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2.1 RF bandwidth restrictions on the applied phase. (a) Comparison of the
phase of an ideal time-lens array to a pure sinusoid with the same second-
order Taylor coefficient φ2 = d2φ/dt2 expanded about the peaks. The
sinusoid is only able to mimic the ideal phase around the maxima; the
quadratic approximation breaks down completely at the slope disconti-
nuities. (b) Calculated filtering of the ideal phase. Subjecting the ideal
parabolic phase profile to spectral filtering rounds off the discontinuity to
a point of zero chirp. This is evident even in a filter passing five harmon-
ics, an RF bandwidth difficult to obtain at fundamental frequencies of 10
GHz and beyond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Spatial analogue of temporal cloaking circuit. (a) Temporal ray diagram
highlighting the spatial equivalent of the experimental setup. ΦT repre-
sents the Talbot dispersion for DCF with dispersion constant β2. Owing
to the diffractive nature of the Talbot effect, temporal ray optics is not
strictly applicable, but we nonetheless include this ray diagram for vi-
sualization. (b) Corresponding simulated intensity distribution. Wide
cloaking windows of zero intensity appear at the temporal focus, nearing
the duration of the repetition period, Trep. (c) Temporal intensity slices at
specific locations in the circuit (from left to right): first grating, negative
lens array, event plane, positive lens array, and final grating. . . . . . . 11

2.3 Experimental setup of cloaking circuit. CW, continuous-wave input laser;
PM, phase modulator; CFBG, chirped fiber Bragg grating; SMF, single-
mode fibre; DCF, dispersion-compensating fiber; IM, intensity modulator;
AMP, erbium-doped fiber amplifier. . . . . . . . . . . . . . . . . . . . . 13

2.4 Characterization of cloaking circuit. (a) Comb spectrum at the event
plane, consisting of 16 spectral lines in the 10-dB bandwidth. (b) Corre-
sponding intensity autocorrelation, shown over one full temporal period.
The FWHM is 11.7 ps. (c) Spectrum at the output of the cloaking circuit,
when no event is applied. (d) Corresponding temporal output measured
on a photodetector, compared to the case when all phase modulators are
off. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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2.5 Principle of spectral filtering for cloak enhancement. Even with no event
present, cloak imperfections leave parasitic sidebands that are not fully
compensated. But if the event has a spectrum lying primarily within these
harmonics—as would be the case with pseudorandom data, for example—a
bandpass filter can be used to preferentially remove the remaining side-
bands without distorting the event itself. . . . . . . . . . . . . . . . . . 15

2.6 Cloaking of sinusoidal modulation. (a) Output spectrum when the phase
modulators are off and a sinusoid is applied to the intensity modulator. (b)
Spectrum when the cloak is on, demonstrating removal of the sidebands in
(a). Both spectra are normalized as in Fig. 2.4(c). (c) Corresponding tem-
poral output. When the cloak is turned on, the previously high-contrast
modulation is reduced to a flat line, hiding this event from an observer.
(d) Measurement of the temporal cloaking window. The fractional modu-
lation reaches one-half that in the uncloaked case at a detuning of 18 ps,
for a total double-ended cloaking window of 36 ps, or 46% of the temporal
period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Cloaking of data. (a) Temporal output when length 231−1 pseudorandom
data are applied to the intensity modulator, measured on a sampling os-
cilloscope. The clear transitions between high and low data levels present
when the cloak is off are completely removed when the phase modulators
are on. (b) Output for a particular sequence of ones and zeros. Although
the binary data specified on the bottom of the plot are clearly detected
when the cloak is off, the voltage swings indicative of bit transmission are
suppressed to a nearly flat line when the cloak is on. . . . . . . . . . . 18

2.8 Implementing a spatial Talbot cloak. (a) Experimental setup. A CW
laser at 1550 nm is sent through a telescope for beam expansion and
illuminates a 128-pixel SLM, programmed to impart sinusoidal transverse
phase. Through Talbot self-imaging, the beam forms an array of intensity
minima at LT/4 and then recovers a uniform distribution at LT/2, where
a camera is used to measure the intensity. An object located in one of the
field minima is ideally undectable by the camera. (b) Measured intensity
at LT/4 with no scattering object present but with the SLM programmed
for sinusoidal modulation, showing clearly the development of interference
fringes. (c) Intensity at LT/2. The orginally uniform intensity is recovered
as expected. (d) With the SLM programmed to flat phase and a wire
placed at LT/4, strong scattering is observed at LT/2. (e) But when
sinusoidal phase is applied, the presence of the wire is barely observable,
demonstrating Talbot-based cloaking. . . . . . . . . . . . . . . . . . . . 20
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3.1 Basic outline of improved temporal cloak. (a) Waveform progression for
multi-wavelength cloak. Blue and red lines denote the intensity in the
channels to be cloaked and to receive the data, respectively. Roman nu-
merals represent various points in the circuit: (I) input to first phase
modulator, (II) after quarter-Talbot dispersion, (III) at event plane just
prior to event modulation, (IV) at event plane immediately after mod-
ulation, (V) before compensating quarter-Talbot dispersion, and (VI) at
output. Only the red channel is impacted by the data modulation, which
is an alternating zero-one sequence in this example. (b) Experimental
setup. Boxes at the input and output show differences between the multi-
wavelength cloak (“WDM Experiment”) and data-as-input cloak (“Data
Experiment”). Blue fibers and Bragg gratings signify anomalous disper-
sion, whereas red represents normal dispersion. CFBG: chirped fiber
Bragg grating, SMF: single-mode fiber, DCF: dispersion-compensating
fiber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Experimental results for multi-wavelength cloak. (a) Optical spectrum
when the first two phase modulators are running. Colors indicate from
which input laser a given spectral line was primarily generated, with blue
representing the short-wavelength laser and red the long-wavelength one.
(b) Received output for the short-wavelength (blue) and long-wavelength
(red) demultiplexed channels when the event modulator is running and
all phase modulators are off. (c) Received signals when the cloak is on
and optimized to cloak the blue channel but transmit along the red. (d)
Corresponding waveforms when the cloak is instead aligned to transmit
data on the blue channel and cloak the red. . . . . . . . . . . . . . . . 28

3.3 Received signals for data-as-input experiment, when the cloak is off. (a)
Input data rate is two times less than the clock. (b) Four times. (c) Eight
times. (d) Sixteen times. In all cases, the high-speed event modulation at
12.11 GHz significantly corrupts the input data. . . . . . . . . . . . . . 29

3.4 Received signals for data-as-input experiment, when the cloak is on. (a)
Input data rate is two times less than the clock. (b) Four times. (c) Eight
times. (d) Sixteen times. Now the input sequences are fully recovered,
with clear data signals observed at the appropriate repetition rates. . . 30

3.5 BER test results. (a) Input data rate is one-eighth of the clock (1.51
Gb/s). (b) Data rate is one-sixteenth of the clock (757 Mb/s). Filled
symbols indicate measurement results, and lines correspond to best fits.
Error-free operation corresponds to a BER of 10−11, marked by solid black
lines; at our integration times, zero measured errors signify BERs ≤ 10−11

with 95% confidence [53]. . . . . . . . . . . . . . . . . . . . . . . . . . 31
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4.1 Basics of time-frequency entangled photons. (a) Schematic of SPDC gen-
eration process. Signal and idler frequencies must sum to that of the pump
to satisfy energy conservation. (b) Joint spectral correlations. (c) Joint
temporal correlations. Even though individual photons have a wide spread
of spectro-temporal content, they are highly correlated with their partner. 38

4.2 PPLN-based biphoton source. (a) Schematic of generation process. Bipho-
tons are created through spontaneous decay of monochromatic pump pho-
tons in a PPLN waveguide. After removing the residual pump light with
filters, the biphotons are coupled into optical fiber for subsequent manip-
ulation and characterization. (b) Typical optical spectrum of generated
SPDC photons, measured after the collimator in (a) at 250-GHz resolu-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 (a) Experimental setup for electronic coincidence experiments. The gen-
erated biphotons coupled into optical fiber are filtered by a pulse shaper,
with signal and idler photons sent to different output ports and detected on
separate single-photon counters. Correlations are determined with time-
tagging electronics. (b) Pulse-shaper transmittance for Hadamard codes.
Here code 8 is applied to the idler spectrum and code 30 to the signal.
(c) Coincidence rate as a function of signal-idler Hadamard codes, nor-
malized to idler detections. Only codes 2 through 40 are shown, as code 1
corresponds to full transmission. When the codes are matched, approxi-
mately twice as many coincidences are registered as when the codes differ,
confirming spectral entanglement. . . . . . . . . . . . . . . . . . . . . . 49

5.2 (a) Typical Franson interferometer. The signal and idler photons are sent
through MZIs with different phase shifts in the long arms: Φs for the signal
and Φi for idler. (b) Spectral transmittance and phase applied by pulse
shaper to emulate a Franson interferometer. Signal and idler photons are
distinguished by frequency and sent through spectral filters that are equiv-
alent to traversing MZIs. In addition to 2π jumps from wrapping the spec-
tral phase, π discontinuities also occur as the sinusoidal field transmission
function—the square of which gives the power transmittance—changes
sign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
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5.3 (a) Experimental coincidence rate for pulse-shaper Franson interferometer,
at matched MZI delays and with a 30-s integration time per point. The
detected coincidences show interference with the applied phase Φs + Φi,
possessing a visibility of 0.43. (b) Reduction in visibility as the MZI delays
are shifted from each other. The theoretical curve is scaled to match the
experimental visibility at zero mismatch, and error bars represent 95%
confidence intervals for the fit parameters. (c) Coincidence rate for pulse-
shaper interferometer with flat spectral phase, again at a measurement
time of 30-s per data point. The visibility is 0.45. . . . . . . . . . . . . 55

6.1 (a) Experimental setup for ultrafast coincidence detection. The biphotons
are manipulated with either DCF or a pulse shaper and coupled into a
second waveguide for upconversion. A single-photon counter detects the
number of SFG photons at ∼774 nm. The second collimator as well as the
detector are housed in a box to exclude stray light. (b) Measured detector
counts as a function of power coupled into the first waveguide, when DCF
is used. The log-log slope is 1.13. (c) Measured signal-idler temporal
correlation function with linear interpolants between data points; here the
pulse shaper is used to achieve zero net dispersion. The theoretical result
is given in the inset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Even-order dispersion cancellation. (a) Theoretical and (b) experimen-

tal results for second-order cancellation, using Φ
(2)
s = −Φ

(2)
i = −0.3 ps2.

Likewise, (c) theory and (d) experiment for fourth-order cancellation with

Φ
(4)
s = −Φ

(4)
i = −0.01 ps4. Error bars are omitted for clarity, but are

comparable to those in Fig. 6.1(c), and each curve consists of 100 points,
spaced at 100 fs each and joined by linear interpolation. “Signal dispersed”
and “idler dispersed” signify application of the specified phase to only one
of the two photons, whereas “both dispersed” represents application to
both. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 Odd-order dispersion cancellation. Cancellation of third-order dispersion
in (a) theory and (b) experiment, for the specific case of Φ

(3)
s = −Φ

(3)
i =

−0.05 ps3. (c) Theoretical and (d) experimental cancellation of fifth-order

dispersion, for Φ
(5)
s = −Φ

(5)
i = −0.01 ps5. The same considerations men-

tioned for Fig. 6.2 hold here as well. . . . . . . . . . . . . . . . . . . . 66
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6.4 Principle of biphoton spectral coding. (a) Encoding the biphoton. A
sequence of 0 and π phase shifts is applied to the signal half-spectrum
of a temporally narrow biphoton, which spreads the correlation function
in time and produces a null at τ = 0. (b) Decoding the biphoton. A
second code is applied to the idler half of the spectrum. If it matches
that used for encoding, the narrow correlation peak is recovered, while an
unmatched code instead leaves the correlation function in a new, but still
spread, state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
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Coincidence rate [s−1] for length-4 Hadamard codes and (b) for the equiv-
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from the degeneracy point, ω0. (c) Coincidence rate [s−1] for length-8
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6.7 Correlation doublet creation. The length-10 pattern, with 240-GHz chips,
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standard deviation of five 1-s measurements, dark counts are subtracted,
and linear interpolation is used to connect the measured points. . . . . 74

6.8 Amplitude filtering. (a) Signal spectrum measured after the pulse shaper
(with idler blocked). The nearly flat spectrum of Fig. 4.2(b) is converted
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6.9 Simulated Talbot carpets. (a) Theoretical temporal correlation as a func-
tion of applied dispersion, for our three-peak signal spectrum but with
infinitely narrow linewidth. Perfect revivals are observed at integer mul-
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6.15 Experiments with fixed pump. (a) Schematic of a fixed pump with shifts
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ABSTRACT

Lukens, Joseph M. Ph.D., Purdue University, August 2015. Novel Applications of
Photonic Signal Processing: Temporal Cloaking and Biphoton Pulse Shaping. Major
Professor: Andrew M. Weiner.

We experimentally demonstrate two innovative applications of photonic technolo-

gies previously solidified in the field of classical optical communications. In the first

application, we exploit electro-optic modulator technology to develop a novel “time

cloak,” a device which hides events in time by manipulating the flow of a prob-

ing light beam. Our temporal cloak is capable of masking high-speed optical data

from a receiver, greatly improving the feasibility of time cloaking and bringing such

exotic concepts to the verge of practical application. In the second specialization,

high-resolution Fourier-transform pulse shaping—perfected for multi-wavelength tele-

com networks—is applied to shape the correlations of entangled photon pairs, states

which have received considerable attention in nonlocal tests of quantum theory and in

quantum key distribution. Using nonlinear waveguides fabricated out of periodically

poled lithium niobate, we are able to demonstrate ultrafast coincidence detection with

record-high efficiency, which coupled with our pulse shaper allows us to realize for

the first time several capabilities in biphoton control, including high-order dispersion

cancellation, orthogonal spectral coding, correlation train generation, and tunable de-

lay control. Each of these experiments represents an important advance in quantum

state manipulation, with the potential to impact developments in quantum informa-

tion. And more generally, our work introducing telecommunication technology into

both temporal cloaking and biphoton control highlights the potential of such tools in

more nascent outgrowths of classical and quantum optics.
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1. INTRODUCTION

The field of optical communication has revolutionized the manner in which informa-

tion is transmitted across the globe, making the exchange of knowledge and ideas more

efficient than ever. Facilitated by mature laser technology and the exceptionally low

loss of silica fiber, modulation over the telecommunication band at 1550 nm is now the

preeminent means for long-haul data transmission, unmatched in speed and range.

And such high-speed communication has benefited greatly from the infusion of pho-

tonic technologies originally developed in ultrafast optics [1], the science and applica-

tion of lasers capable of producing subpicosecond—or even few-femtosecond—bursts

of light. For example, the basic arrangement for Fourier-transform pulse shaping [2,3],

which was first demonstrated on broadband laser pulses in the visible portion of the

spectrum [4], has been exploited in the development of wavelength-selective switches

and gain equalizers for infrared optical communication [5]. Likewise, optical frequency

combs—coherent light sources consisting of a discrete set of frequency components—

have forged their way into optical communications. Whereas self-referenced mode-

locked lasers have received considerable attention as comb sources, particularly for

ultraprecise frequency metrology [6, 7], in other applications such as optical commu-

nication and arbitrary waveform generation [8], better-suited combs can be obtained

through straightforward electro-optic modulation of a single-frequency laser beam, for

in these functions simplicity and high repetition rates prove more valuable than ab-

solute frequency stability. Such sources require only off-the-shelf telecommunication

components and have found use in areas ranging from line-by-line pulse shaping [9]

to radio-frequency (RF) photonic filters [10].

Notwithstanding the fervent research which continues to be directed toward ad-

vancing and improving both electro-optic combs and telecom-compatible pulse shap-

ing, these technologies have reached a level of maturity at which they are ripe for
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appropriation by other specializations of optical physics; no longer need they be clas-

sified solely as investigational topics, for they now can be viewed also as tools to drive

advances in new fields. In this dissertation, we will describe experimental work in two

distinct areas aimed to do precisely that: extend photonic technologies to regimes of

physics where they have either been underutilized or absent altogether. In the first

case, we will discuss the application and inversion of electro-optic frequency-comb

generation to form a “time cloak” that is capable of hiding high-speed optical data

from a receiver. And in the second portion, telecom pulse-shaping techniques will

be used to shape the correlations of entangled photon pairs (“biphotons” for short),

nonclassical light which is of great interest in both fundamental tests of quantum

mechanics and quantum key distribution (QKD).

