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Abstract

While mesh-based approaches have emerged as the dominant architecture for P2P streaming, the performance of these
approaches under malicious participants has received little attention. In this paper, we provide a taxonomy of the
implicit commitments made by nodes when peering with others. We show that when these commitments are not
enforced explicitly, they can be exploited by malicious nodes to conduct attacks that degrade the data delivery service.
We consider mesh-based specific P2P attacks where malicious nodes deliberately become neighbors of a large number of
nodes and do not upload data to them, or malicious nodes deliberately delay packets till they are not useful anymore for
the application. We focus on these attacks given the limited attention paid to them, and the significant impact they can
have on overall data delivery. We present mechanisms that can enhance the resilience of mesh-based streaming against
such attacks. A key part of our solution is a novel reputation scheme that combines feedback from both the control and
data planes of the overlay. We evaluate our design with real-world experiments on the PlanetLab testbed and show that
our design is effective. Even when there are 30% attackers, nodes receive 92% of the data with our schemes, however
without our schemes they only receive 10% of the data.

1. Introduction

The vision of enabling simultaneous video broadcast as
a common Internet utility in a manner that any publisher
can broadcast content to any set of receivers has been driv-
ing the research agenda in the networking community for
over two decades. For much of the 1990’s, the research
and industrial community investigated support for such
applications using the IP Multicast architecture [1]. How-
ever, serious concerns regarding its scaling, support for
higher level functionality, and deployment have dogged IP
Multicast. The sparse deployment of IP Multicast, and
the high cost of bandwidth required for server-based solu-
tions or Content Delivery Networks (CDNs) are two main
factors that have limited broadcast to only a subset of
Internet content publishers. While many network service
providers have enabled IPTV services that deliver qual-
ity video to their own subscribers using packet switching,
there remains a need for cost-effective, ubiquitous support
for Internet-wide video broadcast.

Over the last decade, there has been significant inter-
est in the use of peer-to-peer (P2P) technologies for In-
ternet video broadcast [2, 3, 4, 5, 6, 7]. There are two
key drivers making the approach attractive. First, such
technology does not require support from Internet routers
and network infrastructure, and consequently is extremely
cost-effective and easy to deploy. Second, in such a tech-
nology, a participant that tunes into a broadcast is not
only downloading a video stream, but also uploading it to
other participants watching the program. Consequently,
such an approach has the potential to scale with group

size, as greater demand also generates more resources.
The extensive research in the design of P2P stream-

ing systems [2, 3, 8, 9, 10, 11, 12] has matured to the
extent that we are today seeing several efforts aimed at
commercializing the technology [4, 5, 13, 14, 15, 16, 17,
18, 19, 20, 21]. High user demand for these systems has
been shown by their increasingly large user base [6, 7]. Not
surprisingly, recent studies indicate that over 60% of In-
ternet traffic is generated by P2P systems [22], with video
accounting for more than one-third of all Internet traffic
today [23, 24].

P2P streaming can be divided into two main approaches,
tree-based [10, 8, 25, 26] and mesh-based [9, 11, 27, 28]
architectures (see [29] for a survey). Tree-based overlays
construct a tree, rooted at the source, which broadcasts
the stream. Mesh-based overlays disseminate data in a
less structured manner, where nodes exchange data with a
subset of the nodes in the network without using any pre-
defined route. Mesh-based approaches have received a lot
of attention in recent times because they are more resilient
to churn [30] and node failures, and have been shown to
perform better than tree-based approaches [31, 30].

While mesh-based approaches have several attractive
properties, the performance of these systems in the pres-
ence of malicious participants has received little attention.
Dhungel et al. [32] show the vulnerability of such systems
to attacks where malicious nodes upload polluted data to
other nodes in the overlay. Similarly Haridasan et al. [33]
focus on polluted data but also denial of service attacks on
nodes by flooding them with requests. Several works have
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focused on the problem of peers which download data from
other nodes but do not in turn upload data [34, 35, 36, 37],
however these works focus on selfish rather than malicious
node behavior.

In this paper, we systematically analyze the vulnerabil-
ities of the components of mesh-based streaming overlays.
We focus on an important and broad class of attacks where
malicious nodes deliberately become neighbors of a very
large number of nodes in the system and do not upload
data to them. We also focus on attacks that are partic-
ular to streaming systems such as when malicious nodes
artificially delay the uploading of data, so while nodes still
receive the data, because of real-time deadlines they are
less likely to have opportunities to forward that data to
others. We focus on these attacks given they have received
limited attention, they can have significant disruption on
data delivery, and they are applicable to many mesh-based
systems. For instance, our evaluation with a state-of-the-
art mesh-based streaming system shows that when the at-
tacks are conducted with just 10% of nodes in the system
being malicious, the average data rate received across all
nodes is only 45% of the source rate when nodes upload
no data and 47% when nodes delay some data.

We wish to emphasize that our focus in this paper is
on mesh-based approaches for live video streaming, rather
than file-download systems like BitTorrent [38]. While
some of the attacks we consider may also be relevant to
file-download systems, the impact on application perfor-
mance is far more serious for streaming applications given
that they are associated with stringent real-time deadlines.
Consequently, the solutions must also be tailored to the
unique demands of streaming applications.

Our contributions are:

• We provide a taxonomy of the implicit commitments
made by nodes when peering with others. We show
that when these commitments are not enforced ex-
plicitly, they can be exploited by malicious nodes to
conduct attacks that degrade the data delivery ser-
vice. To our knowledge, this is the first effort at
taxonomizing attacks on mesh-based streaming pro-
tocols.

• We present a novel reputation scheme that combines
feedback from the data plane (based on data received
from the nodes) and the control plane (based on who
a node has as neighbors) to increase the robustness
of the mesh-based streaming overlay to the identi-
fied attacks. Through detailed security analysis, we
show that our scheme is resistant to attacks com-
monly associated with reputation schemes such as
self-promotion and slandering [39]. In particular, we
show that our scheme ensures that a malicious node
must contribute a minimum amount of data in a
timely fashion to acquire a certain reputation. In ad-
dition, we show that a benign node that contributes
data is assured a certain minimum reputation and
cannot be slandered.

• We further augment the system, with a more com-
prehensive approach that also addresses potential
vulnerabilities in the bootstrap mechanism, and with
the source of the broadcast. We present a set of sim-
ple mechanisms to achieve this goal. Specifically,
we present a scheme that prevents malicious nodes
from influencing the membership bootstrap service
and a source protection scheme that disallows mali-
cious nodes to be overly connected to it.

• We evaluate our design using experiments on the
PlanetLab testbed. Our results show that our schemes
are extremely effective in ensuring good performance
under attacks. With the local-reputation scheme,
with 10% of the nodes being malicious, the average
data-rate received across nodes from the source in-
creases from 45% to 65%. Augmenting the solution
with source and bootstrap protection mechanisms re-
sults in nodes receiving 95% of the source-rate on
average. Our schemes also work well when attackers
use advanced techniques such as data delaying. In
fact, even with 30% of the nodes being malicious,
more than 85% of the peers receive over 90% of the
data. Overall, our results show the feasibility of aug-
menting mesh-based P2P streaming schemes to be
resistant to attacks that target data delivery.

The rest of the paper is organized as follows. In Sec-
tion 2 we survey related work and in Section 3 describe
the mesh model we consider for this work. We describe
attacks against data delivery in meshes in Section 4 and
present our design to mitigate such attacks in Section 5.
In Section 6 we provide an analysis for the security of our
design. We explain the methodology and results of our
experiments in Section 7 and 8, respectively. Finally, we
summarize and conclude in Section 9.

