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Abstract. IP network operators face the challenge of making and magagi
router configuration changes to serve rapidly evolving @s®l organizational
needs. Changes are expressed in low-level languages, tmdiwfpact multi-
ple parts of a configuration file and multiple routers. Thespethdencies make
configuration changes difficult for operators to reason ghirtect problems in,
and troubleshoot. In this paper, we present a methodologxttact network-
wide correlations of changes. From longitudinal snapshbtew-level router
configuration data, our methodology identifies syntactitfiguration blocks that
changed, applies data mining techniques to extract coedblzhanges, and high-
lights changes of interest via operator feedback. Emppgiar methodology,
we analyze an 11-month archive of router configuration daimf5 different
large-scale enterprise Virtual Private Networks (VPNs)r Gtudy shows that
our techniques effectively extract correlated configoratthanges, within and
across individual routers, and shed light on the preval@mckcauses of system-
wide and intertwined change operations. A deeper undetistgrof correlated
changes has potential applications in the design of aniagdiystem that can
help operators proactively detect errors during changeagmment. To demon-
strate this, we conduct an initial study analyzing the penee and causes of
anomalies in system-wide changes.

1 Introduction

One of the most challenging tasks for IP network operatoamslues making and man-
aging changes to router configurations that are needed txtethanges in network
designs, or as a response to address network problems. Q@atiiign changes are often
system-wid¢involve most routers in a network) aimttertwined(require modifications
to multiple parts of a configuration file or localized groufsauters). Once configura-
tion changes are made, these dependencies make it dificalt foperator to verify that
the changes executed conform to his intent. Even worse, hlsmancorrectly applied
change can have serious impacts such as Service Level Agne€BLA) violations
for providers, and service disruptions for customer emtsep [1, 2, 3]. Yet, the goal of
correctly making and effectively managing configuratioamtyes remains daunting for
operators, considering the large size and geographicalafa@etworks, the myriad of
configuration options, and the variety of routers from d#f& vendors.

Existing tools (e.g., [4, 5, 6]) for automated change mansaye are inadequate
when coping with dependent changes for two reasons. RpEital tools are geared



towards managing one router at a time. Second, changesaakedr using device and
vendor-specific low-level languages, and deal with myrafddetails such as line card
settings and routing parameters. Without a network-widsvwof what changed and
how changes were related, it is difficult for an operator taggthe network state,
verify changes were executed correctly, and know wheredioflor sources of potential
or existing problems.

This paper introduces a methodology that extracts netwade- correlations of
configuration changes (a group of changes that consisteatyr together) and their
high-level intent from low-level router configuration fileko do this, our methodology
(i) identifies syntactic configuration blocks that changgd@bstracting away low-level
details, (ii) applies data mining techniques to exposeatated changes, and (iii) high-
lights changes of interest via operator feedback. We ugergonfiguration files since
they are considered by the operational community to be thet mxxcurate source of
records of changes. Distinct from prior works [7, 8, 9, 3]dzhsn static configuration
snapshots, we focus on developing longitudinal viewshainges across time

One distinguishing feature of our methodology is the useatd chining techniques.
From our experience, operator knowledge tends to be inceteagh particular, given
the multitude of different configuration options, networkanaged, and operator teams
involved, it is nearly impossible for an operator to exiliclist all changes of interest
up-front, not to mention that there may be hidden changegparator may be unaware
of. Employing data mining techniques enables automaticodisry of an initial set of
correlated changes that are potentially important, witlogerator support. Yet, corre-
lation does not always imply meaningful relationship. Tal@ss this, we corroborate
the uncovered correlations with operators and only hidiiigeaningful ones.

Employing our methodology, we conduct a longitudinal stwdychanges made
in enterprise VPNs, one of the most dynamic and demand+useevices that ISPs
provide to customer enterprises today. We analyze a cmllecf daily snapshots of
configurations files pulled from routers in operational rate. Our datasets include 5
enterprise VPNs, each consisting of a few hundred routees,ap11-month period. Our
analysis confirms the value and effectiveness of our metbggipand conveys impor-
tant insights on change behavior in these networks. Finayconduct an initial study
analyzing anomalies in system-wide changes as a demaastadithow our methodol-
ogy can provide insights that help operators detect ermroch@nge operations.