This dissertation is organized as follows. In Chapter 2 we describe in detail our

high-speed temporal cloak, from theory to experimental implementation, followed by

further improvements relevant to optical communications in Chapter 3. Chapter 4

then tackles the quantum optical formalism necessary describe our experiments in

biphoton pulse shaping. Chapters 5 and 6 cover biphoton experiments with elec-

tronic coincidence detection and ultrafast biphoton sum-frequency generation (SFG),

respectively. Finally, in Chapter 7 we introduce key areas we envision for future work

in both time cloaking and biphoton pulse shaping.
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2. TEMPORAL CLOAKING

2.1 Background

The origin of temporal cloaking can actually be traced to recent progress in spatial

cloaks. Once relegated to the realm of science fiction, such invisibility cloaks have

now risen to the forefront of scientific research, thanks to the development of so-called

“metamaterials”—artificially engineered media with exotic properties unattainable in

nature, including negative refractive index. Veselago predicted as early as 1968 that

a medium with simultaneously negative permeability and permittivity would display

strange behavior, such as negative refraction and backward phase velocity [12], but

it was not until 1999 that it finally became possible to realize such a medium, when

Pendry et al. proposed resonant structures capable of yielding an effective negative

permeability at microwave frequencies [13]; the first demonstration of a negative-index

medium followed in 2000 [14]. Yet the potential of metamaterials was soon shown to

extend well beyond just negative refraction to even spatial invisibility cloaks [15–17],

spawning an explosion of research which continues to progress at an ever-growing

pace [18–24]. It was out of this backdrop that the first proposal for a space-time cloak

emerged [25], based on the simple idea that, just as a spatially varying refractive index

can bend light around a point in space, a time-varying index could be used to open

up and close an intensity gap in time, thereby preventing the beam from interacting

with—and therefore detecting—some temporal event. By combining the two, then, it

is possible to at least envision a theoretical space-time cloak that hides events rather

than just objects [26, 27].

Although a full space-time cloak has yet to be realized, Fridman et al. have

demonstrated a temporal cloak which prevents a nonlinear interaction at a single

The key results of this chapter have been published in [11].
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point in optical fiber [28]. The principle of the cloak’s operation is based on the con-

cept of space-time duality, the mathematical equivalence between paraxial diffraction

and narrowband dispersion [29,30]. Since space-time duality provides the major the-

oretical underpinnings for the cloak we have constructed as well, it is profitable at

this point to consider its origin and implications in detail. We therefore introduce

the notation that will be employed throughout the rest of this dissertation. In all

of the described experiments, polarization and transverse spatial degrees of freedom

can be neglected, and so we consider an electric field that is a function only of the

longitudinal distance z and time t, expressed as

E(z, t) = E(+)(z, t) + E(−)(z, t), (2.1)

with E(±)(z, t) representing the positive and negative frequency components of the

real field. That is,

E(+)(z, t) =

∫ ∞

0

dω Ẽ(z, ω)e−iωt, (2.2)

and

E(−)(z, t) =
[
E(+)(z, t)

]∗
, (2.3)

where Ẽ(z, ω) is the Fourier transform of the real field E(z, t). (The usefulness of the

± formalism will become evident in the extension later to quantum optics.) After

Haus [31], we express Ẽ(z, ω) in terms of a baseband envelope A(z,Ω), slowly varying

in both space and time:

Ẽ(z, ω) =

⎧⎪⎨⎪⎩A(z, ω − ω0)e
iβ0z ; ω > 0

A∗(z,−ω + ω0)e
−iβ0z ; ω < 0,

(2.4)

where β0 = β(ω0) is the propagation constant evaluated at ω = ω0, and we as-

sume that A(z,−ω0) = 0 (i.e., that the optical bandwidth does not extend to zero

frequency). As derived in [1], the spectrum Ẽ(z, ω) must satisfy the equation[
∂2

∂z2
+ β2(ω)

]
Ẽ(z, ω) = 0 (2.5)

in a linear medium, which is valid for both free-space and waveguide transmission. In

the latter case, the propagation constant β(ω) is determined by the transverse field
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distribution; since the primary guiding structure we use is standard optical fiber, we

can take β(ω) as given and discount any transverse dependence. Considering the case

ω = ω0 + Ω, we therefore obtain the following equation for A(z,Ω):

∂2A

∂z2
+ 2iβ0

∂A

∂z
+
[
β2(ω0 + Ω)− β2

0

]
A = 0. (2.6)

We now invoke the slowly varying envelope approximations in space, to neglect the

term ∂2A/∂z2, and in time, to write β0 + β(ω) ≈ 2β0, leaving

2iβ0
∂A

∂z
+ 2β0 [β(ω0 + Ω)− β0]A = 0. (2.7)

Finally, continuing to exploit the narrowband assumption, we express β as the Taylor

expansion β(ω0 + Ω) = β0 + β1Ω + β2Ω
2/2. Keeping up to second order in Ω thus

simplifies finally to
∂A

∂z
− iβ1Ω =

iβ2Ω
2

2
A, (2.8)

which when inverse Fourier transformed becomes

∂a

∂z
+ β1

∂a

∂t
= −iβ2

2

∂2a

∂t2
, (2.9)

where a(z, t) =
∫
dΩA(z,Ω)e−iωt. The β1 term simply produces an overall time delay

at each position z, so we can remove it by defining a retarded time variable via the

transformation t− β1z → t, z → z:

∂a

∂z
= −iβ2

2

∂2a

∂t2
. (2.10)

This equation describes the linear field evolution for both our temporal cloak and that

of [28]. And a remarkable result is found if we compare this propagation equation to

paraxial spatial propagation of a monochromatic field. For example, if we now take

the electric field to be

E(+)(x, z, t) = u(x, z)ei(kz−ω0t), (2.11)

where k = n(ω0)ω0/c, and we impose the paraxial approximation, a similar calculation

yields [31]
∂u

∂z
=

i

2k

∂2u

∂x2
. (2.12)
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With the identifications a ↔ u, t ↔ x, and β2 ↔ −1/k, the equations of motion

for both narrowband dispersion [Eq. (2.10)] and paraxial diffraction [Eq. (2.12)]

are identical, implying a one-to-one relationship between physically distinct phenom-

ena associated with either approximation [30]. For example, the well-known result

that parabolic phase applied by a thin lens can be used to focus a light beam in

space is readily extended to temporal optics, for quadratic temporal phase followed

by a properly chosen dispersive medium can compress optical waveforms in time [29].

Exploiting this analogy, Fridman et al. [28] constructed a “split-time” lens which ap-

plied quadratic temporal phase with a sharp slope discontinuity to a continuous-wave

(CW) input probe, analogous to sending a planar wave between two spatial lenses

connected at the tips. Then by propagating the modulated field through optical fiber

with dispersion chosen to satisfy the temporal imaging condition, they generated a

temporal intensity gap, during which an ultrafast pump beam could not interact with

the probe. Thereafter the beam traversed fiber with the opposite sign of dispersion,

closing up the intensity hole, and was modulated by a second, negative split-time

lens to remove the residual temporal phase, leaving an output ideally identical to the

original CW input. In this way, the pump beam (the event) was cloaked from the

observer, for the probe designed to interact with it was unmodified at the output,

thereby giving the deceptive impression it was absent completely.

These seminal results demonstrated that time cloaking could indeed be imple-

mented in practice; however, this cloak operated at the pedestrian repetition rate of

41 kHz and generated a cloaking window equal to only about 10−4% of the temporal

period [28]. Both the low frequency and fractionally small cloaking window disqualify

such a cloak from many applications in high-speed optical communications, in which

data are transmitted at gigahertz rates and encompass a large fraction of the total

period. For this reason, we have worked to develop a new temporal cloak thoroughly

compatible with optical communications and capable of hiding high-speed data from

a receiver, bringing the temporal cloak to the verge of practical application through

the use of optical frequency-comb technology.



7

2.2 Building the Telecom Temporal Cloak

The time lenses in the first temporal cloak relied on nonlinear mixing of the CW

probe with a strong pulsed laser to generate the desired phase [28]. Yet although time

lenses based on such parametric interactions can produce large temporal chirps [32,

33], the requirements of high-power pulsed lasers and complicated optics make them

ill-suited for high-speed telecom applications. Instead, electro-optic phase modulators

prove more convenient; already common in optical communications—and therefore

commercially available—phase modulators offer high RF bandwidth and linear optical

operation, requiring only a single electrical input which can be readily synchronized to

a global system clock [34]. Nevertheless, the sinusoidal voltages which are typically,

and most conveniently, employed to drive these components yield temporal phase

modulation that is only approximately quadratic over a portion of the period, meaning

that input waveforms which extend beyond this window suffer from severe temporal

aberrations [35], analogous to the wavefront distortions induced by imperfect spatial

lenses in Fourier optics. Moreover, the nature of the split-time lens requires that the

parabolic approximation remain valid all the way to the edge of the temporal period,

for it is precisely this sharp chirp discontinuity which permits the formation of a

temporal hole. Figure 2.1(a) highlights this situation, comparing the phase profile of

an ideal array of split-time lenses to that of a sinusoid with the same quadratic phase

coefficient. The sinusoid is wholly unable to reproduce the slope discontinuity, and

even if we were to employ an arbitrary waveform generator to drive the modulator

with a signal more accurately reproducing a parabola, limited RF bandwidth still

precludes realization of the discontinuity; as shown in Fig. 2.1(b), keeping even up to

five harmonics of the ideal signal fails to replicate the discontinuity, yielding instead

a smoothed, zero-slope region in its wake. For the goal of high-speed communication

at the limits of available RF bandwidth, such a requirement is impossible to satisfy,

and therefore a substitute for the split-time lens is necessary in order to attain a

high-speed temporal cloak.
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Fig. 2.1. RF bandwidth restrictions on the applied phase. (a) Com-
parison of the phase of an ideal time-lens array to a pure sinusoid with
the same second-order Taylor coefficient φ2 = d2φ/dt2 expanded about
the peaks. The sinusoid is only able to mimic the ideal phase around
the maxima; the quadratic approximation breaks down completely at the
slope discontinuities. (b) Calculated filtering of the ideal phase. Subject-
ing the ideal parabolic phase profile to spectral filtering rounds off the
discontinuity to a point of zero chirp. This is evident even in a filter pass-
ing five harmonics, an RF bandwidth difficult to obtain at fundamental
frequencies of 10 GHz and beyond.

It is at this point that we exploit previous work in the generation of frequency

combs through electro-optic modulation of CW light. In this application, a common

objective is the conversion of CW light into a train of smooth, high-extinction pulses.

This is precisely the goal of a temporal cloak, for in this case we wish to create re-

gions of zero intensity within an initially uniform-intensity waveform. One successful

method is based on the temporal version of the Talbot effect. Observed as early as

1836 [36], the spatial Talbot self-imaging phenomenon describes near-field diffraction

of a plane wave off of a periodic grating, in which the image of the grating is repeated

at discrete distances [37, 38]. A temporal analogue [39] follows from space-time du-

ality. Consider an input optical spectrum Ain(Ω) with a temporal period 2π/ωm,

described as a series of delta functions:

Ain(Ω) =
∑
p

cpδ(Ω− pωm). (2.13)
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Propagating this field through a second-order dispersive medium of length L and

dispersion constant β2 gives the output Aout(Ω) = Ain(Ω)e
iβ2LΩ2/2, which in this case

becomes

Aout(Ω) =
∑
p

cpδ(Ω− pωm)e
iβ2Lp2ω2

m/2. (2.14)

Therefore we see that, because of the field’s periodicity, whenever the quantity β2Lω
2
m/2

is equal to an integer multiple of 2π, Aout(Ω) = Ain(Ω) and perfect reconstruction is

obtained. Thus we define the fundamental Talbot length LT as

LT =
4π

|β2|ω2
m

; (2.15)

propagation through any integer multiple of this distance yields perfect replication of

the input.

Although mathematically more complicated, fractional Talbot distances can also

produce interesting waveforms, and in fact it is this fractional Talbot effect that is

exploited in pulse generation. Specifically, we consider an input CW envelope that is

sinusoidally phase modulated at an index of π/4:

ain(t) = e−iπ
4
cosωmt, (2.16)

where the particular time origin is chosen for compactness of the final result. The

field aout(t) after propagation through LT/4 can be obtained analytically, although

the derivation is too lengthy to reproduce here; see Appendix A for details. Assuming

for definiteness that β2 > 0 (this only impacts the overall phase), we arrive at the

simple result

aout(t) =
√
2 cos

(
π

2
sin2 ωmt

2

)
, (2.17)

which represents roughly 50%-duty-cycle flattop pulses separated by regions of zero

intensity. Therefore, through temporal interference based on the Talbot effect, it is

possible to convert a CW waveform into pulses with wide cloaking windows simply

through sinusoidal phase modulation followed by dispersion—no split-time lens or ex-

otic modulation is required. These cloaking windows represent a significant duration

of the temporal period, orders of magnitude longer than in the first temporal cloak,
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which we experimentally confirm in the next section. To widen the cloaking window

even further, we can subsequently apply strong sinusoidal phase modulation to this

pulse train; since the optical energy now lies primarily within the quadratic cusps of

the sinusoid, minimal aberrations are incurred in the temporal imaging process, and

so we can compress the pulses further through standard time-lensing procedures. This

basic setup—phase modulation, quarter-Talbot dispersion, more phase modulation,

and dispersion for pulse compression—has been explored for pulse generation [40–42],

and we now extend it to high-speed temporal cloaking. Moreover, since phase modu-

lation and dispersion introduce only linear insertion loss, they can be inverted through

complementary dispersion and modulation. This crucial quality provides a means for

subsequently closing up the temporal gap to produce a full cloak, in which the output

shows no sign of additional data modulation and is ideally identical to the input.

The spatial analogue of our complete temporal cloak is presented in Fig. 2.2(a).

The CW input followed by sinusoidal phase modulation is equivalent to a plane wave

impinging on a sinusoidal phase grating, which through the Talbot effect is converted

into a pattern of maxima and minima with unity visibility. The negative lens array

represents the next round of sinusoidal phase modulation, which when followed by

another dispersive medium focuses the optical energy to narrow spikes, between which

any interactions (events) have no impact on the optical field. The remainder of the

cloak then consists of the complementary elements (dispersion and phase modulation)

required to fill in the temporal gaps and produce an output identical to the input, with

no trace of the events’ presence. We point out that through space-time duality, the

spatial analogue to the temporal cloak requires exotic negative-index media to undo

diffraction through positive-index media; on the other hand, optical fiber with both

positive and negative dispersion is readily available, making the temporal version we

implement realizable with standard commercial components. Figure 2.2(b) provides

the numerically simulated intensity distribution corresponding to the cartoon in Fig.

2.2(a). Sharp concentration of the probe waveform is obtained, with cloaked regions of

the same order in duration as the temporal period itself, made possible by interference
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Fig. 2.2. Spatial analogue of temporal cloaking circuit. (a) Temporal
ray diagram highlighting the spatial equivalent of the experimental setup.
ΦT represents the Talbot dispersion for DCF with dispersion constant β2.
Owing to the diffractive nature of the Talbot effect, temporal ray optics
is not strictly applicable, but we nonetheless include this ray diagram for
visualization. (b) Corresponding simulated intensity distribution. Wide
cloaking windows of zero intensity appear at the temporal focus, nearing
the duration of the repetition period, Trep. (c) Temporal intensity slices at
specific locations in the circuit (from left to right): first grating, negative
lens array, event plane, positive lens array, and final grating.

through the Talbot effect. Finally, Fig. 2.2(c) shows intensity slices at various points

throughout the cloaking circuit; high-extinction flattop pulses are evident after the

quarter-Talbot dispersion, with intense and narrower pulses at the event plane. This

basic arrangement is what we employ in our cloaking experiments, with different

excitations examined as the event to cloak.
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2.3 Experimental Realization

The full experimental setup is presented in Fig. 2.3. Operating at a global clock

rate of 12.7 GHz, our input is a CW fiber laser (Koheras AdjustiK) at ∼1542 nm.

The first phase modulator and chirped fiber Bragg grating (CFBG) generate flattop

pulses, which are then modified by another phase modulator operated an index of

about 2π, limited by the maximum allowable input RF power. The experimentally

generated frequency comb is shown in Fig. 2.4(a), possessing 16 lines in the 10-dB

bandwidth. Temporal compression of this frequency comb is then achieved with ∼1

km of Corning SMF-28e single-mode fiber (SMF); Fig. 2.4(b) displays the measured

temporal autocorrelation of the probe field directly after this fiber link. The full-

width at half-maximum (FWHM) of 11.7 ps represents only about 15% of the RF

period, indicating the possibility for fractionally wide cloak durations. These pulses

are next sent through an intensity modulator, whose function is to apply the event

to be cloaked; we consider both sinusoidal intensity modulation and pseudorandom

data. The succeeding −17-ps/nm dispersion-compensating fiber (DCF), phase mod-

ulators, and CFBG return the field to its original form, with erbium-doped fiber

amplifiers employed to compensate for overall insertion loss. An additional DCF link

is appended to the end of the setup, in order to permit undistorted data transmission

when the cloak is turned off. In other words, with no voltage applied to the phase

modulators, we want the event modulation to appear unscathed at the output, as

if the cloak were absent completely—essentially “turning off” the temporal cloak.

This requires that approximately zero net dispersion be present after the event plane,

thereby necessitating the additional link. And since when the cloak is on, ideally

a single-frequency field is input into the final DCF module, negligible distortion is

induced when the phase modulators are operating. Finally, although omitted from

Fig. 2.3, RF phase shifters are also utilized on four of the five modulators to ensure

temporal synchronization.
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Fig. 2.3. Experimental setup of cloaking circuit. CW, continuous-wave
input laser; PM, phase modulator; CFBG, chirped fiber Bragg grating;
SMF, single-mode fibre; DCF, dispersion-compensating fiber; IM, inten-
sity modulator; AMP, erbium-doped fiber amplifier.