2. Related Work

Much recent work has gone on in improving the effi-
ciency and performance of P2P streaming systems. Lui et
al [40] present algorithms that find near-optimal stream-
ing rates when nodes can only support a bounded number
of children. Picconi et al [41] demonstrate that P2P live
streaming systems can incorporate locality-awareness and
thus be ISP-friendly. Several works [42, 43] have also fo-
cused on utilizing network coding for improving download
speeds and reducing the scarcity of data. We note that
works such as these are orthogonal to ours and can be
incorporated with our design.

However, the security challenges in designing mesh-
based streaming protocols has received little attention.
Recent work [44, 45] has surveyed security issues in P2P
streaming, but cite a lack of solutions in this area. The
only prior work we are aware of focuses on attacks where
malicious nodes pollute data sent to other nodes [32, 46]
or malicious nodes overload others with requests [33]. In
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contrast, our focus is on data availability and prevention
of neighbor selection attacks.

Attacks on data availability have been considered in
the context of tree-based multicast [47]. The proposed so-
lution takes advantage of the tree structure, knowing that
if a child did not receive a message then an ancestor can
be traced back to that is at fault for dropping it. Meshes
do not have parent-child relationships but rather nodes
get data from many neighbors, so this approach cannot
be applied to them. Attacks against measurement-based
neighbor selection were studied in the context of tree-based
streaming [48]. The proposed solution uses outlier detec-
tion to identify malicious nodes that report wrong mea-
surement results. This approach only works with systems
that employ such measurement-based adaptation.

Dealing with selfish and Byzantine behavior using game
theoretic principles has been investigated in several previ-
ous works [37, 49]. Most similar to our work is Flight-
path [37], a P2P streaming system that is designed to give
selfish peers incentives to obey protocols and can tolerate
Byzantine behavior. Unlike their work, we do not assume
synchronized clocks or synchronous communication chan-
nels.

Several previous works have dealt solely with selfish
users in P2P streaming. Contracts [35] develops incentives
that rewards nodes by giving them higher quality playback
based on how effective a node’s contributions to the entire
system are. Substream trading [34] applies BitTorrent’s
tit-for-tat mechanism to a streaming context to encour-
age uploading, in this context nodes commit to sending
each other parts of the video stream for a period of time.
Pulse [36] also applies a tit-for-tat mechanism to live P2P
streaming, but also combines it with incentives for altru-
istic behavior.

Several schemes have been proposed to mitigate neigh-
bor selection attacks (referred to as eclipse attacks) in the
context of distributed hash tables (DHTs) [50, 51]. The
solutions are DHT-specific and do not apply to streaming
protocols. A key aspect that distinguishes streaming pro-
tocols is the potential for feedback from the data-plane. In
particular, it is possible to infer malicious behavior based
on lack of data received from a neighbor. Our solutions
leverage this observation resulting in significantly simpler
designs.

Reputation systems have been a subject of wide inter-
est, especially for P2P file-sharing systems. File-sharing
reputation systems generally fall into two categories of pur-
pose, incentivizing users to share files [52, 53], or thwarting
file pollution [54]. Piatek et al. [53] show the feasibility of
using one-hop reputations to incentivize interactions be-
tween users in BitTorrent. They take advantage of the
fact that there are some users who are in many BitTorrent
overlays and thus can be used as intermediaries, keeping
track of long-term reputation values for others and facil-
itating data exchanges. While our work also uses local
reputations, we differ in that our goal is mitigating ma-
licious adversaries and not creating incentives. Also, as
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Figure 1: Example of a unidirectional mesh-based streaming overlay
in which the source sends two different data chunks as denoted by the
gray triangle and orange square. Each node has an in-neighbor set
and an out-neighbor set. For example, for node 6, the in-neighbor set
consists of node 7 and the source, while the out-neighbor set consists
of nodes 1 and 9.

users usually only watch one video stream at a time, this
precludes them from being in many overlays at once, mak-
ing it impossible for some users to be intermediaries. Thus,
streaming presents new challenges for reputation systems
and has unique features that create opportunities, such
as the continual downloading of data and stringent data
deadlines, that we take advantage of.

3. Mesh-Based Peer-to-Peer Streaming

We consider a unidirectional mesh-based P2P overlay
consisting of a bootstrap node, a source node and peer
nodes. As seen in Figure 1, the mesh allows peers to down-
load a stream generated by the source, while the bootstrap
maintains a list of alive peers used to assist peers to join
the network. We consider a unidirectional mesh since it
is more general than a bidirectional mesh. Also, unidi-
rectional meshes have been shown to perform better than
bidirectional meshes [55].

Every peer node maintains two sets of nodes, in-neighbors
and out-neighbors. The in-neighbors represent the nodes
that the peer node is receiving data from. The size of the
in-neighbors is a system parameter. The out-neighbors
represent the nodes that the peer node is sending data
to. Each node decides independently the number of out-
neighbors to support which will be proportional to its
bandwidth. The source has no in-neighbors, only an out-
neighbors set, whose size is usually larger than the size of
an out-neighbor set of a peer node.

At join time, a peer node j first contacts the bootstrap
node to receive a set of candidate nodes to serve as its
neighbors in the overlay. Node j then contacts each candi-
date node and requests to become one of its out-neighbors.
If a candidate node c accepts the request, then in turn, j
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will add c to its in-neighbor set. Each node pro-actively
looks for several out-neighbors to connect to as well.

After it joins the overlay, a node discovers other peers
by occasionally contacting its neighbors to learn about
their own neighbors. This gossip protocol allows a node to
update its in-neighbor set when neighbors leave or crash.
A node also registers with the bootstrap node occasionally
to allow the bootstrap node to have an up-to-date list of
alive nodes. We will refer to these protocols as the control
plane of the overlay.

The source node splits the stream into data chunks of
a fixed size, each uniquely identified by a sequence num-
ber. To receive a chunk a node will send a request to an
in-neighbor with that chunk’s sequence number. If the
requested node does not respond before a deadline then
the requesting peer will consider that request lost. Each
peer node maintains a buffer that it is trying to fill with
data chunks. The buffer corresponds to a playback dead-
line, such that if a block of the stream is not received
before that deadline, the data is considered lost and thus
the quality of the playback stream is diminished. We will
refer to this protocol as the data plane of the overlay.

This model is general enough to capture the character-
istics of several previously proposed and deployed mesh-
based systems [11, 27, 28, 4, 13].

4. Attacks Against Data Delivery

We state the assumptions we make about the attacker
and provide a taxonomy of attacks against mesh-based
P2P streaming systems.

4.1. Attack Model

We assume that a fraction f of peers are compromised
and can behave arbitrarily. The percentage f is the largest
fraction of nodes that the system is willing to tolerate as
malicious. Their main goal is preventing the overlay from
delivering data to each peer in a timely fashion. An at-
tacker can disrupt the data delivery directly by attacking
the data plane, or indirectly by attacking first the control
plane to gain control over the data delivery path and then
disrupting the data delivery.

We assume a defense against Sybil attacks [56] is in
place, such as binding IP addresses to certificates or one
that leverages social networks [57]. We also assume that
data integrity is ensured and data is protected from pollu-
tion [32, 6]. We assume that the source and the bootstrap
node are trusted and always behave correctly.

4.2. Attacks on the Data Plane

When two nodes A and B accept each other as out-
neighbor, and in-neighbor, respectively, they assume sev-
eral implicit commitments from each other:
• Data delivery commitment: A commits to B that it
is going to deliver a certain amount of data to B.

