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Abstract. IP network operators face the challenge of making and managing
router configuration changes to serve rapidly evolving userand organizational
needs. Changes are expressed in low-level languages, and often impact multi-
ple parts of a configuration file and multiple routers. These dependencies make
configuration changes difficult for operators to reason about, detect problems in,
and troubleshoot. In this paper, we present a methodology toextract network-
wide correlations of changes. From longitudinal snapshotsof low-level router
configuration data, our methodology identifies syntactic configuration blocks that
changed, applies data mining techniques to extract correlated changes, and high-
lights changes of interest via operator feedback. Employing our methodology,
we analyze an 11-month archive of router configuration data from 5 different
large-scale enterprise Virtual Private Networks (VPNs). Our study shows that
our techniques effectively extract correlated configuration changes, within and
across individual routers, and shed light on the prevalenceand causes of system-
wide and intertwined change operations. A deeper understanding of correlated
changes has potential applications in the design of an auditing system that can
help operators proactively detect errors during change management. To demon-
strate this, we conduct an initial study analyzing the prevalence and causes of
anomalies in system-wide changes.

1 Introduction
One of the most challenging tasks for IP network operators involves making and man-
aging changes to router configurations that are needed to reflect changes in network
designs, or as a response to address network problems. Configuration changes are often
system-wide(involve most routers in a network) andintertwined(require modifications
to multiple parts of a configuration file or localized groups of routers). Once configura-
tion changes are made, these dependencies make it difficult for an operator to verify that
the changes executed conform to his intent. Even worse, a small but incorrectly applied
change can have serious impacts such as Service Level Agreement (SLA) violations
for providers, and service disruptions for customer enterprises [1, 2, 3]. Yet, the goal of
correctly making and effectively managing configuration changes remains daunting for
operators, considering the large size and geographical span of networks, the myriad of
configuration options, and the variety of routers from different vendors.

Existing tools (e.g., [4, 5, 6]) for automated change management are inadequate
when coping with dependent changes for two reasons. First, typical tools are geared



towards managing one router at a time. Second, changes are tracked using device and
vendor-specific low-level languages, and deal with myriadsof details such as line card
settings and routing parameters. Without a network-wide view of what changed and
how changes were related, it is difficult for an operator to gauge the network state,
verify changes were executed correctly, and know where to look for sources of potential
or existing problems.

This paper introduces a methodology that extracts network-wide correlations of
configuration changes (a group of changes that consistentlyoccur together) and their
high-level intent from low-level router configuration files. To do this, our methodology
(i) identifies syntactic configuration blocks that changed by abstracting away low-level
details, (ii) applies data mining techniques to expose correlated changes, and (iii) high-
lights changes of interest via operator feedback. We use router configuration files since
they are considered by the operational community to be the most accurate source of
records of changes. Distinct from prior works [7, 8, 9, 3] based on static configuration
snapshots, we focus on developing longitudinal views ofchanges across time.

One distinguishing feature of our methodology is the use of data mining techniques.
From our experience, operator knowledge tends to be incomplete. In particular, given
the multitude of different configuration options, networksmanaged, and operator teams
involved, it is nearly impossible for an operator to explicitly list all changes of interest
up-front, not to mention that there may be hidden changes an operator may be unaware
of. Employing data mining techniques enables automatic discovery of an initial set of
correlated changes that are potentially important, without operator support. Yet, corre-
lation does not always imply meaningful relationship. To address this, we corroborate
the uncovered correlations with operators and only highlight meaningful ones.

Employing our methodology, we conduct a longitudinal studyof changes made
in enterprise VPNs, one of the most dynamic and demand-driven services that ISPs
provide to customer enterprises today. We analyze a collection of daily snapshots of
configurations files pulled from routers in operational networks. Our datasets include 5
enterprise VPNs, each consisting of a few hundred routers, over a 11-month period. Our
analysis confirms the value and effectiveness of our methodology, and conveys impor-
tant insights on change behavior in these networks. Finally, we conduct an initial study
analyzing anomalies in system-wide changes as a demonstration of how our methodol-
ogy can provide insights that help operators detect errors in change operations.

