protocols. There is also recent progress on safe migration of
IGP protocols [25] and on modeling the interaction between mul-
tiple routing algorithms deployed in the same network [4]. In con-
trast, our work analyzes how specific routing protocols and primi-
tives should be combined to meet a given set of design objectives,
and the focus is on minimizing the complexity of the resulting de-
sign. Our notion of policy groups is similar to policy units intro-
duced in [6], but has some differences in that (i) we require sub-
nets within the same policy group to be full reachable to each other;
and (ii) we restrict our definition to reachability restrictions on the
routing plane since our focus is on routing design, (i.e., we do not
consider data-plane mechanisms like packet filters, firewalls, etc.).
Algorithms to extract policy units from low-level configuation files
were introduced in [6]. In contrast, our focus is on estimating the
number of route filters and filter rules, and consequently the re-
sulting configuration complexity, when multiple policy groups are
present in a routing instance.

10 Conclusion and Future Work

In this paper, we present a top-down approach to characterizing
the complexity of enterprise routing design given only key high-
level design parameters, and in the absence of actual configura-
tion files. Our overall modeling approach is to (i) formally ab-
stract the routing specific operational objectives which can help
reason about whether and how a combination of design primitives
will meet the objectives; and (ii) decompose routing design into its
constituent primitives, and quantify the configuration complexity
of individual design primitives using bottom-up complexity met-
rics [5]. We have validated and demonstrated the utility of our ap-
proach using longitudinal configuration data of a large-scale cam-
pus network. Estimates produced by our model accurately match
empirically measured configuration complexity metrics. Discrep-
ancies when present were mainly due to redundant configuration
lines introduced by network operators. Our models enable what-if
analysis to help evaluate if alternate routing design choices could
lower complexity while achieving the same objectives. Analysis
of a major routing design change made by the operators indicates
that while some of their design changes were useful in lowering
complexity, others in fact were counter-productive and increased
complexity. Further, our models helped point out alternate designs
that could further lower complexity.

Overall, we have taken an important first step towards enabling
systematic top-down routing design with minimizing design com-
plexity being an explicit objective. Future work includes modeling

a wider range of routing design objectives and primitives (such as
selection logic), developing algorithms for automatically produc-
ing complexity-optimized routing designs in a top-down fashion,
and using similar models to capturing complexity of other enteprise
design tasks.

11 Acknowledgments

This material is based upon work supported by the National Sci-
ence Foundation (NSF) Career Award No. 0953622, NSF Grant
CNS-0721574, and Cisco. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of NSF or Cisco.
We thank Brad Devine for his insights on Purdue’s network design.
We thank Michael Behringer, Alexander Clemm, Ralph Droms and
our shepherd Vyas Sekar for feedback that greatly helped improve
the presentation of this paper.

12 References

[1] IRTF Network Complexity Research Group. http://irtf.org/ncrg.
[2] Open Networking Foundation. http://www.opennetworking.org.
[3] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessensand, D. Meyer, T. Bates,

D. Karrenberg, and M. Terpstra. Routing Policy Specification Language
(RPSL). Internet Engineering Task Force, 1999. RFC 2622.

[4] M. A. Alim and T. G. Griffin. On the interaction of multiple routing algorithms.
In Proc. ACM CoNEXT, 2011.

[5] T. Benson, A. Akella, and D. Maltz. Unraveling the complexity of network
management. In Proc. of USENIX NSDI, 2009.

[6] T. Benson, A. Akella, and D. A. Maltz. Mining policies from enterprise network
configuration. In Proceedings of the 9th ACM SIGCOMM conference on

Internet measurement conference, pages 136–142, 2009.
[7] T. Benson, A. Akella, and A. Shaikh. Demystifying configuration challenges

and trade-offs in network-based isp services. In Proc. of ACM SIGCOMM,
2011.

[8] H. Boehm, A. Feldmann, O. Maennel, C. Reiser, and R. Volk. Network-wide
inter-domain routing policies: Design and realization. Apr. 2005. Draft.

[9] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker.
Ethane: Take control of the enterprise. In Proc. ACM SIGCOMM, 2007.

[10] Cisco Systems Inc. Reliable static routing backup using object tracking.
http://www.cisco.com/en/US/docs/ios/12_3/12_3x/12_

3xe/feature/guide/dbackupx.html.
[11] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and

D. Walker. Frenetic: a network programming language. In Proceedings of the

16th ACM SIGPLAN international conference on Functional programming,
pages 279–291, 2011.

[12] J. Gottlieb, A. Greenberg, J. Rexford, and J. Wang. Automated provisioning of
BGP customers. In IEEE Network Magazine, Dec. 2003.

[13] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie,
H. Yan, J. Zhan, and H. Zhang. A clean slate 4D approach to network control
and management. ACM Computer Communication Review, October 2005.

[14] T. G. Griffin and J. L. Sobrinho. Metarouting. In Proc. ACM SIGCOMM, 2005.
[15] H. Kim, T. Benson, A. Akella, and N. Feamster. The evolution of network

configuration: A tale of two campuses. In Proc. of ACM IMC, 2011.
[16] F. Le, G. G. Xie, D. Pei, J. Wang, and H. Zhang. Shedding light on the glue

logic of the Internet routing architecture. In Proc. ACM SIGCOMM, 2008.
[17] F. Le, G. G. Xie, and H. Zhang. Understanding route redistribution. In Proc.

International Conference on Network Protocols, 2007.
[18] F. Le, G. G. Xie, and H. Zhang. Instability free routing: Beyond one protocol

instance. In Proc. ACM CoNEXT, 2008.
[19] F. Le, G. G. Xie, and H. Zhang. Theory and new primitives for safely

connecting routing instances. In Proc. ACM SIGCOMM, 2010.
[20] D. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjalmtysson, and A. Greenberg.

Routing design in operational networks: A look from the inside. In Proc. ACM

SIGCOMM, 2004.
[21] R. Rastogi, Y. Breitbart, M. Garofalakis, and A. Kumar. Optimal configuration

of ospf aggregates. IEEE/ACM Transaction on Networking, 2003.
[22] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker. Abstractions

for network update. In Proceedings of the ACM SIGCOMM, 2012.
[23] X. Sun, S. Rao, and G. Xie. Modeling complexity of enterprise routing design.

Technical Report TR-ECE-12-10, School of ECE, Purdue University, 2012.
[24] E. Sung, X. Sun, S. Rao, G. G. Xie, and D. Maltz. Towards systematic design of

enterprise networks. IEEE/ACM Trans. Networking, 19(3):695–708, June 2011.
[25] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and O. Bonaventure.

Seamless network-wide IGP migrations. In Proc. ACM SIGCOMM, 2011.