• Data download commitment: B commits to A that
it is going to download a certain amount of data from A.
• Data upload commitment: B is going to upload to
the overlay what it downloaded from A.
• Source upload commitment: If B is connected to
the source, then it will upload the data downloaded from
the source to others in the overlay. This is similar to the
data upload commitment, however we list it separately
given that the source is a special entity where all the data
originates.
• Data delay commitment: A will upload the data
requested by B as soon as possible and not arbitrarily delay
it.
• Data integrity commitment: A commits to B that
it is not going to upload to B meaningless data.

However, in many mesh systems, not all of these com-
mitments are explicitly enforced by the system. As a re-
sult, malicious nodes can exploit them to attack the data
plane. We identify the following attacks (summarized in
Table 1).

Table 1: Attacks against data and control planes

Data dropping
Data delaying

Data plane Neighbor exhaustion
Source

Free-riding
Pollution

Control plane Bootstrap list pollution
Neighbor selection

• Data dropping attacks: If the data delivery commit-
ment is not met, a malicious node can accept benign nodes
as its out-neighbors, but not deliver data to them. The
attacks are effective because each data chunk has a strict
deadline. A node only has time to make a few downloading
attempts for a chunk, and will miss it once the deadline is
passed.
• Data delaying attacks: If the data delay commit-
ment is not met, a malicious node can send data to its
out-neighbors yet delay the sending of it. Delaying data
makes the attacker seem less malicious since it is actually
delivering data before the playback deadline. However, the
data is less useful to the recipient since there will be fewer
opportunities to upload the data to others.
• Neighbor exhaustion attacks: If the data download
commitment is not met, a malicious node can become out-
neighbors of benign nodes, but not download data from
them. As many meshes limit the number of out-neighbors
to ensure that nodes can honor the bandwidth require-
ments, by being included in the out-neighbors a malicious
node exhausts the slots in that set thus denying access to
other benign nodes.
• Source attack: If the source upload commitment is not
met, malicious nodes do not forward data given to it by
the source. Thus, if a particular chunk is only received by
malicious nodes it will not be available to any benign node.
To amplify this attack, malicious nodes can also become
out-neighbors of benign nodes connected to the source and
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similarly not forward data given to them.
• Free-riding attacks: If the data upload commitment
is not met, malicious nodes could also download data but
not upload them to other peers, and basically obtain free
service without contributing to the system.
• Data pollution attacks: If the data integrity commit-
ment is not met, malicious nodes can upload meaningless
data, thus polluting the information in the overlay.

4.3. Attacks on the Control Plane

The above data plane attacks are more effective when
they impact many nodes in the overlay. A malicious node
can increase the impact of its attack by first attacking the
control plane. The control plane provides nodes with two
mechanisms to discover peers. The first consists of the list
of alive peers provided by the bootstrap node when a node
joins the overlay. The second consists of exchanging mem-
bership information between the node and known peers.
The bootstrap list is up-to-date if peers periodically reg-
ister with the bootstrap node to inform it that they are
alive. Assuming the bootstrap node is trusted, the control
plane achieves its goals if the following commitments are
met:
• Registration with the bootstrap node commit-
ment: A peer commits that it will register occasionally
with the bootstrap node, at a rate specified by the proto-
col.
• Referral list commitment: A node commits to pro-
vide a neighbors list that does not purposely contain ma-
licious nodes and is not biased towards some nodes.

We identify the following attacks that have an impact
on neighbor selection:
• Bootstrap list pollution attacks: If the registration
with the bootstrap node commitment is not met, mali-
cious nodes can register fast and often with the bootstrap
node filling the bootstrap node’s list of alive peers. Thus,
although the bootstrap node is trusted, the list that it will
provide to the joining peers will be polluted with malicious
nodes. Note that malicious nodes can also register infre-
quently or not at all, but in this case they will not impact
the list of the bootstrap node.
• Neighbor selection attacks: If the referral list com-
mitment is not met an attacker can collude with other ma-
licious nodes and when contacted about its own neighbors,
refers only other malicious nodes. This attack is epidemic
in nature since soon benign nodes will also be referring the
malicious nodes they know to other benign nodes.

4.4. Our Focus

We focus on the attacks that we believe can be the
most effective strategy for an attacker to disrupt the data
delivery, and allow him to inflict maximum damage on
the system with minimal resources. The most effective
strategy for a malicious node is to (i) become neighbors
of as many nodes as possible, (ii) deliver as little data as
possible and (iii) data that is delivered should be as use-
less as possible. Hence we focus on control plane attacks

(i.e. bootstrap list pollution and neighbor selection) that
seek to increase the connectivity of malicious nodes and
also on several data plane attacks (i.e. dropping, delay-
ing, neighbor exhaustion, and source) as they can create
considerable damage in the network.

We note that many of these attacks are specific to
streaming, as file-distribution systems do not have real-
time deadlines of data, nor need to download at a particu-
lar streaming rate, and often have centralized membership
protocols (e.g. BitTorrent).

We do not consider attacks such as free-riding or data
pollution as they relate to selfish behavior and data in-
tegrity but not attacks on data delivery. Furthermore,
several solutions to free-riding have been proposed in pre-
vious work [38, 34, 35]. Also, to prevent data pollution,
Dhungel et al. [32] have shown that a suitable means to
accomplishing this is the source digitally signing hashes of
the chunks. We note that solutions to these attacks can
be used to complement our work.

5. A Design For Securing Data Delivery

In this section we describe our design for securing the
data delivery for a P2P mesh-based streaming overlay. We
first outline the design goals, then describe the details of
our design.

5.1. Design Goals and Overview

Our focus is on ensuring that the P2P system achieves
its intended goal which is continuous data delivery, even
when under attack. However, achieving the same level of
service in the presence of insider attacks as in the benign
case is not always possible. As a result, our specific goals
are:
(G1) Limit the impact of the attack: We seek to
raise the bar for the attacker and bound the amount of
damage per attacker. The damage created is directly pro-
portional with the number of attackers and the amount of
data dropped or delayed by the attacker nodes. Our goal
is to limit the degree of connectivity in the mesh that ma-
licious nodes can obtain. We integrate mechanisms that
use control plane feedback to mitigate bootstrap list pol-
lution, source, and neighbor selection attacks and mecha-
nisms that use data plane feedback to detect data drop-
ping, delaying and neighbor exhaustion attacks.
(G2) Limit the overhead of the defense mecha-
nisms: Because malicious behavior is not a priori known,
some of the components of our design are proactive, thus
they must be enabled regardless of the presence of attacks.
One specific concern is the overhead of the defense mech-
anisms. Our goal is that when no attack takes place, the
system performance with the defense mechanisms enabled
is the same as if those defense mechanisms were not used.

To achieve the goals identified above we design several
proactive and reactive protocols. Our schemes use local
observations to help nodes identify malicious peers and
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build a robust neighbor set. We also design schemes tai-
lored for the source and bootstrap nodes given their critical
roles.
Peer protection: To limit the impact of attacks and
the overhead of the defense solution, we use decentralized
mechanisms deployed at each individual peer that allow it
to make local decisions about accepting, rejecting, or ex-
cluding other peers from its set of neighbors. Each node
individually derives reputation scores for the other peers
it is aware of in the overlay. The use of reputation is a
natural choice in a distributed system with malicious par-
ticipants. Since many existing reputation systems require
additional overlays or have high computational or band-
width overhead [52], we design schemes that are tailored
to streaming overlays. The novelty of our scheme lies in
combining feedback from the data plane and control plane
to build reputations for each peer.
Source protection: As the source is a producer but not
a consumer of data, the protection mechanisms used for
peers are not applicable to the protection of the source.
We use mechanisms that limit the impact of source attacks
by allowing nodes to notify the source if certain data was
not received.
Bootstrap protection: The bootstrap node plays a crit-
ical role in the control plane. Attacks against the control
plane can be amplified if the bootstrap is not a reliable and
unbiased source of information on who is currently in the
overlay. Our scheme discourages nodes from registering
at a fast rate and thus limits the percentage of malicious
nodes in the bootstrap list.