2 Methodology

2.1 Exploiting Syntactic Structure for Change Characterization

Existing router configuration languages are low-level and vendor-specific. The key is-
sues we face are determining what the right abstraction is toassociate a configuration
change with and how to easily obtain the abstracted configuration for different vendor
languages. We could abstract changes based on coarse semantic meanings (e.g., related
to Wide Area Network versus Local Area Network), or low-level attributes (e.g., band-
width 10 versus 100). However, both choices require detailed domain knowledge for the
configuration language under study and are not feasible given the complexity and het-
erogeneity of today’s configuration languages. We therefore choose to abstract changes
based on the syntactic structure of configuration languages.



Fig. 1.A Cisco router configuration. Fig. 2.An enterprise VPN with four sites.

To demonstrate this in the Cisco IOS language, consider a Cisco router configura-
tion file in Figure 1. The configuration may be viewed as consisting of multipleblocks.
Each block comprises a first line that is not indented, and a series of indented lines
associated with the block. For example, lines 1-3 constitute a block (interface Ether-
net0/0). We also consider commands that lack a similar nested structure but share a
common prefix, e.g., lines 7-8, to belong to a single block, inthis case (access-list 2).
For each non-indented line, we term the initial consecutiveseries of IOS keywords as
a superblock prefix. Blocks with the same superblock prefix belong to the samesu-
perblock. For example, Lines 1-6 and 7-9 belong to superblock (interface) and (access-
list), respectively. In this work, we focus on understanding configuration changes at the
superblock level. Finally, our initial study of configuration languages from other ven-
dors, such as Juniper and Alcatel, suggests that they bear similar block structures and
are amenable to a similar approach.

2.2 Algorithm for Extracting Correlated Changes

To systematically extract correlated changes, we employ the Apriori algorithm [10], a
powerful data mining technique for association rule induction.Apriori is typically used
for market basket analysis, which aims at finding regularities in the shopping behavior
of customers. It expresses an association betweenitemswithin a transaction. An asso-
ciation rule is in the form “Given a transaction, if a set of items (or itemset) X occurs,
itemset Y also occurs,” or X→Y.

The standard measures to assess goodness of a rule are itssupportandconfidence.
Let T be the set of all transactions. The support of an itemsetX, S(X), is the percentage
of transactions in T in which all items in X occur together. The confidence of a rule
X→Y, C(X→Y), is defined to be the percentage of times that the occurrence of X
implies that all items in X and Y occur together, i.e., S(X,Y)/S(X)*100%. Using these
measures, an itemset X occurs frequently if S(X) is high. A rule X→Y with a high
confidence makes a good prediction about the occurrence of Y given that X occurs. If
the average of C(X→Y) and C(Y→X) is high, itemsets X and Y are strongly predictive
with respect to each other, i.e., they consistently occur together. We extend this idea to
find clustereditemsets, where in each itemsetR with n items, the average of C(Subset
of n-1 items fromR→ nth item) exceeds a thresholdtc.

We employApriori in the context of finding which routers or superblocks tend to
change together in a network. For example, to find correlatedrouters, we define the
set of transactions to contain days on which some router changed and the set of items
in a transaction to be the routers that changed on a day. Similarly, to find correlated



superblocks, we define a transaction to correspond to each instance of a router change
on a given day, which we refer to〈router,day〉, and the set of items to be the superblocks
that changed in a router on that day. In our context, an association rule would be “If
routersx andy change together in a day, routerz always changes on that day,” or “If
some access-list (ACL) changes in a router, 50% of the time, some interface of that
router changes, too.”

3 Characterizing Changes in Enterprise VPNs

Fig. 2 shows a customer enterprise VPN spanning multiple sites over an Multi Protocol
Label Switching (MPLS) provider backbone. Each site typically has a customer edge
router (CER) connected via a WAN link to a provider edge router (PER). End-to-end
Class of Service (CoS) is provisioned by marking packets andtreating them differently
according to their markings, on the CER-PER-backbone-PER-CER path. The dynamic
and heterogeneous nature of changes to CERs [11] makes them the focus of our study.

Changes to CERs may be initiated by the customer and the provider. Events such as
changes to passwords may be initiated by the provider as bulkupdates in a VPN, or ISP-
wide updates across multiple VPNs. Changes driven by customers might be planned,
e.g., an interface or link upgrade. Unplanned changes mightrelate to troubleshooting
customer complaints. A high-level change demand may involve a large number of CERs
and operator teams.

Some changes are primarily controlled and maintained by theprovider. This in-
cludes changes to passwords, packet and route filters, and management services like
network time protocol (ntp) servers. Other changes, such aschanges to CoS and rout-
ing designs, may be initiated by both the customer and the provider.