We characterize cloak performance by splitting the output, sending one portion

to an optical spectrum analyzer and the other to a 12.3-Gb/s photoreceiver (Agere

2560A-C02). We employ a photodetector with limited bandwidth for the purposes of

cloak enhancement. Ostensibly one might regard such filtering as breaking the rules,

for indeed a sufficiently narrowband filter can convert any field into a monochromatic

waveform—this is not a cloak. However, in our case, the filtering is intentionally

designed to leave the event intact, only impacting sidebands introduced by the cloak

itself. As evident in Fig. 2.4(a), the cloak adds many spectral components to the

input field, and so any mismatch between complementary phase modulators can leave

residual energy extending out to several harmonics. On the other hand, the event

to be cloaked (such as sinusoidal or pseudorandom modulation) could be relatively

narrowband, producing minimal spectral spreading and lying primarily within the

first-order sidebands. Figure 2.5 provides a schematic of this concept; since the un-

wanted harmonics—due to cloak imperfections—reside outside of the event passband

itself, it is therefore possible to preferentially filter them out while leaving the event
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Fig. 2.4. Characterization of cloaking circuit. (a) Comb spectrum at
the event plane, consisting of 16 spectral lines in the 10-dB bandwidth.
(b) Corresponding intensity autocorrelation, shown over one full tempo-
ral period. The FWHM is 11.7 ps. (c) Spectrum at the output of the
cloaking circuit, when no event is applied. (d) Corresponding temporal
output measured on a photodetector, compared to the case when all phase
modulators are off.

untouched. Thus, when the cloak is turned off, the filter allows the event to be reg-

istered undistorted at the output, whereas when the cloak is on, the filter merely

cleans up cloak performance. Returning to experiment, with no event applied the

measured output spectrum and received electrical signal are presented in Figs. 2.4(c)

and (d). The sidebands present after the second phase modulator are suppressed by

about 20 dB, leaving a single-frequency output, and the temporal output is nearly

flat, albeit with small residual modulation resulting from imperfections in the cloak.

These results demonstrate the ability to generate a broadband, smoothly compressed

pulse train and then reverse the process to reobtain the monochromatic input field.



15

Fig. 5 

Cloak Spectrum, 

No Event 

Event Spectrum, 

No Cloak 

Bandpass Filter 

Unwanted Harmonics 

from Periodic Cloak 

S
p
ec

tr
a
l 
P

o
w

er
 

ω 

Fig. 2.5. Principle of spectral filtering for cloak enhancement. Even with
no event present, cloak imperfections leave parasitic sidebands that are
not fully compensated. But if the event has a spectrum lying primarily
within these harmonics—as would be the case with pseudorandom data,
for example—a bandpass filter can be used to preferentially remove the
remaining sidebands without distorting the event itself.

The capacity to cloak an optical event is first examined with the clock signal ap-

plied directly to the intensity modulator, which yields high-contrast sinusoidal mod-

ulation when no cloak is present. With the phase modulators turned off, the output

spectrum shows two strong sidebands [Fig. 2.6(a)], which are completely removed

when the cloak is turned on [Fig. 2.6(b)]. Likewise, the temporal output consists

of high-contrast sinusoidal modulation when the cloak is off, reducing to a nearly

flat line when the cloak is operating, as shown in Fig. 2.6(c). The cloak is able to

completely mask the presence of the intensity modulation, an event which comprises

a significant fraction of the temporal period. For a more quantitative measure of

this defining metric, the cloaking window, we temporally detune this sinusoidal event

from the optimum point at which the peaks align with the compressed probe pulses,

introducing modulation at the output. By measuring this modulation as a function

of the time shift, we are able to arrive at an experimental assessment of the cloak-

ing window’s duration. The results for this test are presented in Fig. 2.6(d). The

root-mean-square (RMS) output fluctuation, normalized to the mean, is plotted as
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a function of the temporal detuning, alongside theoretical predictions and the value

when the cloak is absent. Defining the cloaking window as the time shift at which

this modulation equals one-half that in the uncloaked case, we find (accounting for

negative detuning as well) a value of 36 ps, or 46% of the temporal period, which

represents a conservative estimate since the sinusoidal perturbation has a large dura-

tion in itself. It is interesting that previous work in metamaterial cloaking arrays [43]

using tapered gold-coated waveguides [44] achieved spatial cloaking over roughly 20%

of the two-dimensional surface, comparable to the value we have obtained with our

temporal cloak. And whereas the previous temporal cloak [28] operated on essen-

tially isolated events, ours is truly periodic; indeed, the Talbot effect we exploit relies

on precisely such periodicity to generate time holes which encompass such a large

fraction of the temporal period. This wide cloaking window coupled with the multi-

gigahertz repetition rate finally opens the door for temporal cloaking of high-speed

optical data.

Therefore we next examine data applied to the intensity modulator, choosing an

inverted (or dark) return-to-zero (RZ) modulation format. This ensures that the

transmission function returns to unity during some fixed fraction of each bit period,

providing temporal regions through which the compressed probe pulses can pass,

with the binary data applied during the cloaked regions. We utilize a bit-error-ratio

(BER) tester (Agilent N4901B) to create a non-return-to-zero (NRZ) binary sequence,

which is then converted to inverted return-to-zero format by a high-speed logic circuit

(Hittite HMC706LC3C) and used to drive the intensity modulator. The temporal

outputs measured on a sampling oscilloscope for length 231 − 1 pseudorandom data

[Fig. 2.7(a)] and for a specific sequence of ones and zeros [Fig. 2.7(b)] do indeed

demonstrate successful data cloaking. When the cloak is turned off, both cases show

clear voltage transitions indicative of error-free transmission, but when the cloak is

on, the output is nearly flat, completely hiding the data signal. Our experiments

thus extend temporal cloaking to the realm of practical application, for consideration
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Fig. 2.6. Cloaking of sinusoidal modulation. (a) Output spectrum when
the phase modulators are off and a sinusoid is applied to the intensity
modulator. (b) Spectrum when the cloak is on, demonstrating removal
of the sidebands in (a). Both spectra are normalized as in Fig. 2.4(c).
(c) Corresponding temporal output. When the cloak is turned on, the
previously high-contrast modulation is reduced to a flat line, hiding this
event from an observer. (d) Measurement of the temporal cloaking win-
dow. The fractional modulation reaches one-half that in the uncloaked
case at a detuning of 18 ps, for a total double-ended cloaking window of
36 ps, or 46% of the temporal period.

in high-speed telecommunications and with implications for secure communication in

general.

2.4 Talbot Cloaking

Additionally, from a more general perspective, our results reveal a novel way

to apply the Talbot effect: as a cloak in either space or time. Although the full
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Fig. 2.7. Cloaking of data. (a) Temporal output when length 231 − 1
pseudorandom data are applied to the intensity modulator, measured on
a sampling oscilloscope. The clear transitions between high and low data
levels present when the cloak is off are completely removed when the
phase modulators are on. (b) Output for a particular sequence of ones
and zeros. Although the binary data specified on the bottom of the plot
are clearly detected when the cloak is off, the voltage swings indicative of
bit transmission are suppressed to a nearly flat line when the cloak is on.

cloak we have demonstrated utilizes time lensing and optical fiber to yield optimum

performance, it would be possible to implement a simpler cloak based solely on Talbot

self-imaging, for the holes that form after traversing the quarter-Talbot dispersion

will naturally close themselves up on further propagation to the half-Talbot plane.

What is especially interesting is that the spatial analogue of this simplified Talbot

cloak—which consists of a single sign of dispersion—could then be realized in a simple

uniform medium, requiring no negative-index materials.

In order to reinforce the connection between our temporal Talbot cloak and its

analogue from space-time duality, we have constructed a spatial arrangement which

highlights the key characteristics of this simplified Talbot cloak. The experimental

setup is given in Fig. 2.8(a). A monochromatic C-band laser is emitted into free space

and beam expanded so that it impinges on all 128 pixels of a spatial light modulator

(SLM). On this device is programmed a sinusoidal phase mask with an amplitude of

π/4 and 8 pixels per period, producing the spatial transmission grating of Fig. 2.2(a).
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Based on device specifications, the spatial period is 800 µm, giving quarter- and half-

Talbot distances in air of approximately 21 and 42 cm, respectively, for 1550-nm light.

The measured intensity distribution at the quarter-Talbot plane [Fig. 2.8(b)] shows

clearly the interference maxima and minima expected from theory, and a uniform-

intensity field is indeed recovered at the half-Talbot mark [Fig. 2.8(c)]. For true

phase and amplitude reconstruction, it would be necessary to place an additional SLM

at the half-Talbot plane in order to remove the residual sinusoidal phase; however,

in this simple experiment, we focus only on the intensity and do not tackle the

complications associated with aligning two independent SLMs. As the object to

cloak, we place an optical fiber (125-µm diameter) vertically in the quarter-Talbot

plane within a null of the probing field and examine the intensity distribution at the

half-Talbot plane. As shown in Fig. 2.8(d), when the SLM is programmed to flat

phase, the fiber induces significant scattering, producing a sharp intensity gap in the

measured field. But when the SLM is programmed with the sinusoidal phase specified

previously, the output shows virtually no sign of the fiber whatsoever [Fig. 2.8(e)];

the obstruction is cloaked. Admittedly, the practical utility of this bulky cloak is

doubtful, although other simplified spatial cloaks have recently received attention in

the literature [45]. Yet notwithstanding questions of usefulness, our spatial Talbot

cloak succeeds in bringing to light the unique insights of space-time duality, and we

hope further exploration of the Talbot effect in both space and time will encourage

advances in the field of optical cloaking.
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Fig. 2.8. Implementing a spatial Talbot cloak. (a) Experimental setup.
A CW laser at 1550 nm is sent through a telescope for beam expansion and
illuminates a 128-pixel SLM, programmed to impart sinusoidal transverse
phase. Through Talbot self-imaging, the beam forms an array of intensity
minima at LT/4 and then recovers a uniform distribution at LT/2, where
a camera is used to measure the intensity. An object located in one of the
field minima is ideally undectable by the camera. (b) Measured intensity
at LT/4 with no scattering object present but with the SLM programmed
for sinusoidal modulation, showing clearly the development of interference
fringes. (c) Intensity at LT/2. The orginally uniform intensity is recovered
as expected. (d) With the SLM programmed to flat phase and a wire
placed at LT/4, strong scattering is observed at LT/2. (e) But when
sinusoidal phase is applied, the presence of the wire is barely observable,
demonstrating Talbot-based cloaking.
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3. TEMPORAL CLOAKING IMPROVEMENTS FOR

OPTICAL COMMUNICATION

3.1 Overview

The temporal cloak that we have demonstrated, while providing monumental

performance gains, still offers room for improvement in several aspects. In this chap-

ter, we summarize additional experiments which realize significant enhancements over

the cloak described in Section 2.3. Specifically, we report modifications offering the

new capability not only to hide optical data, but also to concurrently transmit it

along another wavelength channel for subsequent readout, masking the information

from one observer while directing it to another. Moreover, our new cloak succeeds

in passing modulated data unscathed through a scrambling event, providing a new

form of tampering resistance. Both examples launch a paradigm shift in temporal

cloaking: instead of using time cloaks primarily to disrupt communication, we show

how they can also improve data transmission, in turn greatly widening the range of

possible applications in telecommunications.

3.2 The Improved Temporal Cloak

The previous experiments on time cloaking (described in Chapter 2 and work

at Cornell [28]) exhibit the salient feature of a temporal cloak: the ability to hide

the presence of some event from a probe that without the cloak would have been

significantly modified. Accordingly, the event is effectively erased from the “history”

recorded by the probe field [25, 26]. Yet one naturally could desire a more shrewd

arrangement in which the event, while hidden from one optical beam, is perfectly

The results of this chapter have been published in [46].
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visible to another probe, granting a desired recipient access to the history while

cloaking it from an adversary. Such a feature is particularly suitable for optical

communications, where the histories are streams of digital data which one may wish

to secretly send to a distant party. Another restriction of the previous temporal

cloaks is the limitation to continuous-wave input probe fields. Indeed, such fields do

represent excellent test cases; possessing constant intensity over all time, they have no

natural gaps in which events could take place and thus must be carefully manipulated

to produce and close temporal holes. But of course it would be profitable to explore

cloaking potential with non-continuous-wave inputs as well, both to examine the

limits of current arrangements and explore possibilities for enhanced capabilities.

The new experiments address both of the previously mentioned shortcomings.

First, we demonstrate a multi-wavelength (or WDM) cloak in which optical data are

hidden from the probe at one of the input frequencies but accurately transmitted along

another wavelength. Second, we consider non-continuous-wave input fields which

consist of pseudorandom modulation, obtaining faithful transmission of this data even

when subjected to high-speed interference from the event; in this fashion, the cloak

furnishes anti-tampering capabilities, removing the impact of destructive modulation.

These additions herald a fundamental change in how such cloaks can be viewed,

for whereas previous time cloaks only prevented an observer from discovering the

event, our new implementation reveals how time cloaks can be exploited to selectively

transmit data as well. Considering the practical view that the most probable long-

term applications of temporal cloaks will focus on improving current communication

systems (e.g., as in [47]) rather than disrupting them, our results represent a key step

forward.

In order to transition toward the first goal, a multi-wavelength cloak, we once

again invoke space-time duality by drawing on a variation of Talbot interference,

the so-called Lau effect [37, 48, 49]. Whereas the basic Talbot phenomenon requires

a spatially coherent beam, the Lau effect considers instead a spatially incoherent

source illuminating two gratings. Narrow slits on the first grating create a series of
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individually coherent but mutually incoherent line sources, and each of these sources

then generates a Talbot carpet after the second grating, all of which sum incoher-

ently to give a total intensity that can correspond to a high-contrast image if the

patterns are spatially aligned [37]. A temporal analogue of the Lau effect [50,51] has

previously been demonstrated for optical fields consisting of mutually incoherent nar-

rowband lasers manipulated by an electro-optic modulator [52]. By tuning the laser

frequency spacing, the delay between corresponding output time-domain waveforms

can be adjusted to any amount within a period, from complete temporal coincidence

to a half-period delay. And such delay control of temporal Talbot imaging is pre-

cisely what we require for a multi-wavelength time cloak. Individually, with no event

present, each input wavelength should propagate through the cloak modulators and

dispersion and emerge at the output as a continuous-wave signal; however, when an

event is applied in the form of data modulation, one wavelength should escape with-

out modulation, whereas the second should contain a faithful reproduction of the

event data. To achieve this, we make use of the Lau effect and choose the wavelength

separation so that both lasers yield compressed pulse trains which are delayed by

one half-period relative to each other at the event modulator, ensuring that the data

stream impacts only one of the two wavelength channels.

Temporal synchronization of both input wavelengths is achieved by precisely

matching group delay through all dispersive elements. In general, a lossless second-

order dispersive medium multiplies the incident frequency spectrum by the complex

filter H(ω) = exp[iΦ2(ω − ω0)
2/2], where ω represents the angular frequency, Φ2

the medium’s dispersion coefficient, and ω0 the center frequency of the expansion; in

this form we have neglected an unimportant constant delay. The frequency-dependent

group delay follows on evaluating the derivative of the filter phase: τ(ω) = d
dω
argH(ω).