2 Methodology

2.1 Exploiting Syntactic Structure for Change Characterization

Existing router configuration languages are low-level aeddor-specific. The key is-
sues we face are determining what the right abstractionassociate a configuration
change with and how to easily obtain the abstracted configaréor different vendor
languages. We could abstract changes based on coarse isemzamings (e.g., related
to Wide Area Network versus Local Area Network), or low-leattributes (e.g., band-
width 10 versus 100). However, both choices require detaitenain knowledge for the
configuration language under study and are not feasiblendghve complexity and het-
erogeneity of today’s configuration languages. We theesfbinose to abstract changes
based on the syntactic structure of configuration languages



1 interface Ethernet0/0
2 ip address ...... Site 3
31 Site 1
4 interface ATM1/0

5 ip address ......

6!

7 access-list 2 permit host 10.1.1.1
8 access-list 2 permit host 10.1.2.2
9 access-list 3 permit host 10.1.3.3

MPLS
Backbone

Fig. 1. A Cisco router configuration. Fig. 2. An enterprise VPN with four sites.

To demonstrate this in the Cisco 10S language, consider@C@uter configura-
tion file in Figure 1. The configuration may be viewed as cdimgjof multipleblocks
Each block comprises a first line that is not indented, andrizsef indented lines
associated with the block. For example, lines 1-3 constitublock (interface Ether-
net0/0). We also consider commands that lack a similar desttecture but share a
common prefix, e.g., lines 7-8, to belong to a single blockhia case (access-list 2).
For each non-indented line, we term the initial consecigaries of I0S keywords as
a superblock prefixBlocks with the same superblock prefix belong to the same
perblock For example, Lines 1-6 and 7-9 belong to superblock (iaterf and (access-
list), respectively. In this work, we focus on understaigdinnfiguration changes at the
superblock level. Finally, our initial study of configurati languages from other ven-
dors, such as Juniper and Alcatel, suggests that they beéarsblock structures and
are amenable to a similar approach.

2.2 Algorithm for Extracting Correlated Changes

To systematically extract correlated changes, we emplefriori algorithm [10], a
powerful data mining technique for association rule inductApriori is typically used
for market basket analysisvhich aims at finding regularities in the shopping behavior
of customers. It expresses an association betwesrswithin a transaction An asso-
ciation ruleis in the form “Given a transaction, if a set of items (or it@s< occurs,
itemset Y also occurs,” or %Y.

The standard measures to assess goodness of a rule supptartandconfidence
Let T be the set of all transactions. The support of an itebds8(X), is the percentage
of transactions in T in which all items in X occur together.eTtonfidence of a rule
X—=Y, C(X—=Y), is defined to be the percentage of times that the occuerehc
implies that all items in X and Y occur together, i.e., S(XJ)X)*100%. Using these
measures, an itemset X occurs frequently if S(X) is high. ke Xi—Y with a high
confidence makes a good prediction about the occurrence ofen ghat X occurs. If
the average of C(>¢Y) and C(Y—X) is high, itemsets X and Y are strongly predictive
with respect to each other, i.e., they consistently ocogettoer. We extend this idea to
find clusteredtemsets, where in each itemdetwith n items, the average of C(Subset
of n-1 items fromR— ny;, item) exceeds a threshold

We employApriori in the context of finding which routers or superblocks tend to
change together in a network. For example, to find correletatkers, we define the
set of transactions to contain days on which some routerggthand the set of items
in a transaction to be the routers that changed on a day.&liwito find correlated



superblocks, we define a transaction to correspond to eatdmite of a router change
on a given day, which we refer {oouter,day, and the set of items to be the superblocks
that changed in a router on that day. In our context, an aa$ocirule would be “If
routersz andy change together in a day, routealways changes on that day,” or “If
some access-list (ACL) changes in a router, 50% of the timmesinterface of that
router changes, too.”

3 Characterizing Changes in Enterprise VPNs

Fig. 2 shows a customer enterprise VPN spanning multipds siver an Multi Protocol
Label Switching (MPLS) provider backbone. Each site tyjiychas a customer edge
router (CER) connected via a WAN link to a provider edge ro(i®=R). End-to-end
Class of Service (CoS) is provisioned by marking packetsaaading them differently
according to their markings, on the CER-PER-backbone-BER-path. The dynamic
and heterogeneous nature of changes to CERs [11] makeshiedotts of our study.

Changes to CERs may be initiated by the customer and thedamo®vents such as
changes to passwords may be initiated by the provider asipalates in a VPN, or ISP-
wide updates across multiple VPNs. Changes driven by cutomight be planned,
e.g., an interface or link upgrade. Unplanned changes méjate to troubleshooting
customer complaints. A high-level change demand may imvalarge number of CERs
and operator teams.