3.1 Datasets

Our data includes 11 months of daily archives of CER configuration files from 5 oper-
ational enterprise VPNs. We study longitudinal snapshots of configuration files for two
reasons. First, configuration files are considered by network operators to be the ulti-
mate and most accurate source of records of changes. Second,router configuration files
are widely available in any network, ensuring our methodology is generally applicable.
One data source we did not use is logs that show the sequence oflow-level configura-
tion commands executed by the operators. Such logs may enable us to directly reason
about operator actions. However, information in these logsmay be incomplete - it is
possible for operators to bypass the logging system, particularly when bulk changes are
involved.

Table 1 summarizes our datasets. All CERs are Cisco routers,and all 5 VPNs, E1-
E5, are managed by the same provider. The total size of our data is 32GB. The networks
were selected to cover a range of different characteristicsin terms of size, geographic
span, and growth. E3 and E5 had routers all in one country. At the other extreme, E2
and E4 spanned more than 30 countries and 5 continents.Net GrowthandBirth Rate
respectively represent the net change in network size (in terms of the number of CERs)
and the total number of new CERs added over the 11-month period. Overall, E5 was the
most stable due to its low Net Growth and Birth Rate. Configuration file sizes are also
diverse within each VPN because different routers may have different roles (e.g., hub



VPN City Ctry Ctinent Net Birth Config Size(# lines)
Growth Rate Min Med Max

E1 158 2 1 -1.47% 8.21% 408 1033 1487
E2 100 31 5 5.96% 16.56% 320 652 1175
E3 269 1 1 25.2% 25.2% 551 633 1622
E4 162 36 5 7.11% 25.26% 426 767 1475
E5 346 1 1 -2.85% 1.66% 436 489 1104

Table 1.Enterprise VPN data set. The num-
ber of CERs per network is between 150-420.
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Fig. 3. Percentage of routers changed over
time for E2.

versus spoke), and different sites can have different localpolicies (e.g., a site hosting
critical web services requires additional CoS and securityconfigurations).

3.2 Macroscopic Overview of Configuration Changes

We now present key high-level characteristics of changes that we discovered across and
within individual CERs.

• Changes are predominantly local.Across all networks, in 90% of the days, only 10%
or fewer CERs were changed, and in 3% of the days the impact waswidespread - with
more than 80% of the CERs impacted. Fig. 3 shows the time series of the percentage
of CERs changed for E2. Some system-wide changes (shown by high spikes) covered
most of the CERs, and were often followed by changes to the remaining routers in
the subsequent days. In addition, we found that many large-scale changes were cor-
related (circled spikes in Fig. 3) across networks. This is consistent with the fact that
the provider may schedule ISP-wide changes to several VPNs in the same maintenance
window.

• Some routers are significantly more volatile.For all 5 VPNs, almost all CERs (98.7%-
100%) changed at least once, but the frequency was quite skewed. More than 90% of
routers had changes on 3-6% of the days while a small fraction(around 2%) of routers
were significantly more volatile, changing on 10%-35% of thedays. We found that these
volatile CERs usually corresponded to hub routers responsible for switching inter-spoke
traffic. Therefore, changes to their configurations were often triggered by changes to
spoke routers, e.g., adding an ISDN username/password for anew spoke site.

• Most changes impact few superblocks.Most configuration changes were limited to
a small number of lines or localized to few superblocks. However, few changes im-
pacted many lines or multiple parts of a configuration file. For example in E1, 58%
of 〈router,day〉 instances had≤10 lines changed while only 15% of them had>100
lines changed. In addition, 76% of〈router,day〉 instances had changes to 2 or fewer
superblocks.

• Some superblocks consistently change more frequently.We define the frequency of a
superblock change as the percentage of the days that particular superblock changes in
some CER per VPN. In all VPNs, superblock (interface) changed the most frequently
while superblock (access-list) was among the top 10 frequent changes. Frequencies of
changes to other superblocks were more varied. Other notably volatile superblocks were
CoS-related: (policy-map) & (class-map), and routing-related: (router bgp).



4 Correlation Analysis of Changes

To demonstrate the value of our methodology in extracting correlated changes, we per-
form an in-depth analysis of the 5 VPN datasets. We then highlight particularly interest-
ing correlated changes (i.e., system-wide and intertwinedchanges) that we corroborated
with the operators managing these networks.