Therefore, two carrier frequencies ω1 and ω2 will temporally separate on propagation

through the medium by an amount ∆τ = τ(ω1)−τ(ω2) = Φ2∆ω, where ∆ω = ω1−ω2.
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In order that both wavelengths precisely overlap in time at the second phase

modulator in our cloak—location II in Fig. 3.1(b)—we require delay matching at a

multiple of the temporal period, i.e.

|∆τCFBG| =
2πp

ωm

, (3.1)

where p is a nonnegative integer and ωm signifies the angular frequency of the electro-

optic modulation (CFBG is short for “chirped fiber Bragg grating”). Even though

we slightly detune the clock frequency from the Talbot condition in experiment, for

conceptual simplicity here, we consider the CFBGs to apply quarter-Talbot disper-

sion, |Φ2| = π/ω2
m, which combined with the previous constraint fixes the possible

frequency separations at

|∆ω| = 2pωm. (3.2)

Thus any two lasers whose frequencies differ by an even multiple of the clock frequency

will satisfy the first timing condition. Yet we also require that the waveforms at each

wavelength be interleaved at the event—location III in Fig. 3.1(b)—so the relative

delay through the optical fiber link must satisfy

|∆τfiber| =
2π

ωm

(
q +

1

2

)
(3.3)

with q another nonnegative integer. Defining R as the ratio between CFBG and fiber

dispersion coefficients R = |Φ(CFBG)
2 /Φ

(fiber)
2 |, and recalling the first timing condition

[Eq. (3.2)], one finds that both are met if p and q can be found such that

p = R

(
q +

1

2

)
. (3.4)

Exact solutions exist only if the dispersion ratio R is an even integer; in our case,

the fiber dispersion links were chosen previously for temporal compression, and so

we are left with R = 23.7. We thus focus on the case p = 12, q = 0.00633, which

exactly meets the CFBG timing condition but only approximately the interleaving

requirement. Yet this deviation is minor; the interleaved pulse trains are now shifted

by ∼51% of the temporal period instead of 50%, and since the second train need
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(a)

(b)

Fig. 3.1. Basic outline of improved temporal cloak. (a) Waveform pro-
gression for multi-wavelength cloak. Blue and red lines denote the inten-
sity in the channels to be cloaked and to receive the data, respectively.
Roman numerals represent various points in the circuit: (I) input to first
phase modulator, (II) after quarter-Talbot dispersion, (III) at event plane
just prior to event modulation, (IV) at event plane immediately after mod-
ulation, (V) before compensating quarter-Talbot dispersion, and (VI) at
output. Only the red channel is impacted by the data modulation, which
is an alternating zero-one sequence in this example. (b) Experimental
setup. Boxes at the input and output show differences between the multi-
wavelength cloak (“WDM Experiment”) and data-as-input cloak (“Data
Experiment”). Blue fibers and Bragg gratings signify anomalous disper-
sion, whereas red represents normal dispersion. CFBG: chirped fiber
Bragg grating, SMF: single-mode fiber, DCF: dispersion-compensating
fiber.

only avoid the event modulation—precise matching of phase is unnecessary—overall

performance remains strong. Experimentally, our procedure is to first find a frequency

spacing that gives approximately 50% interleaving and then fine-tune the separation

to ensure temporal matching through the fiber Bragg gratings. For a more visual

depiction, plots in Fig. 3.1(a) provide cartoons of the pulse trains derived from each
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input frequency at various stages in the circuit, showing the overlap and interleaving

necessary for our multi-wavelength cloak.

Figure 3.1(b) offers a schematic of the experimental setup, with the boxes la-

beled “WDM experiment” marking the input and output configurations for multi-

wavelength cloaking. The central configuration of phase modulators and dispersion

matches that in the previous cloak, although the order of normal and anomalous

dispersion for the CFBGs has been arbitrarily reversed. We couple two independent

monochromatic lasers into the cloaking circuit, one of whose wavelengths is tunable,

and we propagate them through a combination of phase modulation and dispersion

that converts them into interleaved pulse trains at the event plane. The event consists

of intensity-modulated pseudorandom data which ideally impacts only one of the two

trains, and after reconstruction the two wavelength channels are demultiplexed with

a pulse shaper and then detected. As in Chapter 2, the extra dispersive fiber after

the fourth phase modulator is added to achieve approximately zero net dispersion

between the event and detector, so that turning the phase modulators off allows the

event data to appear at the output without distortion. Moreover, when the cloak is

operating, it is important to note that the amplitude of fluctuations in the output

depends not only on the power in residual spectral sidebands (Fig. 2.5), but also

the phase, for this determines whether contributions at the same radio frequency will

add constructively or cancel each other out. Accordingly, we run all modulators at

12.11 GHz, rather than the 12.5 GHz estimated for ideal Talbot self-imaging, since

we have found in simulation that this frequency gives slightly improved performance

for our combination of dispersive elements. (The 12.71-GHz clock used in Chapter

2 was also chosen following such a numerical procedure, but subsequent simulations

revealed 12.11 GHz as marginally more optimal.)

The measured spectrum when only the first two phase modulators are running

is given in Fig. 3.2(a), with two distinct flattop combs generated about each carrier

frequency. The broad bandwidth indicates that both combs will support short pulses

at the event plane. To introduce the event, we apply inverted return-to-zero data
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at the electrical input of the intensity modulator; when all phase modulators are off,

both wavelength channels retain this data at the output, as evidenced by Fig. 3.2(b).

However, turning on the cloak allows us to hide the data from one wavelength while

continuing to broadcast it along the other; Fig. 3.2(c) gives the received signals when

the phase modulators are on and optimized to cloak the short-wavelength channel.

While the originally strong data modulation is removed on the output of the short-

wavelength filter, the long-wavelength channel maintains high-contrast modulation.

The received data has been converted to a non-return-to-zero format—which is as

expected from theory due to the modulation and dispersion subsequent to the inten-

sity modulator—but clear transitions between zero and one certify that the digital

stream is fully maintained. Moreover, by shifting the event modulator’s timing half a

period, the roles of each channel can be reversed; as illustrated in Fig. 3.2(d), in this

case the long-wavelength channel is now cloaked, with the short wavelength picking

up the data.

Alternatively, instead of taking the event as the information-bearing quantity of

interest—either to be hidden from or transmitted to another party—one may view

the event as unwanted modulation which corrupts the input field; in this perspective,

the cloak becomes a data preserver rather than a data concealer. Accordingly, it is

profitable to consider data-modulated inputs rather than just continuous-wave fields

which naturally lack any temporal information. At first glance, since the cloak is

constructed assuming a single-frequency probe, it may appear that our design is

inherently ill-suited for accepting a time-varying input. But the cloak itself operates

at a high speed, so the requirement of constant intensity in effect means only that the

input bandwidth be much smaller than the cloak repetition rate ωm, or equivalently

that the input field intensity must remain roughly constant over several clock periods.

This intuitive picture implies that the cloak should still perform well with a data signal

at the input, provided the data rate is sufficiently lower than ωm.

We examine this idea experimentally with the setup of Fig. 3.1(b), but now using

the transmitter and receiver in the “Data Experiment” insets. A single continuous-
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Fig. 3.2. Experimental results for multi-wavelength cloak. (a) Opti-
cal spectrum when the first two phase modulators are running. Colors
indicate from which input laser a given spectral line was primarily gener-
ated, with blue representing the short-wavelength laser and red the long-
wavelength one. (b) Received output for the short-wavelength (blue) and
long-wavelength (red) demultiplexed channels when the event modulator
is running and all phase modulators are off. (c) Received signals when the
cloak is on and optimized to cloak the blue channel but transmit along
the red. (d) Corresponding waveforms when the cloak is instead aligned
to transmit data on the blue channel and cloak the red.

wave laser is modulated at some fraction of the clock frequency with non-return-

to-zero data; explicitly, we consider clock-division factors of two, four, eight, and

sixteen, corresponding to input data rates of 6.06 Gb/s, 3.03 Gb/s, 1.51 Gb/s, and

757 Mb/s, respectively. When the phase modulators are off, the high-speed event

completely destroys the input data sequence; as illustrated in Fig. 3.3, the input

data are nearly impossible to observe, corrupted by the fast modulation. Yet when

the cloak is turned on, the input field is guided around this distorting modulation

and recovered at the output, as indicated by the results in Fig. 3.4. For all input
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Fig. 3.3. Received signals for data-as-input experiment, when the cloak
is off. (a) Input data rate is two times less than the clock. (b) Four times.
(c) Eight times. (d) Sixteen times. In all cases, the high-speed event
modulation at 12.11 GHz significantly corrupts the input data.

repetition rates, clear modulation at the correct period is now seen, with the event’s

impact reduced to residual noise at the high voltage level. This noise is strongest

in the divide-by-two case, which makes sense, for the data rate is highest here and

thus most removed from the continuous-wave ideal. Moreover, numerical simulations

indicate only marginal performance improvement for data rates below the divide-by-

eight case, which is qualitatively confirmed by the lack of significant noise reduction

between Figs. 3.4(c) and (d).

For a more quantitative assessment of the cloak’s utility as a data preserver, we

also measure the received bit error ratio (BER) as a function of power, for all combina-

tions of cloak and event operation. Unfortunately, because our high-speed BER tester

(Agilent N4901B) is already required to generate the 12.11-GHz modulation serving

as the event, we are forced to use a slower device for this analysis (HP 70004B), whose

operation is limited to data rates below 3 Gb/s; for this reason, we can test only the

divide-by-eight (1.51 Gb/s) and divide-by-sixteen (757 Mb/s) cases. Employing an
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Fig. 3.4. Received signals for data-as-input experiment, when the cloak
is on. (a) Input data rate is two times less than the clock. (b) Four times.
(c) Eight times. (d) Sixteen times. Now the input sequences are fully
recovered, with clear data signals observed at the appropriate repetition
rates.

electrical amplifier to permit lower received optical powers, we measure the BER at

the cloak output for the following four cases: (i) cloak off, event off; (ii) cloak off,

event on; (iii) cloak on, event off; and (iv) cloak on, event on. The first case corre-

sponds to the input passing through all elements with no additional phase or intensity

modulation applied; therefore its BER should be lowest, providing a reference against

which the other combinations can be compared. The second case should be worst, as

it coincides with the corrupted data in Fig. 3.3—it is this situation for which the cloak

is designed to offer significant error reduction when operating. Thus ideally, the cloak

should: introduce negligible errors on its own, indicating that case (iii) should closely

resemble case (i); and remove the errors in (ii), implying that (iv) should offer much

lower BERs than (ii). Figure 3.5 displays the results of these tests, confirming the

expected behavior. For both the divide-by-eight [Fig. 3.5(a)] and divide-by-sixteen

[Fig. 3.5(b)] rates, negligible error increases are observed when the cloak is turned

on and no interference is present, whereas the BER falls significantly when the cloak
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Fig. 3.5. BER test results. (a) Input data rate is one-eighth of the
clock (1.51 Gb/s). (b) Data rate is one-sixteenth of the clock (757 Mb/s).
Filled symbols indicate measurement results, and lines correspond to best
fits. Error-free operation corresponds to a BER of 10−11, marked by solid
black lines; at our integration times, zero measured errors signify BERs
≤ 10−11 with 95% confidence [53].

is operating and the event is attacking the stream. As a consequence of the BER

tester’s low bandwidth, this improvement is perhaps less dramatic than expected;

since the measurement electronics intrinsically filter out high-speed noise, the event

corrupts the input to a lower extent than a higher-bandwidth detector would have

indicated. Nevertheless, the general behavior is corroborated, with the cloak clearly

improving signal quality in the face of the corrupting event.

3.3 Avenues for Future Improvement

The 46% cloaking window measured in the previous chapter is presently limited

by the modulation index of the second and third phase modulators, which controls the

total bandwidth of the combs in Figs. 2.4(a)and 3.2(a); a broader comb would permit

compression to even narrower pulses and therefore facilitate wider cloaking windows.

However, the modulation index is constrained by the maximum allowable RF input

power, so at least with our current devices and layout, significant improvements in
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the cloaking window appear unlikely. Yet cascading multiple phase modulators in

series, instead of employing just one, could yield substantially wider cloaking. For

example, in other work in our group [54], three phase modulators in series followed by

compressing fiber were shown to produce pulses nearly eight times shorter than those

demonstrated here; such short pulses imply cloaking windows around 90% should

be possible by simply replacing the second and third phase modulators of Figs. 2.3

or 3.1 each with a set of modulators in series. Extending this technique to even

more modulators to approach cloaking windows nearing 100% would prove costly,

but should be possible; nothing intrinsically prevents it.

Another important characteristic of the cloak is the data rate at which it operates,

which is fixed by the quarter-Talbot dispersion applied by the CFBG, and so for any

given setup, our temporal cloak design functions only for a fixed event frequency.

However, it is a simple matter to design a cloak at any desired frequency, by choosing

the required dispersive links. In particular, this quality allows our cloaking arrange-

ment to readily generalize to much higher data rates (e.g., 40 or 100 Gb/s), limited

only by the capabilities of state-of-the-art modulators. In fact, since the Talbot length

scales inversely with the square of the repetition frequency [Eq. (2.15)], higher data

rates would in some ways be easier to implement, for they require shorter dispersive

links. For these reasons we believe our temporal cloak is well-suited for the future of

optical communication at ever-faster speeds.

As a consequence of timing drift from the thermo-optic effect in optical fiber, the

RF phase shifters in our experiments require readjustment every few minutes un-

der the conditions in the laboratory—an instability that would only be exacerbated

in the myriad environments of long-haul telecommunications. Although active syn-

chronization through software control could represent a viable solution, we propose

a completely passive fix through replacing the two optical-fiber links of Fig. 2.3 by

their equivalent CFBGs. This would remove the >1 km of silica fiber and in its

place leave only a few meters, thereby making timing drift negligible compared to the

RF period. Additionally, it would be valuable to pursue an arrangement composed
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entirely of polarization-maintaining components. Currently, polarization controllers

are required before every modulator, increasing both system loss and susceptibil-

ity to environmental fluctuations. Even better would be to implement the cloak

with on-chip modulators, which would allow for precise engineering of the waveg-

uides and dispersion. Indeed, we believe the stronger parasitic modulation in the

two-wavelength case (Fig. 3.2) results from a slight dispersion mismatch, preventing

the pulse trains at both wavelengths from maintaining timing synchronization at all

modulators. Thus improved dispersion control would offer strong performance gains

in the multi-wavelength case in particular.

More generally, we see two major avenues for progress on the multi-wavelength

cloak’s functionality. First, instead of considering only two wavelengths, it is feasi-

ble to directly extend our technique to several evenly spaced frequencies, in which

cloaked and data-transmitting channels alternate along the grid. The total number of

potential channels would be limited only by the acceptance bandwidth of the optical

components. Second, programmable delay control would permit multi-wavelength

cloaking with arbitrary laser channel frequencies, instead of the precisely chosen val-

ues in this experiment. This could in principle be implemented by placing pulse

shapers before and after each of the inner phase modulators in Fig. 3.1(b) (e.g., at

locations II, III, IV, and V). By applying spectral phase shifts corresponding to the

desired group delays, it would then be possible to control which wavelength channels

are cloaked and which pick up data, with complete programmability and no restric-

tion to particular frequency spacings. Implementation of this scheme would demand

relatively fine spectral resolution, roughly on the order of the cloak repetition fre-

quency, in order to permit the half-period shifts necessary to move a channel’s delay

from cloaked to uncloaked positions. Nevertheless, systems like the current one de-

signed only for particular wavelength separations could find use even without the

added capabilities furnished by multiple pulse shapers, as certain optical communi-

cation techniques such as orthogonal frequency-division multiplexing already require

precisely spaced channels at multiples of the symbol rate.
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3.4 Conclusion

In summary, in this chapter we have demonstrated two new uses for temporal

cloaking in high-speed telecommunications. The first, a multi-wavelength cloak, al-

lows data which is hidden from one wavelength channel to be transmitted along an

alternative one; in the second, a corrupting event is cloaked from an input digital

message, thereby allowing faithful transmission of the incoming data past an aggres-

sive modulation signal. Both realizations offer new perspectives on temporal cloaking

for improving data communication systems rather than disturbing them. It will be

interesting to explore how this two-sided nature of time cloaking may be exploited

in future developments in this field, whether in the exotic quest for a full space-

time cloak or in more mundane—but no less important—efforts to improve optical

communications.
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4. BIPHOTON PULSE SHAPING THEORY

4.1 Background

The extensive research interest in biphotons stems from the quantum mechanical

entanglement they possess, which endows such photon pairs with their nonclassical—

and often bizarre—properties. Mathematically speaking, entanglement results when

the total quantum state cannot be expressed as the product of individual states for

the constituent subsystems [55]; the total state can only be represented as a linear

combination of such non-entangled, or separable, states. Measurements on two en-

tangled particles can be strongly correlated, even when they are arbitrarily far apart,

allowing, for example, simultaneously narrow momentum and position correlations.

Such nonlocality was perhaps most pointedly critiqued by Einstein, Podolsky, and

Rosen (EPR) in 1935, in which they concluded that quantum mechanics must be

incomplete, for it violated the ostensibly sound axiom of local realism [56]. Yet it was

not until the work of J. S. Bell in the 1960s that this philosophical debate could enter

the realm of experiment. In his seminal 1964 paper [57], Bell derived an inequal-

ity for the correlations between two particles which all local hidden variable theories

must satisfy, but which an entangled quantum state could violate. And although

originally specialized to spin-1/2 atoms, the majority of current Bell tests utilize in-

stead entangled photons generated through spontaneous parametric downconversion

(SPDC) [58]. Not only are biphotons relatively simple to generate at room tem-

perature, requiring only a laser and nonlinear crystal, but they can also travel long

distances in free space or optical fiber with minimal decoherence—essential to achieve

true nonlocality or distribute a secret key between distant users.

It is precisely this second application, quantum communication, which motivates

the biphoton experiments we have conducted. Interestingly, neither the original pro-
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posal [59] nor current schemes based on weak coherent states [60,61] actually require

entanglement for operation; however, QKD protocols utilizing entangled photons do

remain a major subject of research. For not only do entanglement-based protocols

mitigate the issues of empty pulses and information leakage which plague single-

photon systems [60]; they also provide a direct connection to the EPR paradox

and the fundamental weirdness of quantum mechanics. Indeed, the first proposal

for entanglement-based QKD relied on violation of Bell’s inequality to verify secu-

rity [62], and photons entangled in polarization [63], time bins [64–67], or time and

frequency [68–70]—just to name a few—have all been considered for secure key dis-

tribution. The nature of such QKD protocols is beyond the scope of this work; for

further information, the reader is directed to the reviews in [60, 61]. Here we focus

instead on novel ways to manipulate these entangled states at the fundamental level,

drawing specifically on established technology in classical pulse shaping. We there-

fore believe our work provides a springboard for new applications in the development

of quantum cryptography, by extending techniques previously relegated to classical

optics.