Some changes are primarily controlled and maintained byptbegider. This in-
cludes changes to passwords, packet and route filters, andg®iment services like
network time protocol (ntp) servers. Other changes, suathasges to CoS and rout-
ing designs, may be initiated by both the customer and theigeo

3.1 Datasets

Our data includes 11 months of daily archives of CER configumdiles from 5 oper-
ational enterprise VPNs. We study longitudinal snapshbtenfiguration files for two
reasons. First, configuration files are considered by né&twperators to be the ulti-
mate and most accurate source of records of changes. Secatat,configuration files
are widely available in any network, ensuring our methodglis generally applicable.
One data source we did not use is logs that show the sequetme-tevel configura-
tion commands executed by the operators. Such logs maye=natib directly reason
about operator actions. However, information in these logy be incomplete - it is
possible for operators to bypass the logging system, pdatly when bulk changes are
involved.

Table 1 summarizes our datasets. All CERs are Cisco roatedsall 5 VPNs, E1-
E5, are managed by the same provider. The total size of caigla2GB. The networks
were selected to cover a range of different characteristitsrms of size, geographic
span, and growth. E3 and E5 had routers all in one countryhébther extreme, E2
and E4 spanned more than 30 countries and 5 contin®etsGrowthandBirth Rate
respectively represent the net change in network size ffingef the number of CERS)
and the total number of new CERs added over the 11-monthgéieerall, ES was the
most stable due to its low Net Growth and Birth Rate. Confiianfile sizes are also
diverse within each VPN because different routers may hifferent roles (e.g., hub
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Table 1.Enterprise VPN data set. The num-  Fig. 3. Percentage of routers changed over
ber of CERs per network is between 150-420.  time for E2.

versus spoke), and different sites can have different Ipohties (e.g., a site hosting
critical web services requires additional CoS and secudtyfigurations).

3.2 Macroscopic Overview of Configuration Changes

We now present key high-level characteristics of changsatk discovered across and
within individual CERs.

e Changes are predominantly loc#cross all networks, in 90% of the days, only 10%
or fewer CERs were changed, and in 3% of the days the impaciwdespread - with
more than 80% of the CERs impacted. Fig. 3 shows the timessefithe percentage
of CERs changed for E2. Some system-wide changes (showrghyshikes) covered
most of the CERs, and were often followed by changes to thairényg routers in
the subsequent days. In addition, we found that many lacgkeshanges were cor-
related (circled spikes in Fig. 3) across networks. Thisoissistent with the fact that
the provider may schedule ISP-wide changes to several ViPtieisame maintenance
window.

e Some routers are significantly more volati@r all 5 VPNs, almost all CERs (98.7%-
100%) changed at least once, but the frequency was quiteeskédore than 90% of
routers had changes on 3-6% of the days while a small fragicund 2%) of routers
were significantly more volatile, changing on 10%-35% ofdags. We found that these
volatile CERs usually corresponded to hub routers resptafar switching inter-spoke
traffic. Therefore, changes to their configurations wereroftiggered by changes to
spoke routers, e.g., adding an ISDN username/passworcdfar gpoke site.

e Most changes impact few superblockfost configuration changes were limited to
a small number of lines or localized to few superblocks. Hmvefew changes im-
pacted many lines or multiple parts of a configuration filer Eeample in E1, 58%
of (router,day instances had<10 lines changed while only 15% of them had 00
lines changed. In addition, 76% dfouter,day instances had changes to 2 or fewer
superblocks.

e Some superblocks consistently change more frequéiylefine the frequency of a
superblock change as the percentage of the days that partscyerblock changes in
some CER per VPN. In all VPNs, superblock (interface) chdrtbe most frequently
while superblock (access-list) was among the top 10 freeleanges. Frequencies of
changes to other superblocks were more varied. Other ryotalatile superblocks were
CoS-related: (policy-map) & (class-map), and routingatedi: (router bgp).



4 Correlation Analysis of Changes

To demonstrate the value of our methodology in extractirrgetated changes, we per-
form an in-depth analysis of the 5 VPN datasets. We then igigtparticularly interest-
ing correlated changes (i.e., system-wide and intertwiteahges) that we corroborated
with the operators managing these networks.