4.1 Correlated Changes Across Routers in a Network

System-wide Changes.We consider days where a large fraction of routers in the en-
terprise changed. As shown in§3.2, system-wide changes could spread over a small
number of days. Therefore, we consider a global event (or system-wide change) to be a
window of w consecutive days where more thanf% of all routers were modified. We
pick w = 2 andf = 80 since Fig. 3 showed that most large-scale changes (high spikes)
impacted≥ 80% of the CERs and were followed by few small-scale changes (short
spikes). In the end, we identified a total of 51 global events across all 5 VPNs. This
heuristic may miss events which impact all routers but are spread out over a prolonged
period of time, and we discuss detecting some such changes in§4.2.

Next, to further understand the nature of global events, we apply Apriori (see§2.2)
to extract superblocks that consistently changed togetherin CERs involved in each
event. We observe that system-wide changes are typically homogeneous - in each global
event, at least80% of the CERs showed some change in one particular superblock.
Among the 51 global events, only 8 events were related to CoS and the remaining were
related to management and security operations. CoS-related changes were changes to
ACL rules that specify flow memberships of traffic classes. All security changes were
changes to ACLs and passwords to control access for remote telnet sessions and SNMP
MIBs. Management changes were related to functions such as specifying when SNMP
traps must be triggered, increasing the log buffer size, or setting the time zone.
Router Clusters.We consider correlations across small groups of routers that changed
for each VPN. Note that a single global event impacts most routers and has the potential
to skew this analysis. We therefore filter out days that were apart of some global event.
We useApriori to generate clustered router groups withtc=80 for each VPN. Overall, 1,
4, 26, and 2 clustered router groups are reported for E1, E2, E4, and E5, with an average
size of 2, 3, 9, and 3 CERs, respectively. A predominant trendis that the identified clus-
ters show strong geographical proximity, with routers belonging to the same country, or
continent. E2 and E4 have more clusters with a larger size on average because they are
geographically widespread. Further discussions with the operators revealed a number
of reasons for such regional clustering of changes. From a provider perspective, cer-
tain changes are administered by operators in different regions, while others are applied
centrally. From the perspective of a customer enterprise, VPN sites in different regions
may have different local needs, e.g., multiple hub-sites may be configured similarly in
a primary-backup setup for resiliency reasons.

4.2 Correlated Changes across Superblocks in a Router

Intertwined changes performed by operators may involve changing multiple superblocks.
Our goal is to identify correlations across superblocks that consistently change together.
To avoid skewing our results, we filter out days involved in global events.



N-tuple support conf.(%) of
(%) n-1 tuple

(access-list) 42.2 NA
(interface) 39.2 NA
(router bgp) 38.9 NA
(ip route) 38.9 NA
(access-list) (router bgp) 38.7 91.7-99.4
(access-list) (route-map) 38.6 91.3-100
(access-list) (ip route) 38.4 91.1-98.9
(access-list) (router bgp) 38.2 98.9-100
(route-map)
(access-list) (ip route) 38.2 98.9-100
(router bgp)
(access-list) (ip route) 38.0 99.4-100
(router bgp) (route-map)
(username) 28.6 NA
(interface) (username) 28.4 72.5-99.6

Table 2. Most frequently changed su-
perblock groups within a router in E5.

Ent Cat. Superblock Group

E1
C (interface) (policy-map) (class-map)

(interface) (ip access-list extended) (policy-map)
(class-map)

R (router bgp) (route-map) (ip access-list standard)

E2
C (interface) (policy-map) (class-map)

(interface) (access-list) (policy-map)
M (ntp server) (logging) (snmp-server host)

E3
C (interface) (class-map) (policy-map)
R (interface) (access-list) (router ospf) (ip host)
M (logging) (ntp server) (snmp-server host)

E4
C (interface) (policy-map) (class-map)

(interface) (access-list) (policy-map) (class-map)
M (snmp-server host) (ntp server) (logging)

E5
C (access-list) (interface) (policy-map)
R (access-list) (ip route) (router bgp) (route-map)
M (interface) (username)

Table 3. 3 most frequent superblock clus-
ters for each VPN. C:CoS, M:Management,
R:Routing.