Since its development in the 1980s [4], Fourier-transform pulse shaping of fem-

tosecond laser pulses has revolutionized the field of ultrafast optics, with applications

ranging from coherent control of chemical reactions to RF photonics, wavelength-

selective switching to single-cycle pulse generation [2,3]. In the standard arrangement,

a broadband pulse is spectrally dispersed by a diffraction grating, thereby separating

each of the constituent frequencies. By placing a programmable liquid-crystal mask

in the focal plane, it is possible to control the amplitude and phase of each frequency

component independently; when the frequencies are recombined in a dispersion-free

fashion (made possible by a 4f geometry [4]) an essentially arbitrary time-domain

field can be constructed, limited only by spectral resolution. In this way complicated

fields which vary on a femtosecond timescale can be readily synthesized, a feat im-

possible with even the fastest electronic modulators. This fine temporal control is

well suited for any broadband optical field, including classical incoherent light [71]
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and, most importantly for us, biphotons. As first demonstrated in 2005 [72], a pulse

shaper can be used to modify the temporal correlations of entangled photons in a

fashion analogous to classical arbitrary waveform generation. Over the past decade,

only a handful of biphoton pulse shaping experiments with spatial light modulators

have been realized in other groups (e.g., [73–75]), and none has considered biphotons

in the telecommunications band around 1550 nm, the optimal regime for long-haul

QKD along optical fiber. We accordingly have sought to exploit classical telecom

pulse-shaping methods and technology to greatly enhance the capabilities for bipho-

ton manipulation, carrying out several key experiments demonstrating its potential.

4.2 Time-Frequency Entangled Photons

The biphotons we examine in experiment are obtained through SPDC of a narrow-

band pump field. In this interaction, a single pump photon decays into two daughter

photons, traditionally called “signal” and “idler,” such that energy is conserved; Fig.

4.1(a) provides a sketch of this process. Since both photons are created at the same

instant in time and derive from a photon with well-defined energy, they are highly

correlated in both time and frequency, even though individually each photon may be

found in a wide range of times or frequencies. For example, a frequency measurement

of one photon might yield a value anywhere within a several terahertz range; but

once this frequency is known, that of its partner is fixed to the value required to sat-

isfy energy conservation, which is as narrowband as the CW pump photon (perhaps

megahertz or less). The strong correlations in time and frequency are highlighted in

Figs. 4.1(b) and (c), defying the typical inverse relationship between time and fre-

quency spread. Such joint correlation amid individual randomness provides the basis

for recently proposed time-frequency QKD protocols aimed at distilling multiple bits

per photon [68–70].

This heuristic discussion can be made more rigorous with quantum optical theory.

The positive and negative complex electric fields introduced previously must now be
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Fig. 4.1. Basics of time-frequency entangled photons. (a) Schematic of
SPDC generation process. Signal and idler frequencies must sum to that
of the pump to satisfy energy conservation. (b) Joint spectral correlations.
(c) Joint temporal correlations. Even though individual photons have a
wide spread of spectro-temporal content, they are highly correlated with
their partner.

taken as quantum mechanical operators. In the typical free-space derivation [55], a

quantization volume is introduced and all three spatial dimensions must be consid-

ered. But since light is confined to an optical waveguide in all of our experiments, we

need to consider only one spatial dimension. Moreover, the formalism is made more

transparent by considering a continuum of modes directly (that is, letting the quanti-

zation dimension approach infinity from the start). The positive, single-polarization

electric field operator in the Heisenberg picture for a waveguide geometry is then

given by [76]

Ê(+)(z, t) = i

∫ ∞

0

dω

[
~ω

4πϵ0cnS

]1/2
â(ω)ei(kz−ωt), (4.1)

where the negative-frequency field follows by taking the Hermitian conjugate; i.e.,

Ê(−)(z, t) = [Ê(+)(z, t)]†. Here S is the effective transverse area, and n = n(ω) is the

waveguide index of refraction, defined so that the propagation constant k satisfies

k = n(ω)ω/c. These quantities account for all effects of the waveguide geometry, and

so, just as in the discussion surrouding Eq. (2.5), we are justified in ignoring the

transverse field distribution; its only impact is to modify the propagation constant

from that of a plane wave to k(ω) calculated from an eigenvalue equation [1]. The
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annihilation operator â(ω) has the effect of destroying one photon at frequency ω,

and its Hermitian conjugate â†(ω) creates a photon at ω. For a particular spatial

mode, they satisfy the relations [76]

[â(ω), â†(ω′)] = δ(ω − ω′), (4.2)

[â(ω), â(ω′)] = 0, (4.3)

â(ω)|ω′⟩ = δ(ω − ω′)|vac⟩, (4.4)

and

â†(ω)|vac⟩ = |ω⟩. (4.5)

The vacuum state is represented by |vac⟩, and |ω⟩ is the Dirac-normalized state

consisting of one photon at frequency ω.

To describe evolution of the quantum state and our measurements conducted on

it, we employ the interaction picture, in which the quantum state evolves in time

through an interaction Hamiltonian and the operators according to the Hamiltonian

of the isolated electromagnetic field [55]. In this way, we can separate generation of

the entangled state from subsequent propagation through any optical elements, the

convenience of which will become evident later when we treat the effect of optical

filtering. Specifically, the interaction Hamiltonian describing SPDC in a nonlinear

waveguide is given by [77]

ĤI = ϵ0

∫
V
d3r⃗ γ(z)Ê(+)

p (z, t)Ê(−)
s (z, t)Ê

(−)
i (z, t) + h.c., (4.6)

where p, s, and i denote the pump, signal, and idler fields, respectively, and integra-

tion is taken over the volume of the interaction region. The shorthand h.c. denotes

the Hermitian conjugate of the first term, and γ(z) is the relevant nonlinear coeffi-

cient, assumed dispersionless over the optical bandwidth considered; it can, however,

vary along the longitudinal direction, reflecting the fact that the waveguides used in

experiments are periodically poled. Because the pump is an intense classical field, we

can treat its operator as a complex number, oscillating at the pump frequency 2ω0:

Ê(+)
p (z, t) = E0e

i(kpz−2ω0t), (4.7)
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where kp = k(2ω0). We define the signal field as containing frequency content greater

than ω0, and the idler less than ω0, so specializing Eq. (4.1) and factoring out the

slowly varying dependence on frequency, we take as our field operators

Ê(−)
s (z, t) = −i

[
~ω0

4πϵ0cn0S

]1/2 ∫ ∞

0

dΩ â†s(ω0 + Ω)e−i(ksz−ω0t−Ωt) (4.8)

and

Ê
(−)
i (z, t) = −i

[
~ω0

4πϵ0cn0S

]1/2 ∫ ω0

0

dΩ′ â†i (ω0 − Ω′)e−i(kiz−ω0t+Ω′t), (4.9)

where ks = k(ω0 + Ω), ki = k(ω0 − Ω′), and n0 = n(ω0). We also express γ(z) as a

Fourier series to reflect the poling [78]:

γ(z) =
∑
m

γme
iKmz. (4.10)

In the interaction picture, keeping only the lowest-order correction to the input

vacuum gives the perturbed quantum state [55]

|Ψ⟩ =M |vac⟩s|vac⟩i +
1

i~

∫ t

0

dt′ ĤI(t
′)|vac⟩s|vac⟩i, (4.11)

whereM ∼ 1 is added to allow for proper normalization of |Ψ⟩. Taking the waveguide

to extend from z = −L to z = 0, and assuming that only one poling wavenumber Km

from Eq. (4.10) is close to ks + ki − kp, plugging in Eqs. (4.7)-(4.10) into Eq. (4.6)

and then this into Eq. (4.11) gives

|Ψ⟩ =M |vac⟩s|vac⟩i

− E0γmω0

4πicn0

∫ ∞

0

dΩ

∫ ω0

0

dΩ′
∫ 0

−L

dz e−i∆kz

∫ t

0

dt′ ei(Ω−Ω′)t′|ω0 + Ω⟩s|ω0 − Ω′⟩i,

(4.12)

with the phase mismatch defined as

∆k(Ω,Ω′) = ks + ki − kp −Km. (4.13)

In the limit of large t, the last integral approaches 2πδ(Ω− Ω′), which yields finally

|Ψ⟩ =M |vac⟩s|vac⟩i +
∫ ω0

0

dΩφ(Ω)|ω0 + Ω⟩s|ω0 − Ω⟩i, (4.14)
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with

φ(Ω) =
iE0γmLω0

2cn0

ei∆kL/2sinc
∆kL

2
. (4.15)

∆k is evaluated at Ω′ = Ω and sincx = sinx/x. The above state expresses mathemat-

ically the intuitive argument presented earlier: the biphoton consists of a superposi-

tion of signal and idler spectral modes with the property that their frequencies sum

to that of the pump. Now, however, we have an explicit expression for the weighting

of the possible spectral pairs. Therefore, with knowledge of the waveguide poling

and effective refractive index—information which is provided by our collaborators at

Stanford University—we can predict the generated quantum state in our experiments

through Eqs. (4.14) and (4.15).

And not only do these equations reveal the overall shape of the biphoton state;

they also facilitate a quantitative estimate of the downconversion efficiency, the prob-

ability for a given pump photon to spontaneously decay into an entangled photon

pair. To derive this relationship, we calculate the mean signal-photon generation rate

and compare it to the pump photon flux. The relevant signal flux operator at the

output face of the crystal (z = 0) can be written in terms of electric field operators

as

F̂s =
2n0ϵ0cS

~ω0

Ê(−)
s (0, t)Ê(+)

s (0, t), (4.16)

which corresponds to the field power divided by photon energy, giving the desired

units of inverse time. For the coherent-state pump field, the photon flux is simply

the c-number

Fp =
npϵ0cS

~ω0

|E0|2, (4.17)

where np = n(2ω0). Thus we define the SPDC efficiency ηSPDC via the relation

ηSPDC =
⟨Ψ|F̂s|Ψ⟩

Fp

=
2n0

np|E0|2
⟨Ψ|Ê(−)

s (0, t)Ê(+)
s (0, t)|Ψ⟩. (4.18)
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Utilizing the expression for the field operator in Eq. (4.8), along with the biphoton

state in Eqs. (4.14) and (4.15), we arrive at the efficiency

ηSPDC =
~ω3

0γ
2
mL

2

8πϵ0c3n2
0npS

∫ ω0

0

dΩ sinc2
∆kL

2
. (4.19)

The place-holding constant γm can be written in terms of the effective second-order

nonlinearity deff according to

γm = −4deff , (4.20)

a relationship derivable by translating the expressions of, e.g., [79, 80] to our formal-

ism. This yields finally

ηSPDC =
2~ω3

0d
2
effL

2

πϵ0c3n2
0npS

∫ ω0

0

dΩ sinc2
∆kL

2
, (4.21)

in agreement with the result in [80] obtained following an alternative method. For our

periodically poled lithium niobate (PPLN) source, the effective nonlinearity satisfies

deff = 2d33/π, where d33 = 31.5 pm/V and the factor of 2/π accounts for the poling

[78]; plugging in these and the remaining parameters for a 52-mm-long guide, Eq.

(4.21) predicts a downconversion efficiency of about 4 × 10−5, close to the ∼10−5

actually observed in experiment. Such quantitative agreement provides additional

validation of the interaction-picture-based approach which we have adopted here.

4.3 Theory of Biphoton Pulse Shaping

Measurement of the above biphoton state is achieved through photodetection of

the signal and idler photons, typically with single-photon avalanche photodiodes. To

relate this process to the quantum optical formalism introduced in the last section,

we follow the heuristic argument first presented by Glauber [81]. (For a more rigorous

development, refer to Ch. 14 of [55].) First we note that the detection of the signal

photon at time t1 and the idler at t2 modifies the initial field state |Ψ⟩ so that its

inner product with the final state |f⟩ is given by

⟨f |Ê(+)
s (t1)Ê

(+)
i (t2)|Ψ⟩. (4.22)
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The probability of signal and idler detection is thus obtained (up to a proportionality

constant) by taking the modulus squared of the above matrix element and summing

over all final states of the field. We therefore define the fourth-order correlation

function as this quantity:

Γ(2,2)(t1, t2) =
∑
f

|⟨f |Ê(+)
s (t1)Ê

(+)
i (t2)|Ψ⟩|2

=
∑
f

⟨Ψ|Ê(−)
i (t2)Ê

(−)
s (t1)|f⟩⟨f |Ê(+)

s (t1)Ê
(+)
i (t2)|Ψ⟩

= ⟨Ψ|Ê(−)
i (t2)Ê

(−)
s (t1)Ê

(+)
s (t1)Ê

(+)
i (t2)|Ψ⟩, (4.23)

where the last line follows from the completeness of the final states. This correlation

function is the primary quantity with which we characterize the quantum field in

experiment, measured either by comparing the detections on separate photodiodes or

counting sum-frequency photons in ultrafast coincidence detection.

A convenient simplification occurs when the state |Ψ⟩ contains no more than two

photons, for then the operator Ê
(+)
s (t1)Ê

(+)
i (t2) acting on |Ψ⟩ produces at most a

result proportional to the vacuum state (it could also give zero), meaning that we can

with impunity insert the operator |vac⟩⟨vac| into the expression for the correlation

function:

Γ(2,2)(t1, t2) = ⟨Ψ|Ê(−)
i (t2)Ê

(−)
s (t1)|vac⟩⟨vac|Ê(+)

s (t1)Ê
(+)
i (t2)|Ψ⟩

= |⟨vac|Ê(+)
s (t1)Ê

(+)
i (t2)|Ψ⟩|2

= |ψ(t1, t2)|2, (4.24)

where we have defined the biphoton wavepacket [82]

ψ(t1, t2) = ⟨vac|Ê(+)
s (t1)Ê

(+)
i (t2)|Ψ⟩. (4.25)

This quantity is linear in signal and idler fields and can be viewed as a “wave function”

whose modulus squared gives the probability density for joint photon detection. Yet

this function is by no means a solution of the Schrödinger equation; it is simply a

useful matrix element. And so to complete the theoretical description of biphoton
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pulse shaping, we need only compute the biphoton wavepacket for the state in Eq.

(4.14), when the signal and idler photons are spectrally filtered. Specifically, we apply

the complex filters Hs(ω) to the signal photon and Hi(ω) to the idler photon after the

nonlinear waveguide (which include any phase accrued through propagation through

optical fiber). Since these operators transform just like their classical counterparts,

the effect of filtering is included simply by multiplication in the spectral domain,

leaving the fields at the detectors

Ê(+)
s (t1) = i

∫ ∞

ω0

dωs

[
~ωs

4πϵ0cnS

]1/2
Hs(ωs)âs(ωs)e

−iωst1 (4.26)

Ê
(+)
i (t1) = i

∫ ω0

0

dωi

[
~ωi

4πϵ0cnS

]1/2
Hi(ωi)âi(ωi)e

−iωit2 . (4.27)

Taking t1 = t+τ and t2 = t and using the state in Eq. (4.14), we have the wavepacket

ψ(t+ τ, t) =⟨vac|i
∫ ∞

ω0

dωs

[
~ωs

4πϵ0cnS

]1/2
Hs(ωs)âs(ωs)e

−iωs(t+τ)

× i

∫ ω0

0

dωi

[
~ωi

4πϵ0cnS

]1/2
Hi(ωi)âi(ωi)e

−iωit

×
(
M |vac⟩s|vac⟩i +

∫ ω0

0

dΩφ(Ω)|ω0 + Ω⟩s|ω0 − Ω⟩i
)
,

(4.28)

which represents the probability amplitude for detecting the signal photon a time τ

after detecting the idler. Extracting slowly varying factors and rearranging the order

of integration, we get

ψ(t+ τ, t) =− ~ω0

4πϵ0cn0S

∫ ω0

0

dΩ

∫ ∞

ω0

dωs

∫ ω0

0

dωi φ(Ω)Hs(ωs)Hi(ωi)e
−i[ωs(t+τ)+ωit]

× ⟨vac|âs(ωs)âi(ωi)|ω0 + Ω⟩s|ω0 − Ω⟩i.

(4.29)

Using the property of the annihilation operator in Eq. (4.4), the matrix element is

found to be δ(ωs −ω0 −Ω)δ(ωi −ω0 +Ω), allowing trivial integration over ωs and ωi:

ψ(t+ τ, t) = − ~ω0

4πϵ0cn0S
e−iω0(2t+τ)

∫ ω0

0

dΩφ(Ω)Hs(ω0 + Ω)Hi(ω0 − Ω)e−iΩτ . (4.30)
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The unimodular dependence on t can be neglected, since it vanishes upon calculating

the correlation function Γ(2,2), and the unimportant overall constant can be absorbed

into φ(Ω), leaving a wavepacket which depends only on the time difference τ :

ψ(τ) =

∫ ∞

0

dΩφ(Ω)Hs(ω0 + Ω)Hi(ω0 − Ω)e−iΩτ . (4.31)

(Allowing the integral to extend to∞ is justified because the phase-matching function

φ(Ω) is negligible for Ω > ω0.) Analogous to a classical coherent pulse, the biphoton

correlation function can be shaped through programmable spectral filtering per Eq.