Below we describe in details each of these protection
mechanisms. First, we describe in Section 5.2 the details
on a local reputation mechanisms that protects against
data dropping and data delaying attacks. Then, we de-
scribe the source and bootstrap node protection mecha-
nisms, in Sections 5.3 and 5.4, respectively.

5.2. Protecting Peers through Local Reputation

We propose a mechanism that allows peers to select
as neighbors the nodes that provide the best performance
while being resilient to data dropping and neighbor selec-
tion attacks. We also show how to extend this mechanism
to protect against data delaying attacks. A node uses lo-
cally observed data and control plane information to com-
pute scores for each of its neighbors. The lower the score,
the higher the chance that a node is malicious. Nodes
that have a score lower than a threshold Td are evicted
from the in-neighbors set. The local reputations are also
sent across one hop to neighbors, so that they can avoid
accepting malicious nodes as in-neighbors. The score con-
sists of two components:
• Data score: This score is a positive reputation (it rewards
good behavior) and it is calculated based on how much
data a node has received from a particular neighbor. The
goal of the data score is to capture regular performance
degradation and data dropping attacks. Nodes who do not

deliver sufficient data will have a lower data score. Nodes
with a data score below a threshold Ts are considered to
be suspicious. This approach forces malicious neighbors
to deliver a certain amount of data. Note that for a node
to be evicted from the neighbors set, his total score has to
be smaller than Td (Td < Ts).
• Graph connectivity score: This score is a negative reputa-
tion (it penalizes bad behavior) and it is calculated based
on how connected a node is to other nodes. The goal of
the graph connectivity score is to target neighbor selection
attacks. This score is relevant only for suspicious nodes be-
cause if the nodes deliver enough data (i.e. corresponding
to a data score above Ts) they do not disturb the overlay.
A high graph connectivity score indicates that a node is
potentially conducting a neighbor selection attack. This
score is used because if the data score is neither high nor
low, it may not be obvious if a node is malicious.

Below we provide details about the data and graph
connectivity score computation, about the way they are
combined into a reputation score, and about how the rep-
utation score is used to make decisions on what nodes to
allow as neighbors. Algorithm 1 also describes this com-
putation, specifically how a node i calculates the Local
Reputation for node j.

Data score computation. Every node i calculates a
data score for every in-neighbor j as follows:

Lij(t) = min

(

1,
Gij(t)

E(t)

)

(1)

where Gij(t) is the number of chunks received by node
i from j before deadline Dr in a time period. Dr is the
amount of time the requesting peer will wait before con-
sidering that the request was dropped. If a request for a
chunk is honored after the Dr deadline has passed, it is not
included in Gij(t). E(t) is the expected number of chunks
to be received by a node in a time period. Typically, the
expected value is the same for all nodes and if it is re-
ceived from all in-neighbors the full streaming rate will be

received. We take the minimum of
Gij(t)
E(t) and 1 so that if

a node performs better than expected the end result will
still be between 0 and 1. The more data j delivers to i,
the bigger the Lij(t). If Lij(t) is less than a threshold Ts,
then i marks j as suspicious.

A score for a node’s out-neighbors is calculated by re-
placing Gij(t) with the number of requests fulfilled for that
node in a time period. Such a score allows nodes to miti-
gate neighbor exhaustion attacks.

Graph connectivity score computation. Every
node also calculates a graph connectivity score for each
of its neighbors that were marked suspicious. This score
relies on the observation that a malicious node conducting
a neighbor selection attack will be an in-neighbor for many
honest nodes. In particular, if node i has as in-neighbors
node k and j, and node j is malicious, then it is likely
that j is an in-neighbor for node k as well. Furthermore,
the more in-neighbors of i that j is connected to, the more
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likely it is that j is conducting an attack. We propose the
following graph connectivity equation for each node i to
calculate the likelihood of each of its in-neighbor j being
malicious:

Cij(t) =
Kij(t)

Ni(t)
(2)

where Ni(t) is the total number of non-suspicious neigh-
bors of i (i.e. a non-suspicious neighbor is one whose data
score L is greater than Ts), and Kij(t) is the number of
these non-suspicious neighbors for whom j is also an in-
neighbor. Intuitively, the equation calculates a score equal
to the percentage of non-suspicious neighbors that a neigh-
bor j is currently an in-neighbor for. The score will be high
if a neighbor is in many neighbor sets, indicating that it is
malicious. We consider only non-suspicious nodes so that
in the case a malicious node wants to falsely advertise other
nodes in its in-neighbor set, it has to first perform some
work for the system.

Reputation score computation. Every node com-
bines the data and graph connectivity score as follows:

R′

ij(t) =

{

Lij(t) − α ∗ Cij(t) if j is suspicious
Lij(t) otherwise

(3)

If a node had a low data score and was marked as sus-
picious, then we take into account the graph connectivity
score as it is a negative score and will further reveal if
the node is misbehaving. Specifically, we subtract from
the data score the graph connectivity score and we weight
the latter with a parameter α. However, if the node was
not marked as suspicious, we do not take into account the
graph connectivity score. This choice was made based on
the observation that if the nodes deliver enough data, it
does not matter how connected they are as they do not
disturb the honest nodes.

Incorporating history. Every node takes into ac-
count the history of its neighbors by calculating for each
neighbor the following equation:

Rij(t) = λ ∗ R′

ij(t) + (1 − λ) ∗ Rij(t − 1) (4)

where λ is a value less than 1. We take into account his-
tory to accommodate transient network conditions, such as
congestion. This gives nodes the opportunity to recover
and not be disconnected due to non-persistent problems.
All nodes start with a reputation equal to Ts.

Reputation based neighbor selection. A node
uses reputation scores to decide when to drop or add neigh-
bors. To decide if he keeps a node j as a neighbor, node i
compares the reputation score Rij for node j with a thresh-
old Td. If j’s score becomes less than Td, then i will drop j
from its neighbor set and will not allow j to be in either its
in-neighbor or out-neighbor sets from then on. We identify
j by its IP address to avoid trivial Sybil attacks.

A node also uses the reputation score to determine if
a node is non-malicious when deciding to add a neighbor.
Consider the case when a node s refers a neighbor k to node

i, s will also send the reputation score of k. To decide if
he adds k as a neighbor, i computes Ris ∗Rsk. Node i will
then add node k as a neighbor if the resulting number is
greater than the suspicion threshold, Ts.

Protecting against data delaying. As long as there
is no enforcement of data delivery, an attacker’s best strat-
egy is to drop all data. However, once the above protection
mechanisms are introduced, an attacker’s best strategy is
to send as little data as possible, but delay everything it
sends so that the node receives it just before the Dr dead-
line. The delaying of data is advantageous to attackers in
multiple ways. Attackers can still get credit for sending
data, yet it is less likely that the benign node will have as
many opportunities to pass that data on to others. Delay-
ing data also creates a temporary scarcity of data chunks,
and as few benign nodes will have that data, malicious
nodes will be able to fill that request for many nodes.