Table 2 shows the groups of superblock(s) that change together most frequently
for E5, sorted in decreasing order of support. Superblock (access-list) changes occur in
42.2% of the transactions (i.e., all〈router,day〉 instances), while superblock (router bgp)
changes occur in 38.9% of the transactions. Further, the pair of superblocks (access-list)
and (router bgp) change together in 38.7% of the transactions. However, superblocks
that change frequently individually need not change frequently together. For example,
both (access-list) and (interface) individually change inover40% of the transactions,
but they change together in only2.8% of the transactions (not shown). The right-most
column summarizes the range of confidence values C(Subset ofn-1 superblocks→nth

superblock) for all possible subsets of sizen-1. For example, superblocks (access-list),
(ip route), and (router bgp) occur together in38.2% of the transactions, and if any two
of the superblocks change, the percentage of times that the third superblock changes
ranges from 98.9-100% depending on which two superblocks occur.

We now illustrate the types of correlated changes our methodology can identify.
Staggered System-wide Changes.A striking observation from Table 2 is that the group
with superblocks (access-list), (ip route), (router bgp),and (route-map) occurs in38%

of the transactions. Further, for any 3-tuple combination of these superblocks, the con-
fidence range is very high (>95%). Further investigation with the operator revealed
that E5 experienced a change in its network design during themeasurement period.
The design moved away from using the provider’s ISDN backup solution to a solution
that points all traffic back to the customer environment in the event of the primary link
failing, since the customer had added an additional serviceprovider. The design change
consists of modifications to the BGP configuration, additions of access-lists, route-maps
and weighted static routes. These changes were introduced over a period of 2 months,
configuring roughly 20-30 sites every 2-3 days. The system-wide change was spread
over time to reduce the risk of adversely impacting the primary network traffic. Another
superblock group, (interface) and (username), also has a relatively high support of28.4,
with a high confidence range. This turned out to be related to the second part of the same



overall design change - removal of the existing ISDN backup solution, which involved
deletions of usernames and logical ISDN interfaces, and modifications of physical in-
terfaces referring to the removed logical interface. The slightly lower support for this
group is because not all sites of E5 had an ISDN backup solution. Interestingly, these
two groups of staggered design changes were performed by independent design teams,
and the operators found our methodology useful in confirmingthese changes occurred
as intended.
Frequently Occuring Superblock Clusters.Table 3 summarizes the 3 most frequent
superblock clusters for each VPN. For enterprise E5, the 4-tuple corresponding to BGP
policy addition, and the 2-tuple corresponding to ISDN backup removal are shown. For
each superblock cluster, we assign a category of operation associated with the group.
For all VPNs, we find that most intertwined superblock changes are centered around
CoS (e.g., provisioning a new class of traffic) and routing (e.g., installing new backup
routes), confirming the central role of CoS operations in allthe VPNs we consider.
Syntactically Unrelated Meaningful Correlations. Table 3 shows that E2-E4 has a
strong correlation in management operations related to ntp, logging and snmp-server.
By merely looking at the configuration commands, it would notbe clear how these su-
perblocks are related since they do not directly refer to oneanother. Yet, they turn out
to form a semantically meaningful correlation that reflectsthe periodic server update
routines used in those VPNs. This type of correlation involves changes to syntactically
unrelated parts of a configuration file. A parser incorporating knowledge of the config-
uration language itself would be incapable of extracting such correlation. This finding
illustrates the potential benefits of our methodology in extracting syntactically unre-
lated, but semantically meaningful correlations.

5 Application - Finding Anomalies in System-wide Changes
Knowledge of correlated changes has potential applications in detecting errors in the
change management process. In this section, we conduct an initial study focusing on
anomalies in system-wide changes.

A key observation we made when analyzing system-wide changes (§4.1) is that
some system-wide changes impacted most, but not all, CERs. An auditing tool can
leverage such insight and proactively look further for CERsmissing an initial bulk
update, which we calloutliers. We analyze their prevalence and further investigate their
causes based on operator responses.

We call outliers that never received the missed global update persistent outliers.
Among the remaining outliers that eventually saw the missedglobal update, 80% of
which received the update within 8 days. The operator indicated that these “short-lived”
outliers’ initial misses were due to network congestion or routers being overloaded, and
were shortly fixed later by their auditing scripts. Therefore, we exclude them from our
analysis and call the rest of outliersdelayed outliers. Table 4 summarizes the outliers.
Note that a CER may appear as an outlier multiple times if it missed more than one
global update. We present some interesting causes for theseoutliers below.
• Persistent Outliers:We classified persistent outliers intoerrors andnon-errors. In a
few cases, we were not able to determine the causes, and we classified them asunknown.
(i) Errors: These outliers were confirmed by the operators as needing fixes. We found
11 such outliers, all in E2. They corresponded to missed management updates, e.g.,