(4.31). But as a consequence of spectral entanglement, the signal and idler filters are

multiplied together and evaluated at complementary frequencies in the integrand. In

this way the filtering of one photon can be “undone” by filtering the other—a fasci-

nating characteristic which we exploit later in dispersion cancellation and orthogonal

coding experiments.

In summary, we have derived the fourth-order biphoton correlation function for

the case of monochromatic SPDC in a nonlinear waveguide, starting from basic quan-

tum optical theory. With knowledge of the waveguide dispersion and poling, we can

calculate the functional form of the phase-matching function using Eq. (4.15). Then

the signal and idler spectral filters, which can be programmed directly on a pulse

shaper, permit calculation of the wavepacket ψ(τ) [Eq. (4.31)]. Finally, the correla-

tion function, which is proportional to the probability density of detecting the signal

photon delayed by τ from the idler, follows from Γ(2,2)(τ) = |ψ(τ)|2. A major goal

of our experimental work is to explore new spectral coding techniques made possible

by high-resolution telecom pulse shaping technology, effectively extending the range

of filters Hs(ω) and Hi(ω) available in quantum optical applications. The majority

of the experiments described in the following chapters can thus be viewed as special

cases of the general biphoton shaping formula, Eq. (4.31).
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4.4 Setup for Biphoton Generation

For biphoton generation, we employ a PPLN waveguide [83, 84], chosen for its

exceptionally high conversion efficiency [85,86] and fabricated by our collaborators at

Stanford University. With the exception of a 67-mm-long waveguide used for SPDC

in Section 6.5, every sample considered in this dissertation is 52 mm in length. The

poling period is designed to achieve phase matching for degenerate downconversion of

a pump at ∼774 nm when the PPLN chip is heated to 140◦ C; operating at such ele-

vated temperature mitigates the deleterious effects of photorefraction and maximizes

the permissible input power level. A schematic of the basic biphoton generation stage

is presented in Fig. 4.2(a). We couple a CW laser (New Focus TLB-6712) tuned to

the phase-matched wavelength around 774 nm into the PPLN waveguide; approxi-

mately 10−5 of the incoming photons are converted to entangled photons around 1548

nm (193.8 THz). The waveguide output is passed through three glass filters (Schott

RG1000) to remove the residual pump light, and the biphotons are then coupled into

optical fiber. Both the signal and idler occupy the same spatio-polarization mode, so

the only means to distinguish them is by frequency, in accordance with the theoretical

formulation in the previous section. A typical optical spectrum of the SPDC emission

is presented in Fig. 4.2(b), acquired at a resolution of 250 GHz. The signal photon

corresponds to the high-frequency content (to the right of the dotted line) and the

idler to the low-frequency content (left of the line). The spectrum is extremely broad,

with a 3-dB bandwidth of 8.25 THz, which is filtered down to the nearly flat portion

by the pulse shaper in subsequent experiments.

We have conducted two main classes of experiments with this biphoton source,

distinguished by the method of photon detection. One set utilizes a pair of single-

photon detectors and electronically correlates the arrival times to determine photon

coincidences; the other set employs biphoton sum-frequency generation (SFG) to

determine photon coincidences optically. Although the SFG-based scheme furnishes

the finest temporal resolution, the first method is simpler to implement and by far
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Fig. 4.2. PPLN-based biphoton source. (a) Schematic of generation
process. Biphotons are created through spontaneous decay of monochro-
matic pump photons in a PPLN waveguide. After removing the residual
pump light with filters, the biphotons are coupled into optical fiber for
subsequent manipulation and characterization. (b) Typical optical spec-
trum of generated SPDC photons, measured after the collimator in (a) at
250-GHz resolution.

the more common in practice; therefore we consider the slow-detection experiments

in the next chapter, proceeding to the more exotic ultrafast experiments in Chapter

6.
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5. EXPERIMENTS WITH ELECTRONIC COINCIDENCE

DETECTION

5.1 Experimental Arrangement

A schematic of the full experimental setup, including generation, manipulation,

and detection, for the first class of biphoton shaping tests is presented in Fig. 5.1(a).

After the collimator, the biphotons are sent into a fiber-coupled commercial pulse

shaper (Finisar WaveShaper 4000S/X [5]), which offers programmable amplitude and

phase control at 20-GHz resolution over the entire C+L bands (1527 to 1600 nm);

corresponding to 450 resolvable spectral features, such high resolution vastly exceeds

all previous examples of biphoton shaping (e.g., [72,74]), representing a crucial tech-

nological advancement. Additionally, this pulse shaper includes the capabilities of a

wavelength-selective switch, allowing each frequency component to be independently

programmed to exit the shaper through one of four different output ports. In this

way we can separate the high-frequency signal and low-frequency idler photons and

send them to distinct single-photon detectors (Aurea SPD AT M2), correlating the

detections with an event timer featuring 1-ps bins (PicoQuant HydraHarp 400). We

note that while other researchers have examined a wavelength-selective switch for

routing of entangled photons [88], never before have such capabilities been combined

with high-resolution pulse shaping.

Because the temporal resolution of the photon detectors greatly exceeds the max-

imum duration of the biphoton wavepacket, the measured coincidence rate Rc after

electronic correlation represents the integral of the correlation function Γ(2,2)(τ) over

the resolution of the detection system. In particular, the time aperture of our pulse

shaper—the temporal window over which the shaped correlations can accurately re-

The results of this chapter have been published in [87].



49

Fig. 11 

192 194 196 
0 

1 

Frequency [THz] 

Signal Idler 

T
ra

n
sm

it
ta

n
ce

 

Signal Code 

Id
le

r 
C

o
d
e 

C
o
in

cid
en

ces p
er Id

ler 

  

  

10 20 30 40 

10 

20 

30 

40 

0 

5 

10 

(b) 

(c) 

PPLN 

Pulse 

Shaper 

Pump 

Filters 

Collimator 

Timing 

Electronics 

Signal 

Idler 

(a) 

×10−3 

Fig. 5.1. (a) Experimental setup for electronic coincidence experi-
ments. The generated biphotons coupled into optical fiber are filtered
by a pulse shaper, with signal and idler photons sent to different output
ports and detected on separate single-photon counters. Correlations are
determined with time-tagging electronics. (b) Pulse-shaper transmittance
for Hadamard codes. Here code 8 is applied to the idler spectrum and
code 30 to the signal. (c) Coincidence rate as a function of signal-idler
Hadamard codes, normalized to idler detections. Only codes 2 through
40 are shown, as code 1 corresponds to full transmission. When the codes
are matched, approximately twice as many coincidences are registered as
when the codes differ, confirming spectral entanglement.

produce that of an ideal, infinite-resolution mask [1]—is approximately 50 ps, whereas

the detector resolution Td exceeds 300 ps (experimentally, we take a window of 1 ns

to mark simultaneous arrivals on both detectors). Under these conditions, the coin-

cidence rate Rc can be expressed as

Rc ∝
∫ Td/2

−Td/2

dτ Γ(2,2)(τ). (5.1)
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Since Td vastly exceeds the maximum possible correlation time of Γ(2,2)(τ), the limits

can be extended to ±∞, which when combined with Eq. (4.31) gives the simple

result [88]

Rc ∝
∫ ∞

0

dΩ|φ(Ω)Hs(ω0 + Ω)Hi(ω0 − Ω)|2, (5.2)

which in words states that the coincidence rate is the integral over all possible en-

tangled frequency pairs, weighted by the probability that both photons reach their

detectors. Importantly, all dependence on spectral phase has been removed, imply-

ing that only amplitude shaping will have an effect on the coincidence rate in these

experiments.

5.2 Hadamard Coding for Entanglement Verification

To demonstrate the utility of our biphoton pulse shaper, we first examine a

Hadamard amplitude coding approach to markedly increase the count rate in spectral

correlation measurements. As highlighted in Fig. 4.1(b), narrowband-pumped SPDC

produces a two-dimensional biphoton spectral distribution that shows sharp anticor-

relation in joint frequency. And the most straightforward method for measuring these

correlations is to simply record the coincidence rate for two narrow spectral filters

applied to the signal and idler; doing so for all possible center frequency combinations

produces the full joint distribution [89,90]. Yet this approach suffers from an inverse

relationship between resolution and count rate, for to make the resolution finer, the

slit passbands must be decreased, which proportionally lowers the overall transmis-

sivity for matched bins. Accordingly, it is difficult and time consuming to measure

spectral correlations in this way, particularly for infrared biphotons detected by In-

GaAs photon counters that suffer from high dark counts compared to their silicon

counterparts.

In order to decouple resolution and photon flux, we develop a new spectral filtering

approach modeled after classical Hadamard spectroscopy [91]. Instead of measuring

the coincidences between spectral slits, we look at the coincidences between spectral
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codes, chosen from the same Walsh-Hadamard set. In their basic form, these code

families contain N length-N sequences of ones and minus-ones that are orthogonal

to each other: the inner product of any two different codes is zero [92]. Moreover,

with the exception of one code consisting of all ones, each sequence contains an equal

number of ones and minus-ones. However, as shown in Eq. (5.2), our detection

scheme is insensitive to spectral phase, making such phase-only Hadamard codes in-

distinguishable; therefore we replace the minus-ones by zeros to instead examine pure

amplitude codes of ones and zeros. True orthogonality is then replaced by a contrast

of 2:1 between matched and mismatched sequences. Experimentally, we exploit these

properties by applying one code to the signal spectrum and another to the idler. If

the photons are entangled about the center frequency and the codes match in the

symmetric sense, the idler frequency bins corresponding to the passed signal bins are

also passed, giving a large number of coincidences. But if the codes do not match,

only half of the transmitted signal frequencies are accompanied by the corresponding

idler, dropping the coincidence rate by a factor of two. (In this discussion, we neglect

the instances when one of the two codes is the all-one case.) In this way, the degree of

entanglement can be inferred from the experimentally measured contrast relative to

the ideal of 2:1. The key improvement over the traditional two-slit technique lies in

the count rate for matched codes. If we divide signal and idler each into N frequency

bins, thereby fixing the spectral resolution, a matched bin pair contains only 1/Nth

of the total biphoton flux, whereas matched Hadamard codes pass 1/2 of the flux,

independent of the value of N . Thus a count rate improvement of N/2 is achieved

with our Hadamard approach, and—at least until reaching the limits of the pulse

shaper—it is possible to make the spectral resolution finer without suffering an ap-

preciable reduction in peak counts, thereby removing the inverse relationship imposed

by the two-slit procedure.

To examine the usefulness of the new method, we program length-40 Hadamard

codes with 50-GHz chips, giving total passbands of 2 THz each for the signal and idler

photons. As evident in Fig. 4.2(b), over this 4-THz band the biphoton spectrum is
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essentially flat, which ensures that all frequency pairs contribute with approximately

equal weight, thereby maximizing contrast. An example code combination is pre-

sented in Fig. 5.1(b); with 80 resolvable spectral elements, the complexity vastly

exceeds all previous experiments in biphoton pulse shaping. Operating the detectors

at 20% quantum efficiency and with a 10-ns gate clocked at 1.25 MHz, we attenu-

ate the pump laser to give single-detector count rates of about 3500 s−1 when the

all-ones code is applied over the passband; this ensures that less than one pair is

generated during each coincidence window, minimizing accidentals due to multi-pair

emission. Figure 5.1(c) shows the two-dimensional coincidence map obtained by test-

ing all signal-idler code combinations, with a 30-s integration time per point. The

contrast between matched and mismatched codes is 1.89:1, slightly less than the

theoretical maximum of 2:1 for no accidentals and perfectly flat spectra. The only

major drawback is the approximately 6-dB pulse-shaper insertion loss, which proves

the main contributor to the relatively low rate of coincidences per idler detection.

Nevertheless, our experiment is able to verify spectral entanglement clearly and with

a 20-fold increase in total counts over the equivalent pair of monochromators. Ad-

mittedly, with the ability to raise the biphoton flux by a factor of N/2, it would

be possible to achieve the same coincidence rate for matched monochromators as in

our Hadamard approach. However, in addition to the requirement of adjusting the

pump power, which may be impractical in some circumstances, doing so also increases

the relative probability for accidentals due to multiple-pair generation, which scales

quadratically with the pair flux [93]. In contrast, our method boosts the coincidence

rate at any given pump power, significantly improving sensitivity without altering the

statistical properties of the input field. Hadamard coding can thereby be viewed as

a source-independent method to verify spectral entanglement much more efficiently

than comparing the coincidences between two narrowband filters.
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5.3 Interferometer Emulation

Our high-resolution pulse shaper shows additional promise in experiments in Fran-

son interferometry. The archetypal Franson interferometer [94] is shown in Fig. 5.2(a);

signal and idler photons are sent through separate Mach-Zehnder interferometers

(MZIs), identical except for phase shifts in their long arms, and coincidences between

two of the output ports are measured. If the difference between long and short arms

exceeds the single-photon coherence time (on the order of picoseconds or less for our

biphotons) but is less than the coherence time of the pump (longer than a microsec-

ond for our source), the coincidence rate displays interference while the single-photon

rate is constant [94]. Explicitly, the coincidence rate is of the form

Rc ∝ 1 + V cos(Φs + Φi + 2ω0T ), (5.3)

where Φs and Φi are the signal and idler phase shifts, 2ω0 the pump frequency, and

T the relative long-arm delay; the visibility V is a number between 0 and 1. Intu-

itively, such interference results from the intrinsic indistinguishability of coincidences

resulting from either both photons taking the long arms (long-long) or both taking

the short (short-short); since it is impossible—even in principle—to tell these apart,

the two probability amplitudes interfere [95]. If the MZI path-length difference ex-

ceeds the detector resolution, then the cases when the photons traverse different

arms (long-short and short-long) can be thrown out, permitting a visibility V = 1.

On the other hand, if the detectors cannot tell that one photon arrived a time T

after the other, a background contribution remains, restricting V to at most 1/2 [96].

This situation furnishes an excellent example of the importance in quantum optics of

indistinguishability in principle [95]. Even though slow detectors cannot tell the dif-

ference between simultaneous and delayed arrivals, because it is in principle possible

to distinguish them with improved equipment, the short-long and long-short paths

produce no interference. This and its other interesting properties have made the

Franson interferometer a ubiquitous tool in QKD protocols and in entanglement ver-
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Fig. 5.2. (a) Typical Franson interferometer. The signal and idler pho-
tons are sent through MZIs with different phase shifts in the long arms:
Φs for the signal and Φi for idler. (b) Spectral transmittance and phase
applied by pulse shaper to emulate a Franson interferometer. Signal and
idler photons are distinguished by frequency and sent through spectral
filters that are equivalent to traversing MZIs. In addition to 2π jumps
from wrapping the spectral phase, π discontinuities also occur as the si-
nusoidal field transmission function—the square of which gives the power
transmittance—changes sign.

ification in general (e.g., [60,61,65,67,86,97,98]), and here we explore novel methods

to implement such an interferometer with our pulse shaper.

Since the field at one MZI output is related to the input through a linear and

time-invariant transformation, each MZI can be expressed as an equivalent complex

spectral filter, which in turn can be programmed directly on the pulse shaper [74].

Neglecting an unimportant overall delay, the signal MZI has the transmittance

|Hs(ω)|2 = cos2
(
Φs + ωT

2

)
(5.4)

and phase

argHs(ω) =

⎧⎪⎨⎪⎩(Φs + ωT )/2 if cos
(
Φs+ωT

2

)
> 0

(Φs + ωT )/2 + π if cos
(
Φs+ωT

2

)
< 0.

(5.5)

(The idler filter is obtained by replacing Φs with Φi in the above.) An example filter

function for Φs = π/2, Φi = 0, and T = 5 ps is given in Fig. 5.2(b). In replacing

the mirrors and beam splitters of a traditional MZI with a stand-alone pulse shaper,
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Fig. 5.3. (a) Experimental coincidence rate for pulse-shaper Franson
interferometer, at matched MZI delays and with a 30-s integration time
per point. The detected coincidences show interference with the applied
phase Φs+Φi, possessing a visibility of 0.43. (b) Reduction in visibility as
the MZI delays are shifted from each other. The theoretical curve is scaled
to match the experimental visibility at zero mismatch, and error bars
represent 95% confidence intervals for the fit parameters. (c) Coincidence
rate for pulse-shaper interferometer with flat spectral phase, again at a
measurement time of 30-s per data point. The visibility is 0.45.

our implementation offers enhanced stability over the standard Franson arrangement.

Unlike mounted mirrors which destroy interference at the slightest mechanical per-

turbation, this pulse shaper provides a constant spectral filter independent of table

vibrations or temperature fluctuations.