As data delaying unnecessarily increases the amount
of delay in receiving chunks, nodes can measure the delay
and then penalize the offenders. To do this we introduce
the inverse relative stretch (IRSu) metric which node i
will calculate for each chunk u received from node j. We
define IRSu as the ratio between the delay from the source
to node i and the delay from when the source generates a
chunk u to when node i actually receives it. An IRSu of
1 would indicate node i received the chunk with no extra
delay whatsoever while less than 1 indicates that there was
some extra delay. To incorporate this value into the data
score, we recalculate Gij (as referenced in Equation 1) as
follows:

Gij(t) =
∑

u

min(l ∗ IRSu, 1) (5)

During one time period, node i evaluates the IRSu of
every chunk u received from node j and calculates a sum-
mation based on these values. Specifically, the summation
of Gij is calculated by adding the minimum of 1 and l
times IRSu for every chunk received. We multiply the
IRSu by some parameter l as some stretch is normal for
any application-layer multicast and l lets us determine how
much stretch we are willing to tolerate. We then take the
minimum of that value and 1 to normalize it and ensure
that we are adding at most 1 for every chunk received. We
would expect then that a benign node that does not add
extra delay to a chunk would receive a score equal to the
number of chunks it sent. However, any malicious node
adding extra delay would receive a lower score.

Overhead. The Local Reputation scheme adds mini-
mal overhead to the system. This is due to it only involving
simple calculations, the most expensive being multiplica-
tions, and it scales linearly with the number of neighbors a
node has, which typically runs between 15 and 60, depend-
ing on how much bandwidth a node has. Furthermore, the
network overhead is negligable as we use messages that are
already being sent to transport the extra data about rep-
utation scores.
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Algorithm 1: Local Reputation computed by node
i for node j.

//This algorithm is run every t seconds
//Rij is initialized to be Ts when node j becomes a neighbor
Gij = 0;
E = source streaming rate / num neighbors;
//compute data score
foreach chunk u sent by j do

Gij+ = 1;
// if protecting against data-delaying do instead:
// Gij+ = min(l ∗ IRSu, 1);

end

Lij = min(1, Gij/E);
if Lij < Ts then

//node is suspicious, consider graph connectivity score
Ni = 0;
Kij = 0;
foreach in-neighbor k of i do

if Lik > Ts then

// in-neighbor k is not suspicious
Ni+ = 1;
if j is in-neighbor of k then

Kij+ = 1;
end

end

end

Cij = Ni/Kij ;
//reputation considers both data and
// graph connectivity scores
R′

ij
= Lij − α ∗ Cij ;

else

//reputation only considers data score
R′

ij = Lij ;

end

//take into account history of reputation
Rij = λ ∗ R′

ij
+ (1 − λ) ∗ Rij ;

if Rij < Td then

//node j is below drop threshold
disconnect j

end

5.3. Source Protection with Health Monitoring

The source is a critical component of the overlay. As
will be shown in Section 8 attacks against the source can
significantly degrade the performance of the system. While
Local Reputation is effective for peers, it can be intuitively
seen that such a mechanism is ill-suited for the source.
This is for two reasons. First, the source does not request
data from its neighbors, it only gives data, so it cannot
judge a node based on data received. Second, malicious
nodes will prefer to receive data from the source rather
than from peers so this also will not lead to the source
suspecting them. As a result the source can not differen-
tiate between a benign and malicious node.

We first observe that in some P2P live streaming sys-
tems today, there is extensive gathering of statistics from
peers [6]. This allows for further refinement of protocols
and code so that the quality of the experience can con-
tinue to improve. One very important metric to collect is
the amount of data that peers miss from the stream. This
gives a way to measure the overall health of the system.
We then use this monitoring information to protect the

source.
Specifically we propose that the source keeps track of

who it sends which data chunks to. Then if peers miss
some data chunks, they can report the specific ones missed
to the source. One would expect that if many nodes miss
a chunk, it is due to malicious nodes not forwarding data
received from the source. Therefore, once the source has
received complaints from a percentage of nodes greater
than f it can then disconnect the nodes it sent those data
chunks to. The percentage f must be the largest fraction
of nodes less than 50% that the system can tolerate as
malicious. Also, as this scheme might create an implosion
of messages at the source, nodes can collect them and send
them in batches.

Overhead. In practice, the network overhead is small
as we batch complaints into a single message and only
send them periodically. Furthermore, the source will only
receive messages when nodes are not receiving the data
chunks, which should be abnormal behavior. To further re-
duce the overhead, nodes could piggy-back the complaints
on messages that are already being sent to the bootstrap.

5.4. Rate-limiting Bootstrap

Our solution for protecting the bootstrap relies on the
observation that nodes that register with the bootstrap
node many times in a short period are most likely ma-
licious. Thus to detect and discourage this behavior, if
nodes register faster than once every w seconds, they will
not be put into the bootstrap list and then will not be
propagated by the bootstrap node. To detect misbehav-
ior the bootstrap keeps track of all registrations that have
occurred in the past w seconds. From the registration in-
formation it will make a list of k nodes that have only
registered once.

The w parameter decides how often nodes can regis-
ter, so the larger it is the more resilient the bootstrap will
be against attacks. However, if it is too large it will pre-
vent good nodes from legitimately re-registering. The k
parameter allows the bootstrap to decide how it will pick
nodes from the recent time window and in what quantity.
There are different strategies to fill the bootstrap list, for
our design though, we simply choose the k most recently
registered nodes to ensure the freshness of the list.

To only do rate-limiting and nothing else might bring
about scenarios where there are still very few honest nodes
in the bootstrap list. This could be due to very few nodes
joining the overlay for a period of time. To ensure that the
bootstrap list still can not be filled with malicious nodes,
we have each node randomly register once every w to 2w
seconds.

Overhead. The Rate-limiting Bootstrap scheme in-
troduces no new overhead into the system, as periodically
registering with the bootstrap is normal behavior. Addi-
tionally, the rate of at which registrations occur, and thus
the amount of overhead, can be adjusted by setting w to
the desired rate.
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6. Security Analysis

In this section, we analyze how robust the Local Rep-
utation scheme is in defending against common classes of
attacks. Recall that the final reputation score is derived by
combining the data score, which is a positive score, and the
graph connectivity score, which is a negative score. The
node uses the final reputation score to decide who should
remain as neighbors and who to admit as neighbors. Pos-
sible attacks that can be conducted on these reputation
calculations and uses include [39]:
Self-promoting: Malicious nodes falsely inflate their own
reputation. This attack is only effective in positive feed-
back based systems.
Slandering: Malicious nodes attack the reputation of
other nodes by reporting untrue information about them.
This attack is only effective in negative feedback based
systems.
Orchestrated: Colluding nodes combine several strate-
gies to game the system.
Whitewashing: Malicious nodes take advantage of a sys-
tem vulnerability to restore a damaged reputation. One
possible way to do this is by assuming new identities.

6.1. Attacks on Data Score Calculation

The reputation system is designed so that a node can-
not get a high data score and thus a high reputation with-
out doing useful work. Therefore, the data score cannot
be influenced by slandering or self-promoting attacks, as
the only way to change it is for a node to deliver more
data. We present the following lemma which quantifies
the amount of useful work done by a node given a partic-
ular data score, which can be derived from Equation 1.
Lemma 1: For a node j to obtain a data score of Lij at
a neighboring node i, j must deliver data to i at a mini-
mum rate of E ∗ Lij , where E is the expected amount of
data a node should deliver to a neighbor in a time window
(Section 5.2).