Ent Total Persistent Outliers Delayed
errors non-errorsunknownOutliers

E1 172(38,8) 0 134(26,8) 3(3,2) 35(12,6)
E2 24(15,6) 11(6,3) 7(7,1) 5(5,3) 1(2,1)
E3 9(8,2) 0 2(2,2) 7(7,1) 0
E4 91(85,7) 0 81(78,2) 6(6,2) 4(4,3)
E5 16(3,6) 0 10(10,1) 0 6(3,4)

Table 4. Summary of global outliers detected. Numbers in parentheses denote the number of
unique outlier routers and the number of events in which someindicated outlier occurred.

increasing size of logging buffers and setting timeout for management sessions. The
operators indicated that although these errors were not critical to essential operations of
the VPNs, it is important that all operators are aware of the existence of these errors in
order to evaluate their potential impact, and take remedialactions if needed.
(ii) Non-Errors: These outliers were either confirmed or strongly suspectedby the op-
erators as genuinely not needing the update. They constitute the majority of outliers de-
tected in E1, E4, and E5. The 134 cases in E1 involve only 26 routers, all related to CoS
design. For example, a small fraction of CERs are located in adifferent country from
all other CERs, and they use a different CoS design and have different update patterns.
Non-errors in other networks were management-related. Forexample, low-end routers
did not get the complete set of management ACL rules to reduceprocessing overhead.
In addition, updates that increase certain parameter values (e.g., logging buffer size)
above a threshold did not reach routers which already had them above the threshold.
• Delayed Outliers: Table 4 shows that E1 had the most delayed outliers, but on only
12 CERs. These routers used a newer Cisco style of CoS configurations which required
manual updates because they were not amenable to bulk updates through older man-
agement tools. In addition, while E2-E5 allow fixes to be madeon-demand, E1 had a
more stringent update process in that changes can be made only in pre-scheduled time
windows. These two factors explain a large number of delayedoutliers in E1. For E2-
E5, one major cause of delayed outliers was that the misconfiguration of management
ACLs inadvertently blocked global updates.

6 Related Work

To our knowledge, the only other work that has analyzed dynamic operational tasks
of real networks is [12]. While we share similar high-level objectives, [12] tries to
identify groups of syntactically related commands and builds models to describe the
series of actions needed for an operator to perform a given task on a router interface.
In contrast, we focus on automatically extracting correlated changes within and across
routers using data mining techniques. Minerals [7] also uses association rule mining to
analyze configurations. However, they focus on detecting misconfiguration using static
configuration snapshots.

Several works have sought to automate top-down generation of low-level configu-
rations [13, 11] and typically focus on greenfield deployments. Others [8, 9, 3] have
looked at detailed modeling and detection of errors in static configuration snapshots.
Many of them are device-specific, and do not help operators understand and explain the
semantics behind changes.



7 Summary
In this paper, we have presented a methodology to extract network-wide correlations
of configuration changes from longitudinal snapshots of router configuration files. Our
study of five operational enterprise VPNs over an 11-month period confirms the value
and effectiveness of our methodology, and conveys important insights on the change
behavior in these networks.

Our results show that while most changes affect individual routers, system-wide
changes do occur, and primarily relate to management and security operations. In ad-
dition, correlations exist across groups of routers located in geographic proximity to
each other. When correlations across superblocks were considered, most of these cor-
responded to changes to the CoS or routing design. Interestingly, one of the networks
exhibited a markedly higher frequency of superblock groups- further analysis indi-
cated this corresponded to a system-wide design change thatwas staggered over multi-
ple days. Also of interest, our analysis revealed meaningful yet syntactically unrelated
correlations, arising due to management processes employed in the networks.

While our findings are specific to the networks we analyzed, the methodology it-
self is generally applicable to all networks. A potential application is in tools that can
provide operators with network-wide summaries of changes applied to their networks.
Extracting correlations also has potential applications in the design of change auditing
systems, that can alert the operator to violations of these correlations during a configu-
ration change. We illustrate the potential of this direction by presenting an initial study
of anomalies in system-wide changes in§5.

Much of this study has been performed with active involvement of operators, who
have expressed great interest in the methodologies and findings. We are currently in the
process of developing tools based on our methodologies for summarizing and auditing
configuration changes.
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