Programming T = 5 ps for both spectral filters and measuring the coincidence

rate as the phase is shifted, we find the results of Fig. 5.3(a), least-squares fit to a

sinusoid and without dark count subtraction. As expected, the measured visibility of

0.43 is below the theoretical maximum of 0.5 for our slow detectors (Td ≫ T ). This

pulse shaper therefore fully emulates the standard Franson interferometer. Moreover,

its programmability allows us to easily examine more subtle interference effects, such

as signal-idler path-length mismatch. As the long path of the signal MZI is changed

compared to that of the idler MZI, an element of distinguishability is introduced

between the long-long and short-short coincidence paths, for no longer is the signal-

idler arrival difference identical, and so the visibility is expected to decrease. This
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argument is confirmed in theory: for a flat signal spectrum of width ∆ω and a signal-

idler long-arm mismatch of ∆T , we can utilize Eq. (5.2) to obtain

Rc ∝ 1 + Vsinc
(
∆ω∆T

2

)
cos(Φs + Φi + ϕ), (5.6)

where ϕ is a constant phase offset. Therefore we expect the visibility to decrease like a

sinc function. Figure 5.3(b) shows the measured interference visibility as a function of

delay mismatch, which indeed matches that expected for our 2-THz signal spectrum.

The pulse shaper also permits the creation of “interferometers” with no mechan-

ical analogues, an example of which was examined previously in the phase-sensitive

ultrafast detection regime [74]; here we extend these concepts to the slow-detector

limit. Recalling the findings encapsulated in Eq. (5.2), we expect our measured in-

terference pattern to show no dependence on the phase of Hs(ω) or Hi(ω). And with

our pulse shaper, it is simple to program the spectral transmittance along with flat

phase instead of Eq. (5.5)—a condition which would be impossible to achieve with a

mechanical MZI. So taking the spectral amplitude of Eq. (5.4) with flat phase, and

sweeping the phase shift Φs + Φi, we obtain the interferogram in Fig. 5.3(c); with a

visibility of 0.45, it is nearly identical to that found when the shaper was programmed

with the full MZI phase. Thus we are able to confirm spectral phase independence in

the slow-detection regime, enabled by the independent phase and amplitude control

of our pulse shaper.

5.4 Conclusion

Using basic single-photon detection, we have experimentally verified a simple,

fiber-pigtailed pulse-shaping system for the control of entangled photons in the tele-

com band, which offers integrability with existing fiber-based quantum systems. We

have demonstrated its effectiveness specifically in a new Hadamard-based approach

for gauging spectral entanglement and in creating modified Franson interferometers.

More generally, this setup’s versatility and programmability make it a useful tool for

future characterization of biphoton sources in QKD systems.
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6. EXPERIMENTS WITH ULTRAFAST COINCIDENCE

DETECTION

6.1 High-Efficiency Biphoton Correlator

The experiments described in Chapter 5 have shown how high-resolution pulse

shaping can be exploited to manipulate telecom biphotons. However, with the slow

electronic detectors employed, one is fundamentally limited by Eq. (5.2), in that

only amplitude filtering has an effect on the measured coincidence rate; any spec-

tral phase modulation vanishes. Therefore we would desire an alternative detection

scheme with timing resolution sufficient to measure the correlation function directly,

for which the full potential—and fascinating physics—of phase shaping can be re-

alized. Fortunately for us, such a method has indeed been demonstrated, based on

biphoton sum-frequency generation (SFG) [100]. Instead of sending signal and idler

photons to separate detectors, they are mixed in a second nonlinear medium; if the

photons overlap in time, with some small probability they can recombine through

SFG and generate a new photon at the original pump frequency. As shown theoreti-

cally in [101] and discussed in detail in Appendix B, when phase matching permits all

frequency pairs to combine with equal weight, the rate of SFG is directly proportional

to the correlation function Γ(2,2)(τ), where the time separation τ can be controlled

by stepping the delay of one photon with respect to the other. Such fine resolution

is made possible by use of an ultrafast optical—rather than electronic—coincidence

gate maintaining femtosecond-level timing resolution, analogous to the nonlinear tech-

niques widely employed for characterizing ultrashort classical pulses [1]. The major

shortcoming of this method, though, is the typically low efficiency of biphoton SFG;

The results in Sections 6.1 and 6.2 have been published in [99].
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at such low light levels, efficiencies of only 10−9 [74] or 10−7 [100] have been reported,

limiting the applicability of this approach in high-loss environments.

To significantly improve this efficiency, we have proposed and implemented a new

biphoton correlator based on SFG in a PPLN waveguide, whose large nonlinear coef-

ficient and long interaction length offer huge performance gains over the bulk crystals

employed previously. Figure 6.1(a) shows the setup for our ultrafast coincidence ex-

periments. After the biphotons are coupled into optical fiber, they are either sent

through DCF or a pulse shaper and then focused into a second PPLN waveguide,

ideally identical to the first and heated to achieve phase matching with it. The un-

converted biphotons are removed by three colored glass filters (Schott RG9) and the

SFG photons detected by a silicon single-photon avalanche photodiode (PicoQuant

τ -SPAD) with a dark count rate less than 20 s−1; an electronic counter (SRS SR400)

then logs the detections over specified time windows. No dedicated delay stage is

present, since we can control relative signal-idler delay by programming linear phase

on the pulse shaper [72]. To minimize loss, we first insert the DCF link with a dis-

persion of −78 fs/nm, which we have found optimally compensates the combined

dispersion of the nonlinear crystals and the ∼5 m of Corning SMF-28e fiber connect-

ing the two PPLN waveguides. It is important to verify that we are indeed operating

in the single-pair regime (no more than one biphoton within the correlation time).

Not only is this required to see the desired quantum correlations, but unacceptably

high photon fluxes will also taint any efficiency measurements, due to unwanted mix-

ing of photons from separate entangled pairs. Verification is possible by recording the

SFG counts as the pump is attenuated, for in the multi-pair regime the count rate

is expected to scale quadratically, whereas a linear dependence obtains for quantum

light [100,101].

Figure 6.1(b) furnishes the results of this test. Each data point represents the

average of five 1-s measurements, and the subtracted dark count rate is determined

by recording the counts over 5 s when the pump is blocked. A log-log slope of 1.13

is found for the curve, confirming that we reside in the near-linear, quantum regime.
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Fig. 6.1. (a) Experimental setup for ultrafast coincidence detection. The
biphotons are manipulated with either DCF or a pulse shaper and cou-
pled into a second waveguide for upconversion. A single-photon counter
detects the number of SFG photons at ∼774 nm. The second collimator
as well as the detector are housed in a box to exclude stray light. (b)
Measured detector counts as a function of power coupled into the first
waveguide, when DCF is used. The log-log slope is 1.13. (c) Measured
signal-idler temporal correlation function with linear interpolants between
data points; here the pulse shaper is used to achieve zero net dispersion.
The theoretical result is given in the inset.

The raw count rate is exceptionally high as well, reaching 74 100 s−1 at a coupled

pump power of 16.3 mW. Accounting for losses between the two PPLN waveguides,

the probability for a coupled photon pair to recombine in the second waveguide is

found to be approximately 10−5, comparable to our SPDC conversion efficiency, as

expected from theory (cf. Appendix B), and a full two orders of magnitude higher than

the best previously reported [100]. Most importantly, our record-efficiency correlator

facilitates use of another high-resolution commercial pulse shaper, whose loss would

have otherwise disqualified it with less efficient bulk crystals. In these experiments, we

utilize a slightly different Finisar WaveShaper (model 1000S) from that in the previous
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chapter; since signal and idler need not be physically separated for detection, we are

free to enlist a pulse shaper with only one output port, so we have chosen a model with

10-GHz resolution over the C-band from 191.250 to 196.275 THz. Losing the L-band

capabilities of the 4000S/X is of no consequence for us; the SPDC emission’s center

frequency is located on the high-frequency half of the C-band, so even if we could

pass more idler photons by including the L-band, the corresponding signals—and thus

the biphotons as a whole—would still be blocked. The pulse-shaper insertion loss is

approximately 5 dB, and since we use SFG for detection, which scales quadratically

with shared signal-idler optical loss [100, 101], we thereby incur a ∼10-dB reduction

in counts, which is nonetheless tolerable because of our exceedingly high count rate.

Operating at the maximum power in Fig. 6.1(b), we replace the DCF with the

pulse shaper, programming on it a baseline quadratic phase to achieve a net dispersion

of zero and maximize SFG counts. Following the same procedure as in [72], the signal-

idler correlation function is then obtained by sweeping through additional oppositely

sloped linear phase terms applied to the signal and idler spectra and measuring the

SFG counts at each step; the net signal-idler delay is proportional to the difference in

these two slopes, thereby permitting tunable control of the relative photon timing. We

note that, in general, SFG introduces distortions in the obtained correlation function

due to phase-matching nonuniformity [102, 103]. However, our use of a pulse shaper

restricts the SPDC bandwidth to within the nearly flat portion of the phase-matching

response, ensuring that all frequency pairs combine freely. This produces an SFG flux

directly proportional to Γ(2,2)(τ), as detailed in Appendix B.

The result of our measurement is given in Fig. 6.1(c). Error bars depict the

uncertainty in five 1-s measurements, after dark count subtraction. In this instance,

we obtain the dark count rate by recording the counts when the pulse shaper is

programmed to maximum (> 35 dB) attenuation. (This method is employed in all

subsequent measurements in this chapter.) Even though the second waveguide and

detector are isolated from ambient light by an enclosure, dark counts around 450

s−1 are found because of a monitoring light-emitting diode inside the shaper. The
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temporal FWHM of the correlation function is 370 fs, in good agreement with the 354

fs expected for a bandlimited flattop signal half-spectrum cut down to 2.5 THz by

the pulse shaper. Simulations suggest the slight asymmetry could be due to a small

spectral mismatch between the phase-matching curves of the two crystals, although

we have not been able to pursue this hypothesis in detail experimentally.

Building on the technical accomplishment of our record-efficiency correlator, we

are thus left with an operational “biphoton playground” in which we are free to ex-

plore a wide range of complex spectral shaping techniques. Accordingly, our focus in

the next four sections is to extend pulse-shaping ideas developed in classical optics to

entangled photons, exploring new phenomena of both fundamental and potentially

practical interest. Specifically, we exploit high-order dispersion control, common in

ultrashort pulse generation, to demonstrate high-order biphoton dispersion cancella-

tion; orthogonal phase codes, used in classical optical code-division multiple-access

(O-CDMA) communications, to encode and decode entangled photons; patterned am-

plitude or phase filtering, used to generate high-repetition-rate classical pulse trains,

to create periodic biphotons and show the temporal Talbot effect; and frequency tun-

ing, used for delay control in classical systems, to modulate the relative arrival times

of entangled photon pairs.

6.2 High-Order Dispersion Cancellation

Methods to control and compensate optical dispersion—the variation of group ve-

locity with optical frequency [1]—have proven essential in applications ranging from

the generation of ultrashort pulses to optical communications. Such concerns nat-

urally extend into the quantum regime as well, e.g., in the spreading of biphoton

correlations [104] or heralded single-photon wave packets [105]. Yet the spectral

correlation between entangled photons actually permits a fascinating nonlocal can-

cellation of this dispersion; as first shown theoretically by Franson [106], propagating

each photon of an entangled pair through different media with equal and opposite
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second-order dispersion has no effect on the correlation function, even if the two

are arbitrarily far apart; although individually each photon spreads, the dispersion

of one photon cancels that of the other so that collectively the biphoton remains

unaltered. The mathematical origin of this effect for our biphoton source is read-

ily observed by specializing Eq. (4.31) to pure phase filters Hs(ω) = exp[iΦs(ω)] and

Hi(ω) = exp[iΦi(ω)], where Φs(ω) and Φi(ω) are arbitrary real functions of frequency.

The biphoton wavepacket then becomes

ψ(τ) =

∫ ∞

0

dΩφ(Ω) exp
{
− iΩτ + i[Φs(ω0 + Ω) + Φi(ω0 − Ω)]

}
. (6.1)

Thus whenever Φs(ω0+Ω) = −Φi(ω0−Ω), the original wavepacket is recovered, with

the signal dispersion canceling that of the idler. In ultrafast optics, it is common

to describe such spectral phase modulation in terms of the contributing orders of its

Taylor expansion; writing signal-idler phases as Φs,i(ω) =
∑

nΦ
(n)
s,i (ω − ω0)

n/n!, the

wavepacket assumes the form

ψ(τ) =

∫ ∞

0

dΩφ(Ω) exp

{
−iΩτ + i

∞∑
n=0

[
Φ(n)

s + (−1)nΦ
(n)
i

]
Ωn

}
. (6.2)

Perfect dispersion cancellation, to all orders, is thereby obtained by the condition

Φ
(n)
s + (−1)nΦ

(n)
i = 0 for n = 2, 3, 4, .... (The n = 0, 1 cases have no impact on

the biphoton shape itself.) Dispersion cancellation has been shown on the ultrafast

timescale, but only for second-order spectral phase [103]. On the other hand, higher

orders become increasingly important for wide bandwidths, and so it is essential to

generalize dispersion cancellation to arbitrary dispersions. Although experimental

examination of such effects is difficult with standard optical materials and compo-

nents, due to the lack of independent control of each order, it is attainable with

programmable Fourier-transform pulse shaping. We are therefore able to examine

high-order dispersion cancellation for the first time using our high-efficiency correla-

tor and fine-resolution pulse shaper.

Before proceeding to the experiments themselves, it is interesting to note that the

opposite sign of dispersion yields cancellation for even orders only; for odd orders, the
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same sign is required. The spectral anticorrelation of the entangled photons requires

that the signal and idler phases be antisymmetric with respect to each other. Thus

odd-order coefficients must be matched, not flipped, for full cancellation. This condi-

tion is analogous to classical narrowband SFG, which is sensitive only to the symmet-

ric phase [107]. And this reveals a principal difference between Franson cancellation

and dispersion insensitivity in Hong-Ou-Mandel (HOM) interference [108–111]. HOM

dispersion cancellation places symmetry constraints only on the total biphoton phase,

not on the particular functional forms of the signal and idler phases relative to each

other. If we define ΦT (Ω) = Φs(ω0 + Ω) + Φi(ω0 − Ω), then the HOM interference

pattern is unaffected so long as ΦT (−Ω) = ΦT (Ω); i.e., the total biphoton phase must

be a symmetric function of the signal frequency offset. Thus, the HOM interferometer

is intrinsically insensitive to any even-order phase experienced by either photon [111],

a property that has permitted narrow HOM dips even without true Franson cancella-

tion [110,112]. On the other hand, the dispersion cancellation examined here, which

applies to the biphoton correlation function directly, demands the more stringent

condition that the total biphoton phase be identically zero, for all orders above first.

Utilizing the setup of Fig. 6.1(a) with the pulse shaper applying the same baseline

quadratic phase used to achieve the bandlimited correlation function in Fig. 6.1(c),

we add additional phase terms to examine the cancellation of high spectral orders,

from n = 2 to n = 5. The particular phase coefficients are chosen to yield dispersed

waveforms in the range of ±5 ps, which is well within the ±30-ps maximum delay

possible with the pulse shaper. The basic procedure for each order n is first to

apply the specified dispersion Φ
(n)
s to the signal photon, with no dispersion on the

idler; then filter the idler with either identical or opposite dispersion Φ
(n)
i , but leave

the signal untouched; and finally, apply the previous spectral phases to both photons

simultaneously. In the first two cases, a broad and lowered correlation function should

be observed, while in the third, the original narrow peak should be recovered.

And this is precisely what is obtained in experiment. The second-order case

is presented in Fig. 6.2(a) (theory) and (b) (experiment), for dispersion constants
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Φ
(2)
s = −Φ

(2)
i = −0.3 ps2. With Φ

(2)
s applied to the signal, but nothing to the idler,

a broadened correlation function is obtained; similar behavior is seen with nothing

applied to the signal, but Φ
(2)
i on the idler. However, simultaneously applying both

spectral phases returns the correlation function to its original, undispersed form,

demonstrating complete cancellation. Proceeding to the next even order, with Φ
(4)
s =

−Φ
(4)
i = −0.01 ps4, we find the results of Figs. 6.2(c) and (d). Just as in the second-

order case, fourth-order cancellation is obtained by applying the opposite sign of

Φ
(4)
s to the idler, matching expected results from theory. Odd-order spectral phase

follows the reverse procedure, for the signal and idler expansion coefficients must

be equal for cancellation to ensue. We verify this behavior for the third-order case

in Figs. 6.3(a) and (b). Taking Φ
(3)
s = Φ

(3)
i = −0.05 ps3, cancellation is indeed

observed when the same third-order phase is applied to both signal and idler, even

though broadening occurs in the individual cases. Finally, testing fifth-order phase

with dispersion constants Φ
(5)
s = Φ

(5)
i = −0.01 ps5, cancellation is again achieved, as

shown in Fig. 6.3(c) and (d).

The fact that even and odd orders carry opposite requirements highlights a crucial

divergence from related dispersion effects with coherent or thermal optical sources.