This lemma guarantees that benign nodes will receive
good performance even when surrounded by a significant
number of malicious neighbors, for example, when under
an orchestrated attack. This is because each malicious
neighbor is forced to deliver a minimum amount of data in
order not to be dropped. More specifically, if we assume a
node with a fraction f of its neighbors is malicious, and as-
sume benign neighbors always deliver the expected amount
of data, then the node will receive at least (1− f)+Tdf =
1− f(1−Td) of the streaming rate (Td is the drop thresh-
old). For example, with Td = 0.5 and f = 0.3, the node
will receive at least 85% of the stream rate.

Furthermore, Lemma 1 imposes a high bandwidth cost
on malicious nodes who seek to be a neighbor of a large
number of nodes. To highlight this, consider a streaming
system with 150K nodes [6], and that a malicious node
desires to maintain a reputation score of Td at every node.
According to Lemma 1, with a streaming rate of 1Mbps, a

neighbor-set size of 15, and assuming a Td value of 0.5, the
node must deliver data at a minimum total rate of 5Gbps.

We note that though Equation 5 modifies how the data
score is calculated to protect against data delaying, this
simply raises the bar for attackers, forcing them to send
even more data if they wish to delay the data they are
sending. Hence, even when data delaying protection is
in place malicious attackers still must send at minimum
E ∗ Lij . We present the following lemma which quantifies
how much more data a node must send if it delays it.
Lemma 2: For a node j to obtain a data score of Lij at a
neighboring node i when delaying data, j must deliver data
to i at a minimum rate of

E∗Lij

l∗IRS
, where IRS is the inverse

relative stretch and l is a system parameter.
Lemma 2 shows that attackers must increasingly send

more data the longer they delay it. For example, if node i
and the source have a delay of 100 ms and node j delays
data so that it arrives after 600 ms, the IRS will be 1/6.
Assuming l is set to 3, then node j must send data at a
rate of 2∗E ∗Lij to get a score of Lij , in this case doubling
the amount of data it would normally have to send.

6.2. Attacks on Graph Connectivity Score Calculation

When a node calculates its neighbors’ graph connec-
tivity score, it takes into account neighbor set informa-
tion provided by all of its non-suspicious neighbors. This
scheme is subject to slandering attacks where a malicious
neighbor can provide fake neighbor set information. Slan-
dering can be seen from two different perspectives, the
ability of a node to slander others and the resistance a
node has from slandering attempts. We first present the
following lemma that shows the limitations a node has in
its ability to slander others, which can be derived from
Equation 2.
Lemma 3: A node j can only influence the graph connec-
tivity scores of the neighbors of node i if j has a data score
of Ts with i.

Lemma 3 shows that malicious nodes must themselves
do a substantial amount of work to remain non-suspicious,
which means having a data score above Ts. According to
Lemma 1, this means they must deliver data to i at a
minimum rate of E ∗Ts. Given that Ts > Td, this imposes
an even greater bandwidth constraint on attackers that
want to slander others over attackers that want to simply
not be dropped.

We next present a lemma that demonstrates that a
node can resist slandering attacks from others. The key
insight behind the lemma is that if a node transmits data
at a high enough rate, its final reputation as computed by
the neighbor depends on the data score alone, and is not
impacted by the graph connectivity score.
Lemma 4: Any node that delivers data to a neighbor at a
rate greater than E ∗ Ts is assured of a reputation greater
than Ts with the neighbor.

We expect that most benign nodes will be cooperative
and deliver data at rates close to the expected rate, which
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is well above E ∗ Ts. Therefore, benign nodes will not be
subject to slandering attacks as their graph connectivity
score will not even be considered.

6.3. Other Attacks

We discuss other attacks on the schemes, and why our
approach is resilient to them:
Whitewashing attacks: In these attacks, malicious
nodes who received a bad reputation may choose to re-
join the network with a different identity. We believe this
attack is not a concern because of the following reasons.
First, the reputation is initialized to Ts, and all new nodes
will be marked suspicious initially. Therefore, a new node
cannot refer other nodes or report connectivity informa-
tion about other nodes until it has done work and im-
proved its reputation. Further, the newly added node will
be quickly dropped unless it transmits data at a sufficient
rate. Second, in our model, nodes are identified by their
IP address. To cause damage, a malicious node cannot
acquire a new identity by simply spoofing an IP address,
but must be able to receive packets targeted to the IP ad-
dress. By our attacker model in Section 4.1, we assume
only a fraction f of the total number of IP addresses are
controlled by malicious nodes.
Attacks on reputation-based neighbor selection: A
node adds new neighbors by taking referrals from exist-
ing non-suspicious neighbors. This process is subject to
attacks where a malicious neighbor (m) could refer other
malicious nodes to a benign node (i). However, to conduct
this attack, the malicious neighbor m must be considered
non-suspicious, and hence must deliver data at a mini-
mum rate of Ts ∗ E, where Ts is the suspicion threshold.
Further, each newly inserted malicious node referred by
m must also do a substantial amount of work to obtain a
minimum data score of Td (the drop threshold), or it will
be dropped quickly by node i.

7. Experimental Methodology

In this section, we describe how we evaluate and com-
pare our protection schemes with several alternative schemes.
We implemented the unidirectional mesh described in Sec-
tion 3 in a mesh streaming codebase [9]. We also imple-
mented all of our own protection schemes plus some alter-
natives which we will describe next, which are summarized
in Table 2.

7.1. Schemes Considered

No Protection (NP): This is our baseline scheme which
has no protection for any of the system components.
Local Reputation (LR): This peer level scheme, as de-
scribed in Section 5.2 builds up a reputation from infor-
mation gathered from the control and data planes. With
this reputation scheme in place, nodes are able to decide
if a node is malicious and thus can better select who they
should accept as neighbors.

LR Data Delaying (LR-DD): This is the extended Lo-
cal Reputation scheme that adds protection against data
delaying attacks.
Health Monitoring (HM): This source protection scheme,
described in detail in Section 5.3, uses information gath-
ered from peers to decide who should stay as neighbors of
the source. If a percentage of nodes declare that a certain
data chunk was missed by them, the source will drop the
nodes that it originally sent those chunks to.
Rate-limiting Bootstrap (RB): This is a bootstrap
protection scheme, described in detail in Section 5.4, keeps
track of how often nodes register and penalizes the ones
who register fast. The bootstrap will only refer nodes who
register at a rate less frequently than the rate it specifies.
Least Performing Peer (LP): This is a peer level scheme,
similar to the one used in CoolStreaming [11], that drops
the in-neighbor that is currently contributing the least
amount of data. We chose this alternative to LR because
of its simplicity and to show that while simple schemes
such as this prove to be effective in a setting where all
nodes are benign, more robust methods are needed when
malicious nodes are present.
Drop Periodically (DP): This is a source protection
scheme that induces churn [58] on the source. We note
that as time progresses and benign nodes churn in and
out of the system, malicious nodes can continue to stay
and eventually eclipse the source as its neighbors. To ad-
dress this problem we allow a single node to stay as an
out-neighbor for only a certain amount of time and then
disconnect it. To further stagger the disconnection times
of nodes, we only allow one node to be disconnected in a
time period.
Periodic Register (PR): This is a bootstrap protection
scheme that requires all peers to re-register every r time.
We chose this scheme as an alternative to RB since it also
requires re-registration of nodes, but does not do any rate-
limiting. Thus, it demonstrates that more robust methods
are needed when malicious nodes target the bootstrap ser-
vice.