4.1 Correlated Changes Across Routers in a Network

System-wide ChangesWe consider days where a large fraction of routers in the en-
terprise changed. As shown §3.2, system-wide changes could spread over a small
number of days. Therefore, we consider a global event (aesysvide change) to be a
window of w consecutive days where more thA% of all routers were modified. We
pickw = 2 andf = 80 since Fig. 3 showed that most large-scale changes (highspik
impacted> 80% of the CERs and were followed by few small-scale changlesr{(
spikes). In the end, we identified a total of 51 global evestess all 5 VPNs. This
heuristic may miss events which impact all routers but areapout over a prolonged
period of time, and we discuss detecting some such changd<in

Next, to further understand the nature of global events, ppdyaApriori (see§2.2)
to extract superblocks that consistently changed togeth@ERs involved in each
event. We observe that system-wide changes are typicaitypgeneous - in each global
event, at leas80% of the CERs showed some change in one particular superblock.
Among the 51 global events, only 8 events were related to @dShe remaining were
related to management and security operations. CoS-tlethiznges were changes to
ACL rules that specify flow memberships of traffic classed.s&turity changes were
changes to ACLs and passwords to control access for remoét sessions and SNMP
MIBs. Management changes were related to functions sucpessfging when SNMP
traps must be triggered, increasing the log buffer sizegtiing the time zone.
Router Clusters. We consider correlations across small groups of routetctt@nged
for each VPN. Note that a single global event impacts moserswand has the potential
to skew this analysis. We therefore filter out days that weyartof some global event.
We useApriori to generate clustered router groups wjth80 for each VPN. Overall, 1,
4,26, and 2 clustered router groups are reported for E1, £23rkd E5, with an average
size of 2, 3, 9, and 3 CERs, respectively. A predominant tretitht the identified clus-
ters show strong geographical proximity, with routers bgiag to the same country, or
continent. E2 and E4 have more clusters with a larger size/erage because they are
geographically widespread. Further discussions with ferators revealed a number
of reasons for such regional clustering of changes. Fronowiger perspective, cer-
tain changes are administered by operators in differemnsgwhile others are applied
centrally. From the perspective of a customer enterprif¥ gites in different regions
may have different local needs, e.g., multiple hub-siteg beaconfigured similarly in
a primary-backup setup for resiliency reasons.

4.2 Correlated Changes across Superblocks in a Router

Intertwined changes performed by operators may involvagimg multiple superblocks.
Our goal is to identify correlations across superblocks¢basistently change together.
To avoid skewing our results, we filter out days involved ialg! events.



[Ent[[Cat.[Superblock Group |

C [(interface) (policy-map) (class-map) |
N-tuple support|conf.(%) of El (interface) (ip access-list extended) (policy-mgap)
(%) n-1 tuple (class-map)

(access-list) 42.2 NA R [(router bgp) (route-map) (ip access-list standprd)

(interface) 39.2 NA C |(interface) (policy-map) (class-map)

(router bgp) 38.9 NA E2 (interface) (access-list) (policy-map)

(ip route)l 38.9 NA M [(ntp server) (logging) (Snmp-server host)

(access—:!st) (router bgf) ggg %]]'.gi%g C |(interface) (class-map) (policy-map)

(access-list) (route-maf) 38. -5 E3 |[R|(interface) (access-list) (router ospf) (ip host)

(access-list) (ip route) || 38.4 | 91.1-98.9 M |(logging) (ntp server) (snmp-server host)

(access-list) (router bgfy) 38.2 | 98.9-100 T Tinter F |

(route-map) ea || |(eiace) (asEess Tag (roly- map SRS an)

E?:St?rség;t)) (iproute) || 38.2 | 98.9-100 M [(snmp-server host) (nip server) (logging)

(access-list) (ip route) || 38.0 | 99.4-100 C |(access-list) (interface) (policy-map)

(router bgp) (route-map) ES5 |[R[(access-list) (ip route) (router bgp) (route-map)

{Username) 38.6 NA M |(interface) (username)

(interface) (username)|| 28.4 | 72.5-99.6 Table 3. 3 most frequent superblock clus-
Table 2. Most frequently changed su- ters for each VPN. C:CoS, M:Management,
perblock groups within a router in E5. R:Routing.