7.2. Attacks Considered

To show the effectivness of our schemes, we also imple-
mented the most effective attacks available for an attacker
to disrupt the data delivery.
• Data dropping attack: A malicious node will adver-
tise the chunks of data that it has, but will not fulfill any
requests made for those chunks unless otherwise stated.
• Data delaying attack: A malicious node will advertise
and fulfill a small amount of chunk requests to avoid being
dropped from another node’s neighbor set. However, the
malicious node will delay the sending of the chunk until
very close to the chunk’s deadline.
• Source attack: A malicious node will not forward data
given to it by the source. As the source has limited band-
width, if only malicious nodes receive a particular chunk,
then that chunk will be effectively lost and no benign nodes
will receive it.
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Table 2: Mechanisms for each component of system

Peers Source Bootstrap

Least Performing Peer (LP) Drop Periodically (DP) Periodic Register (PR)
Local Reputation (LR) Health Monitoring (HM) Rate-limiting (RB)

LR Data Delaying (LR-DD)

• Bootstrap list pollution attack: A malicious node
will register often with the bootstrap, to ensure that it is
always in its list of peers and to increase its chances of
being referred to benign nodes.
• Neighbor selection attack: When a benign node
contacts a malicious node to discover more peers to con-
nect to, the malicious node will bias its referrals to include
only other malicious nodes. This results in benign nodes
being neighbors with many malicious nodes.

7.3. Experiment Configuration

Table 3: Notation
Dr Deadline at which a peer considers a request for data

dropped
Ts The suspicion threshold
Td The drop threshold
α When calculating R′

ij(t) gives a weight to Cij(t)

λ When calculating Rij(t) gives a weight to the previous
value of Rij(t − 1) and the current value of R′

ij(t)

l When using IRS to calculate Gij(t), defines how much
stretch is to be tolerated

The experiments were run on the PlanetLab overlay
testbed. The source was located on a host at our lab. We
set Dr (see Table 3 for a list of parameters and their defi-
nitions) to be 1 second. We determined this value exper-
imentally as we observed that in a non-malicious scenario
96% of nodes receive 99% of chunks within 1 second. Each
node is configured to obtain up to 15 in-neighbors and the
maximum number of out-neighbors is proportional to its
bandwidth. The source will obtain 30 out-neighbors.

We used overlay deployments of 300 nodes. Each ex-
periment lasted for 10 minutes. For each experiment we
varied the percentage of malicious nodes from 0 to 30%
and fixed the source’s streaming rate at 1 Mbps. Each ex-
periment was run for 10 times and the results were aver-
aged. Standard deviations are plotted where appropriate.
The malicious nodes joined at the beginning of the exper-
iment and stayed for the entire duration. Benign nodes
both join at the beginning of the experiment and also dur-
ing the experiment. We modeled the join times by using
a Poisson process and the participation time by a Pareto
distribution. The mean of the Poisson process was 3 and
the Pareto distribution is used with a shape parameter
of 1.42, giving a mean participation time of 300 seconds
and we also assume a minimum participation time of 90
seconds. The parameters have been used previously by
Bharambe et al. [59] and were motivated by traces of real
multicast systems [3] and Mbone sessions [60].

Choosing Parameters: For Local Reputation we by
reason set its parameters to appropriate values and vali-
dated them experimentally. We set Ts to be 0.7 to tolerate
transient network conditions. We note that Ts can be set

by the user, to the minimum quality threshold that he is
willing to tolerate. We set α to be 0.5 since we consider
data plane feedback to be more useful than control plane
feedback. We also conduct a sensitivity study of α in Sec-
tion 8. For nodes to evict malicious nodes that are both
suspicious and highly connected, the equation Td ≥ Ts−α
must hold. Therefore we set Td to be 0.2. We set λ to be
0.4 to give a greater weight to the history of the reputation
but also be able to change quickly if nodes consistently be-
have badly. We set the time period for the recalculation
of the scores to be every 3 seconds. For Local Reputation
with Data Delaying protection (LR-DD) we experimen-
tally set l to be 3. Therefore, the delay of the chunk must
be 3 times greater than the delay to the source before a
node is penalized.

7.4. Performance Metrics

We evaluate the effectiveness of the attacks and solu-
tions with the following metrics.
Goodput Ratio: This represents the percentage of useful
data a node received while in the overlay, averaged across
all nodes. We use it to measure the effects of churn on the
quality of the goodput. The higher the goodput ratio, the
higher the quality of the stream received.
Corruption Factor: This represents the percentage of
nodes in the neighbor set that are malicious. We use it
to measure the level of control an adversary has on the
neighbor set of a particular node. The higher the corrup-
tion factor, the more adversarial neighbors a node has.

8. Experimental Evaluation

In this section we experimentally show that the schemes
we proposed in Section 5 are able to effectively mitigate
attackers.

8.1. Robust Neighbor Selection

To give motivation to our Local Reputation (LR), we
first compare it to Least Performing Peer (LP) and No
Protection (NP). Malicious nodes perform data dropping,
source and neighbor selection attacks. As can be seen in
Figure 2(a) both NP and LP perform worse than LR. This
difference becomes more pronounced as the percentage of
malicious nodes increases. NP is ineffective simply because
nodes never change who their neighbors are, regardless of
their poor performance.

LP is not as effective as LR since a node never drops
all of the malicious nodes from its neighbor set. Further
investigation shows that for a node running LP the num-
ber of malicious nodes in its in-neighbor set decreases as
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Figure 2: Importance of peer protection.
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Figure 3: Importance of source and bootstrap protection.

some of the malicious nodes will be dropped. However,
there are still malicious nodes present in the in-neighbor
set because LP does not prevent the node from reconnect-
ing multiple times to the same malicious nodes. When the
node is running LR, it does not reconnect anymore to ma-
licious nodes since malicious behavior is captured in the
reputation score for those nodes.

Importance of considering graph connectivity:
We examine the contribution of the graph connectivity
score on LR and identify regimes in which its use is benefi-
cial. We compare the case when the reputation score com-
putation is based only on the data feedback (i.e. α = 0)
to the case when both data and graph connectivity are
considered (i.e. α = 1).

As we can see in Figure 2(b) when attackers drop 25%
or 75% of the data they were expected to deliver, the per-
formance does not change no matter the value of α. For
the case of 25% dropping, recall that a node i will only
calculate the graph connectivity score for a neighbor j if it
marks j as suspicious (i.e. Lij < Ts). When j drops 25%
of the data it will not be marked as suspicious since we use
a Ts value of 0.7, thus the graph connectivity score will not

be considered. In the case of 75% dropping, enough data
is dropped that the neighbor will be perceived as malicious
by its data score alone. Hence graph connectivity is most
useful in regimes where the amount of data dropped by a
malicious node is large enough to be marked as suspicious,
but not large enough to be interpreted as malicious by
their data scores alone. This is the case for 50% dropping.
In Figure 2(b), when attackers drop 50% of the data, LR
combining the two scores performs better than LR using
only data score. The information from the control plane
about the existence of a neighbor selection attacks helps
effectively identify malicious nodes.

We varied α even more to find values that give better
performance but we found that a value of 1 is sufficient
across all percentages of attackers.

8.2. Source Protection

While LR performs much better than other schemes,
the goodput ratio achieved is still far from satisfactory. We
believe this is because LR does not protect the streaming
source, as we explained in Section 5. Further investiga-
tion into the source’s performance confirms our hypothesis.
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While peers using LR expel all malicious nodes from their
in-neighbor set, the source’s out-neighbor set is almost full
of malicious nodes. This illustrates the importance of hav-
ing additional mechanisms to protect the source.