Table 2 shows the groups of superblock(s) that change tegetlst frequently
for E5, sorted in decreasing order of support. Superblooggss-list) changes occur in
42.2% of the transactions (i.e., albuter,day instances), while superblock (router bgp)
changes occur in 38.9% of the transactions. Further, the@psiiperblocks (access-list)
and (router bgp) change together in 38.7% of the transactidowever, superblocks
that change frequently individually need not change fredjy¢ogether. For example,
both (access-list) and (interface) individually changewer40% of the transactions,
but they change together in oriy8% of the transactions (not shown). The right-most
column summarizes the range of confidence values C(Subsel sluperblocks»n;,
superblock) for all possible subsets of sizd. For example, superblocks (access-list),
(ip route), and (router bgp) occur togetheB®2% of the transactions, and if any two
of the superblocks change, the percentage of times thahtttesuperblock changes
ranges from 98.9-100% depending on which two superblocksroc

We now illustrate the types of correlated changes our metlogy can identify.
Staggered System-wide ChangeA.striking observation from Table 2 is that the group
with superblocks (access-list), (ip route), (router b@md (route-map) occurs B8%
of the transactions. Further, for any 3-tuple combinatibthese superblocks, the con-
fidence range is very high>05%). Further investigation with the operator revealed
that E5 experienced a change in its network design duringrntbasurement period.
The design moved away from using the provider's ISDN baclalpt®n to a solution
that points all traffic back to the customer environment mékient of the primary link
failing, since the customer had added an additional sepriceider. The design change
consists of modifications to the BGP configuration, add#iofaccess-lists, route-maps
and weighted static routes. These changes were introdwegdgeriod of 2 months,
configuring roughly 20-30 sites every 2-3 days. The systedewhange was spread
over time to reduce the risk of adversely impacting the prinmetwork traffic. Another
superblock group, (interface) and (username), also hdativegy high support o£8.4,
with a high confidence range. This turned out to be relateies¢cond part of the same



overall design change - removal of the existing ISDN baclalpt®n, which involved
deletions of usernames and logical ISDN interfaces, andfinations of physical in-
terfaces referring to the removed logical interface. Tlhghdly lower support for this
group is because not all sites of E5 had an ISDN backup salutiderestingly, these
two groups of staggered design changes were performed bpémdient design teams,
and the operators found our methodology useful in confirrtiege changes occurred
as intended.

Frequently Occuring Superblock Clusters.Table 3 summarizes the 3 most frequent
superblock clusters for each VPN. For enterprise E5, thepletcorresponding to BGP
policy addition, and the 2-tuple corresponding to ISDN hgrkemoval are shown. For
each superblock cluster, we assign a category of operassocated with the group.
For all VPNs, we find that most intertwined superblock change centered around
CoS (e.g., provisioning a new class of traffic) and routing.(énstalling new backup
routes), confirming the central role of CoS operations irthedlVPNs we consider.
Syntactically Unrelated Meaningful Correlations. Table 3 shows that E2-E4 has a
strong correlation in management operations related tologging and snmp-server.
By merely looking at the configuration commands, it would befclear how these su-
perblocks are related since they do not directly refer toamather. Yet, they turn out
to form a semantically meaningful correlation that reflabts periodic server update
routines used in those VPNSs. This type of correlation ingslghanges to syntactically
unrelated parts of a configuration file. A parser incorpogkinowledge of the config-
uration language itself would be incapable of extractinghstorrelation. This finding
illustrates the potential benefits of our methodology irraosting syntactically unre-
lated, but semantically meaningful correlations.

5 Application - Finding Anomalies in System-wide Changes

Knowledge of correlated changes has potential applicatioretecting errors in the
change management process. In this section, we conducttiah study focusing on
anomalies in system-wide changes.

A key observation we made when analyzing system-wide clmafigel) is that
some system-wide changes impacted most, but not all, CERsaudliting tool can
leverage such insight and proactively look further for CERissing an initial bulk
update, which we catiutliers We analyze their prevalence and further investigate their
causes based on operator responses.

We call outliers that never received the missed global uwppatsistent outliers
Among the remaining outliers that eventually saw the miggetdal update, 80% of
which received the update within 8 days. The operator indatthat these “short-lived”
outliers’ initial misses were due to network congestionaarters being overloaded, and
were shortly fixed later by their auditing scripts. Therefowe exclude them from our
analysis and call the rest of outlielelayed outliersTable 4 summarizes the outliers.
Note that a CER may appear as an outlier multiple times if #s®@il more than one
global update. We present some interesting causes for tlutigers below.

e Persistent Outliers: We classified persistent outliers inkorors andnon-errors In a
few cases, we were not able to determine the causes, andsgéieldthem asnknown
(i) Errors: These outliers were confirmed by the operators as needieg. fike found
11 such outliers, all in E2. They corresponded to missed gemant updates, e.g.,



Ent[[ Total Persistent Outliers Delaye
errors|non-errorgunknowr|Outliers
E1 [[172(38,8) 0 [134(26,8) 3(3,2) [35(12,6
E2 || 24(15,6)[11(6,3] 7(7.1) | 5(5,3) | 1(2,1)
E3| 982 | ©O 2(2,2) | 7(7,1) 0

E4 || 91(85,7)| O 81(78,2)| 6(6,2) | 4(4,3)
E5 || 16(3,6) 0 10(10,1) 0 6(3,4)

Table 4. Summary of global outliers detected. Numbers in parenthdseote the number of
unique outlier routers and the number of events in which siowlieated outlier occurred.

increasing size of logging buffers and setting timeout f@megement sessions. The
operators indicated that although these errors were rtataitio essential operations of
the VPNSs, it is important that all operators are aware of ttistence of these errors in
order to evaluate their potential impact, and take remeditibns if needed.

(i) Non-Errors These outliers were either confirmed or strongly suspduyatie op-
erators as genuinely not needing the update. They comrstiteatmajority of outliers de-
tected in E1, E4, and E5. The 134 cases in E1 involve only 2@rsiall related to CoS
design. For example, a small fraction of CERs are locateddifferent country from
all other CERs, and they use a different CoS design and hffeeatit update patterns.
Non-errors in other networks were management-relatede¥ample, low-end routers
did not get the complete set of management ACL rules to repumeessing overhead.
In addition, updates that increase certain parameter ¥4k1g., logging buffer size)
above a threshold did not reach routers which already had #imve the threshold.

e Delayed Outliers: Table 4 shows that E1 had the most delayed outliers, but gn onl
12 CERs. These routers used a newer Cisco style of CoS caatfigus which required
manual updates because they were not amenable to bulk sptedeigh older man-
agement tools. In addition, while E2-E5 allow fixes to be madedlemand, E1 had a
more stringent update process in that changes can be madm qme-scheduled time
windows. These two factors explain a large number of delaysliers in E1. For E2-
E5, one major cause of delayed outliers was that the misagatign of management
ACLs inadvertently blocked global updates.

6 Related Work

To our knowledge, the only other work that has analyzed dyoaperational tasks
of real networks is [12]. While we share similar high-levéljectives, [12] tries to
identify groups of syntactically related commands anddsuihodels to describe the
series of actions needed for an operator to perform a givednda a router interface.
In contrast, we focus on automatically extracting coredlathanges within and across
routers using data mining techniques. Minerals [7] als® @ssociation rule mining to
analyze configurations. However, they focus on detectirggamfiguration using static
configuration snapshots.

Several works have sought to automate top-down generatilonveevel configu-
rations [13, 11] and typically focus on greenfield deployise®thers [8, 9, 3] have
looked at detailed modeling and detection of errors in stedinfiguration snapshots.
Many of them are device-specific, and do not help operatatetstand and explain the
semantics behind changes.



7 Summary

In this paper, we have presented a methodology to extraatonletwide correlations
of configuration changes from longitudinal snapshots ofepconfiguration files. Our
study of five operational enterprise VPNs over an 11-montfogeonfirms the value
and effectiveness of our methodology, and conveys impbitaights on the change
behavior in these networks.

Our results show that while most changes affect individoaters, system-wide
changes do occur, and primarily relate to management andigeoperations. In ad-
dition, correlations exist across groups of routers latategeographic proximity to
each other. When correlations across superblocks werédevad, most of these cor-
responded to changes to the CoS or routing design. Integhstone of the networks
exhibited a markedly higher frequency of superblock groupsther analysis indi-
cated this corresponded to a system-wide design changeaisagtaggered over multi-
ple days. Also of interest, our analysis revealed meaningfusyntactically unrelated
correlations, arising due to management processes entpiloylee networks.

While our findings are specific to the networks we analyzee nethodology it-
self is generally applicable to all networks. A potentiapbigation is in tools that can
provide operators with network-wide summaries of changgdied to their networks.
Extracting correlations also has potential applicationthe design of change auditing
systems, that can alert the operator to violations of theselations during a configu-
ration change. We illustrate the potential of this directity presenting an initial study
of anomalies in system-wide change$h

Much of this study has been performed with active involvetoémperators, who
have expressed great interest in the methodologies anddiaidiVe are currently in the
process of developing tools based on our methodologiesifansarizing and auditing
configuration changes.
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