We next evaluate mechanisms that can be used to pro-
tect the source. When using Drop Periodically (DP) the
source will drop a node after it has been a neighbor for 1
minute. In these experiments malicious nodes again per-
form data dropping, source and neighbor selection attacks.
Figure 3(a) shows the results. The goodput ratio is sig-
nificantly raised for DP combined with LR (i.e. the curve
titled LR+DP). This is because DP effectively reduces the
corruption factor at the source to a value that is very close
to the percentage of malicious nodes in the overlay at all
times, for all settings.

Figure 3(a) also shows that DP alone is not sufficient.
This is not surprising, because DP protects only the source,
not the peers. This again highlights that solutions must
be employed at both the source and peers to achieve sat-
isfactory performance.

8.3. Rate-limiting Bootstrap

We now consider when malicious nodes also conduct a
bootstrap list pollution attack, along with the data drop-
ping, source, and neighbor selection attacks. We evaluate
the effectiveness of Rate-limiting Bootstrap (RB) in miti-
gating such attacks and compare it with Periodic Register
(PR). Two parameters influence the performance of RB :
the time period in which a node may register only once
to be considered as non-malicious (w) and the size of the
short list maintained by the bootstrap (k).

Selection of w: Taking into consideration the trade-
offs described in Section 5.4, we set w conservatively at
300 seconds. This value is much smaller than the typical
session length in P2P streaming systems, which is usually
in the order of tens of minutes [6, 61, 3]. For Periodic
Register (PR), we use a w value of 120 seconds to show
that even when sacrificing overhead for a more up-to-date
list and thus better security, rate-limiting schemes are still
preferred.

Selection of k: We experimentally determine the value
of k. We fixed the system solution to be LR+DP+RB and
varied the value of k. The malicious nodes are aware of
the solution and only register every w seconds in order not
to get themselves excluded from the bootstrap’s short list.
The malicious nodes all register at the same time. Note
that if they space out their registrations, the impact on
the bootstrap list would be diluted. In Figure 4(a) there
are four sets of bars each with a different k value, and two
bars in each set corresponding to the maximum and aver-
age corruption factor at the source. The figure shows that
as k increases, the maximum corruption factor decreases,
but the average corruption factor increases. This is be-
cause the smaller the k, the easier it is for the attacker
to flood the bootstrap’s short list in a burst, thus achiev-
ing a high corruption factor at the source. However, each
node will only remain on the list until k more nodes have

joined. Thus, the larger the k, the longer a malicious node
will stay on the list, resulting in a higher average corrup-
tion factor. From the figure we conclude that setting k at
50 is a good trade-off between having a large corruption
factor all the time and having a large spike in the corrup-
tion factor every w seconds. In the rest of our experiments
we set k to be 50.

Figure 3(b) shows the evaluation results. RB combined
with solutions for source and peers (i.e. the curve titled
LR+DP+RB) performs the best and mitigates the attack
across all malicious percentages. PR combined with other
solutions (i.e. LR+DP+PR) works equally well for small
percentage of attackers (up to 15%). For higher percent-
ages of attacker nodes, PR effectiveness decreases because
the scheme simply puts both benign and malicious nodes
on equal footing. Thus, while the bootstrap’s list of nodes
is very close to being up-to-date, it does not punish at-
tackers. On the other hand the RB solution is more ef-
fective for exactly this reason, if nodes register too fast
they are not made known to nodes who request a list of
peers. We also note that PR incurs a large overhead at the
bootstrap node as it requires all nodes to re-register with
the bootstrap node often. Lastly, both schemes perform
significantly better than NP, highlighting the importance
of having additional mechanisms to protect the bootstrap
node.

To gain more insight into these results, we also plot in
Figure 4(b) the corruption factor at the source for each
solution. Recall that DP at the source requires that the
source only obtains neighbors from the bootstrap node,
thus the degree of pollution at the bootstrap node directly
affects the corruption factor at the source. The figure
shows that the corruption factor is significantly lower with
the LR+DP+RB than other solutions, further confirming
its effectiveness.

8.4. Data Delaying

As evidenced by our analysis and experiments, attack-
ers will be thwarted as long as they continue to drop data.
To prolong the amount of time they can stay as neighbors
and thus do more damage, attackers will necessarily have
to actually give data to others. However, attackers are
motivated to make sure the data that is given out is as
useless as possible to benign nodes. Attackers can achieve
this by delaying the sending of data to the last possible
moment.

For the attack to succeed even though data is still be-
ing given away the attacker will need to make sure it has
a good strategy for only giving out data that will become
very common and not data that will remain rare. Attack-
ers obviously do not know the future, but can assume that
if no other benign nodes have the data then they should
not pass it on to others, but if some other benign nodes
do have the data, they can upload it to others.

To show how effective delaying is, we now run exper-
iments where malicious nodes conduct data delaying in-
stead of data dropping attacks. Malicious nodes also con-
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Figure 4: Evaluating the corruption factor in different scenarios.
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Figure 5: Peers running the local reputation scheme while attackers
conduct data delaying attacks.

duct source, neighbor selection and bootstrap list pollu-
tion attacks. We deploy the LR-DD and HM protection
schemes and show how well they mitigate attacks. For
HM we set the fraction f of nodes that the source must
get complaints for before it disconnects a node to be 30%.

We present the results in Figure 5, which demonstrate
that these attacks are effective in increasing damage done.
For example, when peers and source are just protected
with LR and DP, (i.e. the curve entitled LR+DP+RB)
nodes increasingly have worse performance as the frac-
tion of malicious nodes increases, culminating in only a
.68 goodput ratio when there are 30% malicious attack-
ers. As LR-DD and HM protection schemes are added
performance increases, effectively mitigating the attack.
LR-DD proves to be effective as most benign nodes re-
ceive data fairly quickly after the source sends it out, thus
malicious nodes delaying data are promptly removed from
in-neighbor sets. HM also outperforms DP as it is able to
actually identify malicious nodes who do not forward data
to others and disconnect them, rather than simply keeping
the fraction of malicious nodes low.

9. Conclusion

In this paper, we present one of the first efforts aimed
at systematically analyzing and addressing the vulnerabil-
ities of mesh-based P2P streaming systems to malicious
insider attacks. We consider both direct attacks on the
data plane, as well as attacks on the control plane which
could in turn lead to further disruption of data delivery.
These include data dropping and neighbor selection at-
tacks, as well as data delaying, which is a novel attack on
P2P streaming. We present a design for securing data de-
livery, of which a key component is a reputation scheme
that helps nodes identify malicious peers and build a ro-
bust neighbor set. Through detailed security analysis, we
show that our scheme is resistant to a variety of attacks
commonly associated with reputation schemes such as self-
promotion, slandering, and white-washing [39].

We present an extensive evaluation of our design through
experiments on PlanetLab. Our results show that (i) with-
out our solution, the data delivery can be seriously dis-
rupted by attacks exploiting the vulnerabilities we identi-
fied. For example, 15% malicious nodes caused the average
goodput ratio to decrease to less than 30%. (ii) Our so-
lution is effective in mitigating the attacks; it achieves an
average goodput ratio of more than 90% even when there
are 30% malicious nodes conducting data dropping attacks
and over 83% average goodput ratio when there are 30%
malicious nodes conducting data delaying attacks. (iii)
While each of the mechanisms we introduce can individu-
ally benefit the system, the solution is most effective when
all the mechanisms are combined.
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