For example, in local dispersion compensation of classical pulses, all spectral orders

in the compensating medium must be flipped relative to the dispersing medium. On

the other hand, for dispersion cancellation with thermal light sources, the dispersion

along both paths must be identical [113–115]. In either case, all spectral orders share

a fixed cancellation condition, independent of parity, quite different from the alter-

nating behavior shown here. Experimental observation of these effects represents

a key contribution of our work, improving overall understanding of biphoton dis-

persion management. In particular, we believe our pulse-shaping approach to high-

order dispersion cancellation could prove quite useful in the quest for single-cycle

biphotons—ultrabroadband entangled photons with correlation times of only a few

femtoseconds [116]. Although extremely narrow HOM dips have been observed [112],

a single-cycle correlation function has yet to be demonstrated, due in large part to
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Fig. 6.2. Even-order dispersion cancellation. (a) Theoretical and (b)

experimental results for second-order cancellation, using Φ
(2)
s = −Φ

(2)
i =

−0.3 ps2. Likewise, (c) theory and (d) experiment for fourth-order cancel-

lation with Φ
(4)
s = −Φ

(4)
i = −0.01 ps4. Error bars are omitted for clarity,

but are comparable to those in Fig. 6.1(c), and each curve consists of 100
points, spaced at 100 fs each and joined by linear interpolation. “Signal
dispersed” and “idler dispersed” signify application of the specified phase
to only one of the two photons, whereas “both dispersed” represents ap-
plication to both.

a lack of high-order dispersion control [117]. Our experiments generalizing Franson

cancellation to arbitrary spectral orders therefore represent an important step in this

direction.

6.3 Orthogonal Spectral Coding

In the Hadamard coding described in Section 5.2, we were limited to amplitude-

only spectral codes since the slow electronic detectors could not observe any phase

effects. However, with our ultrafast biphoton correlator, spectral phase modulation

The results in Section 6.3 have been published in [118].
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Fig. 6.3. Odd-order dispersion cancellation. Cancellation of third-
order dispersion in (a) theory and (b) experiment, for the specific case

of Φ
(3)
s = −Φ

(3)
i = −0.05 ps3. (c) Theoretical and (d) experimental can-

cellation of fifth-order dispersion, for Φ
(5)
s = −Φ

(5)
i = −0.01 ps5. The same

considerations mentioned for Fig. 6.2 hold here as well.

is instead of critical importance, as clearly evidenced by the dispersion cancellation

experiments in the previous section. Therefore we now examine the possibilities

available from truly orthogonal Hadamard codes consisting of ones and minus-ones

(phases of 0 and π). Such codes have been utilized in classical O-CDMA [119, 120],

and we make use of the concept of time-reversed entanglement generation [121–123] to

connect this classical approach to entangled photons. The basic idea is that, instead

of using SPDC of a narrowband pump to generate broadband entangled photons,

some entanglement-like effects can be seen by considering SFG of broadband classical

fields at a fixed upconversion frequency. This process effectively post-selects only the

spectral combinations of the classical field that are correlated in the same manner

as entangled photons, permitting, for example, a classical analogue of the dispersion

cancellation discussed in the last section [123]. Here, though, instead of using this
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connection to obtain a classical version of a quantum phenomenon, we exploit it to go

in the opposite direction, taking classical code-based O-CDMA to entangled photons.

The classical foundation has been demonstrated in the spectral coding of coherent

optical pulses, in which one Hadamard phase code is applied to the upper half of the

spectrum (ω > ω0), and a second one to the lower half (ω < ω0); then a narrowband

SFG field is generated and measured [107, 124]. If phase matching permits all con-

stituent frequencies to combine, the resultant SFG field at frequency 2ω0, ẼSFG(2ω0),

is given by the integral [1]

ẼSFG(2ω0) ∝
∫ ∞

0

dΩ Ẽ(ω0 + Ω)Ẽ(ω0 − Ω). (6.3)

For an input field with a flat spectral amplitude, the integral can be viewed as the

inner product between the codes applied to each half of the spectrum. If they are

identical (i.e., a mirror image about ω0), a high yield is found, but if they differ,

orthogonality ensures that the integral drops to zero. This discrimination provides

a means for many users to communicate over the same spectro-temporal space. The

sender encodes the message by applying the intended receiver’s code to one spectral

half, and only the receiver who applies the correct code to the opposite half will see

the message above the background.

Comparing Eq. (6.3) with the general shaped biphoton wavepacket of Eq. (4.31)

reveals immediately how one can obtain an entangled photon version of this coding.

If φ(Ω) is flat over the filter passbands, and we apply Hadamard codes to both the

signal and idler, the biphoton wavepacket at τ = 0 is mathematically equivalent to

the classical SFG field in O-CDMA: matched codes give a peak, whereas mismatched

codes yield essentially zero. How such coding on entangled photons would work

is summarized in Fig. 6.4. The signal half of the spectrum corresponding to a

temporally narrow biphoton is initially encoded with a Hadamard sequence of 0 and

π phases, which spreads and lowers the temporal correlation function, creating a

null at zero delay. Then a second phase code is applied to the idler. If the codes

match in the symmetric sense, the sharply peaked biphoton is recovered, with a

temporal shape identical to the uncoded biphoton in the ideal case. But if the codes
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Fig. 6.4. Principle of biphoton spectral coding. (a) Encoding the bipho-
ton. A sequence of 0 and π phase shifts is applied to the signal half-
spectrum of a temporally narrow biphoton, which spreads the correlation
function in time and produces a null at τ = 0. (b) Decoding the biphoton.
A second code is applied to the idler half of the spectrum. If it matches
that used for encoding, the narrow correlation peak is recovered, while an
unmatched code instead leaves the correlation function in a new, but still
spread, state.

differ, the correlation function remains spread with zero magnitude at τ = 0. We

remark that this configuration can be viewed as the spectral dual to the temporal

coding demonstrated in [125], which is itself an excellent example of carrying classical

communication techniques over to biphotons.

For a more intuitive understanding of our approach, we can view this encoding and

decoding phenomenon as an example of the quantum mechanical interference of indis-

tinguishable paths. Unlike classical probabilities, the complex amplitudes associated

with quantum paths interfere with each other if they cannot be distinguished, even in

principle [95], a concept which we utilized to justify the interference in the Franson

interferometer of Section 5.3. But whereas two indistinguishable paths contribute

in that interferomenter, in our orthogonal coding case we instead have N indistin-

guishable bin combinations of frequency pairs, for without additional measurements

that destroy the experiment, it is impossible to tell through which Hadamard chips

the detected photons passed. Accordingly, the probability amplitudes interfere with
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each other, and when mismatched codes give identical numbers of pair offsets with

combined phase shifts of 0 and π, we obtain perfect cancellation at zero delay. Thus

one can view our orthogonal coding approach as an extension of path interference in

which the number of paths is programmably controlled by a pulse shaper.

This flexibility in choosing the dimensionality of the coding process—and indeed

the effectiveness of the coding itself—derives from the high degree of entanglement

possessed by our biphoton source. In general, bipartite entanglement is quantified

by the Schmidt number, which roughly corresponds to the total signal-idler spectral

modes contributing to the entanglement [126,127]. The Schmidt decomposition con-

veys the information potential of an entangled photon pair, indicating in our scheme

the maximum useful code dimensionality and also conceivably limiting the spectral

shapes of correlated signal-idler frequency modes. Experimentally, this degree of en-

tanglement is well characterized by the Fedorov parameter [128], or the ratio of the

marginal signal bandwidth to that conditioned on a frequency measurement of the

idler. For our source, with a total signal bandwidth over 2 THz and a conditional

width predicted to be less than 200 kHz (the pump laser linewidth) the estimated

Fedorov ratio is in excess of 10 million. Such high-dimensional entanglement fully jus-

tifies the monochromatic pump assumption built into Eq. (4.14), and it also indicates

that our coding process, which we push to a dimension of 40, is only beginning to ac-

cess the intrinsic information potential of the biphotons themselves; as we note later,

experimental limitations such as pulse-shaper resolution prove far more restrictive.

Moreover, while we do employ an SFG detection scheme in these experiments, just

as in the classical version [107,124], our use is fundamentally different. In the classical

implementation, the process of narrowband SFG is necessary to achieve the desired

spectral gating of the product of the input fields—upconversion evaluates only the

waveform corresponding to the Hadamard products. But in our case, SFG is required

only inasmuch as it furnishes sufficient timing resolution to observe the fine features

of the correlation function. The orthogonality condition is imposed on the biphoton

state itself and therefore could be seen nonlocally by isolated detectors possessing
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adequate resolution. Thus our use of SFG is not a fundamental, but only technical

restriction which could be removed in the future by improvements in single-photon

detector jitter to the picosecond level [129].

Using the same setup and baseline quadratic phase as in the dispersion cancel-

lation tests [Fig. 6.1(a) with the pulse shaper in place], we first examine our phase

coding approach in measurements of the spectral correlations of entangled photons.

Previously, in Section 5.2, we implemented an amplitude coding approach which

featured an improved count rate over coincidence measurements between two narrow

slits, with a theoretical contrast of 2:1 between matched and mismatched codes. Here,

however, utilizing pure phase coding accompanied by ultrafast coincidence detection,

the contrast between the coincidences at zero delay for matched and mismatched

codes is theoretically unbounded, for the phase codes are truly orthogonal. Addi-

tionally, phase Hadamard coding compared with narrow slits in the same ultrafast

detection scheme is now expected to show an N2 enhancement in the measured count

rate at matched codes and zero delay, instead of the N/2 improvement with am-

plitude codes. One factor of N results from the increased total flux by passing all

bins, and another factor of N occurs because of the increased total bandwidth, which

supports a temporal correlation function with a sharper peak. Now while this N2

increase might seem an upgrade over the N/2 enhancement of the amplitude coding

approach, we point out that the overall efficiency of ultrafast coincidence detection

(10−5 in our record correlator) makes any phase coding ill-suited for practical spectral

measurements; we simply use this test to characterize performance, in no way billing

it as a viable spectral measurement technique.

Taking 2.4-THz passbands for the signal and idler, we split both into 4 chips (600

GHz each), finding that both Hadamard [Fig. 6.5(a)] and double-slit [Fig. 6.5(b)]

implementations show clear anticorrelation to this resolution, although the Hadamard

approach yields an approximately 16-fold increase in total SFG counts. This improved

flux becomes even more evident when the chips are made finer. The results for 300-

GHz chips are shown in Figs. 6.5(c) and (d), and while the orthogonal codes still give a
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Fig. 6.5. Comparison of Hadamard and equivalent spectrometer mea-
surements. (a) Coincidence rate [s−1] for length-4 Hadamard codes and
(b) for the equivalent bandpass filter combinations, with frequencies given
by the offset from the degeneracy point, ω0. (c) Coincidence rate [s

−1] for
length-8 Hadamard codes and (d) for bandpass filters.

contrast of 59:1 between matched and mismatched cases, the double-slit measurement

is beginning to fall into the noise as the maximum count rate drops. Continuing to

chop down the frequency bins would push the two-slit case completely into the noise,

whereas the Hadamard resolution is far from limited, as we show next.

Pushing the orthogonal codes even further, we split the 2.4-THz bands into 20

chips (120 GHz each), once again recording the coincidences at zero delay for all com-

binations. As shown in Fig. 6.6(a), a high count rate is still maintained, and matched

codes yield on average 115 times more counts than unmatched pairs. Extending this

to length-40 codes generates the correlation map in Fig. 6.6(b). In this case the
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contrast is about 49:1. The higher count rates for code 1 in both plots, as well as for

code 21 in the length-40 case, are fully explained by theory. Due to the finite pulse-

shaper resolution, sharp phase transitions from 0 to π introduce diffractive losses,

a well-known effect in classical pulse shaping [1]. Since the first code possesses no

such transitions (it consists entirely of zero-phase chips), and code 21 of Fig. 6.6(b)

has only one transition, the net count rate after the coding and decoding process

is appreciably higher for these cases than in the other codes with multiple π phase

jumps.

To highlight the biphoton coding picture presented in Fig. 6.4, we also acquire

full correlation functions for specific combinations in the length-40 Hadamard map.

In Fig. 6.6(c) is shown encoding of the signal photon using code 28 from the two-

dimensional map. For flat phase applied to both signal and idler, the correlation

function possesses a narrow peak exceeding 9 000 s−1 in measured coincidences. (The

peak surpasses that in Fig. 6.6(b) due to alignment reoptimization.) When code

28 is applied to the signal, the waveform spreads, and counts of only about 30 s−1

are measured at zero delay. The decoding process is verified in Fig. 6.6(d): apply-

ing code 3 to the idler keeps the correlation function spread, with a zero-delay SFG

count rate of only about 60 s−1, whereas when code 28 is applied, the biphoton re-

gains its sharp peak. The height of the decoded peak is reduced to about two thirds

that of the uncoded case, which again is in agreement with the expected drop from

pulse-shaper resolution. These results confirm the conceptual depiction of Fig. 6.4,

showing that we can indeed hide and recover a biphoton wavepacket in our coding

scheme. Moreover, the fact that pulse-shaper resolution limits the maximum code

length that can be implemented—introducing loss and waveform degradation as the

chip bandwidth decreases—mirrors similar findings in orbital angular momentum, in

which experimental imperfections have been shown to fix an optimum dimension be-

yond which the secure information capacity drops [130]. Proper code-length selection

will therefore play an important role in developing our spectral coding approach in

the context of QKD.



73

Fig. 18 

(a) (b) 

(c) (d) Signal Code 

Id
le

r 
C

o
d
e 

  

  

5 10 15 20 

5 

10 

15 

20 

0 

4000 

8000 

Signal Code 

Id
le

r 
C

o
d
e 

  

  

10 20 30 40 

10 

20 

30 

40 

0 

2500 

5000 

−5 0 5 
0 

5000 

10 000 

Signal-Idler Delay [ps] 

C
o
u
n
ts

 [
s−

1
] 

  

  
Uncoded 

Encoded 

−5 0 5 
0 

5000 

10 000 

Signal-Idler Delay [ps] 

C
o
u
n
ts

 [
s−

1
] 

  

  

Matched 

Idler Code 

Mismatched 

Idler Code 

Fig. 6.6. Hadamard orthogonality for long sequences. (a) Measured co-
incidences [s−1] at zero optical delay for all combinations in the N = 20
code family. (b) Coincidence map for length-40 codes. (c), (d) Specific
example of length-40 coding. (c) With no codes applied, a sharp correla-
tion function is measured, but when code 28 is applied to the signal, the
peak disappears and the biphoton spreads. (d) Applying code 28 to the
idler recovers the sharp correlation function, yet programming the wrong
code (in this case, code 3) keeps the biphoton spread. Error bars give the
standard deviation of five 1-s measurements, after dark count subtraction;
linear interpolants connect the measured points.

While most Hadamard code combinations give results that appear essentially fea-

tureless, certain specializations can yield interesting wavepackets in their own right.

For example, choosing a code of alternating 0’s and π’s for the signal and flat phase

for the idler, we once again obtain orthogonality at zero delay, with the correlation

function peak suppressed. However, the pattern’s periodic nature yields values of

optical delay for which the biphoton packet can produce large maxima. For a chip
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Fig. 6.7. Correlation doublet creation. The length-10 pattern, with
240-GHz chips, creates a separation of 4.2 ps; the length-24 pattern, com-
prised of 100-GHz chips, increases this separation to 10 ps. Again error
bars show the standard deviation of five 1-s measurements, dark counts
are subtracted, and linear interpolation is used to connect the measured
points.

bandwidth of ∆ω, every other ∆ω bin pair picks up a π phase shift, but as can be

seen in Eq. (4.31), for delays τ = ±π/∆ω, each bin acquires an additional spectral

phase of 0, π, 2π, 3π, etc., which precisely compensates for the alternating pattern

and allows each frequency pair to interfere constructively, producing a temporal peak.

Additional local maxima surface at all odd multiples of the above delay, but the finite

chip bandwidth suppresses them so that most of the optical energy is concentrated in

the first two peaks about zero. This particular code therefore converts a single cor-

relation peak into a doublet, with separation controlled by the chip rate. Figure 6.7

furnishes experimental examples, for 240- and 100-GHz chips. Theory is confirmed, as

the generated peaks appear at ±2.1 ps and ±5 ps, respectively. Two subsidiary max-

ima are even discernible at ±6.3 ps for the 240-GHz case, matching the odd-multiple

prediction.
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These coding experiments provide just a few examples of the possibilities available

for biphoton manipulation based on optical codes. Our novel method for encoding of

information in the spectral degree of freedom has potential for application not only

in implementing multi-user QKD [131], but also in the development of new code-

based time-frequency QKD protocols, as alternatives to previous proposals based

on temporal modulation [68] or dispersion [69, 70]. Indeed, development of such a

protocol represents one of the goals for future work addressed in the next chapter.

6.4 Biphoton Correlation Train Generation

The third application of ultrafast biphoton pulse shaping we consider focuses on

a qualitatively different form of correlation: the two-photon frequency comb—that

is, an entangled photon pair occurring in a superposition of discrete spectral mode

pairs [133–142], rather than a continuous spectrum as considered heretofore. Such

biphotons have the potential to combine the unique characteristics of quantum en-

tanglement with the precision of classical optical frequency comb metrology [6, 7].

Several configurations generating such photonic states have been implemented, in-

cluding spontaneous four-wave mixing in microresonators [142–144], cavity-enhanced

SPDC [134–137,141,145], and direct filtering of broadband biphotons [139,140]. As-

suming phase locking of the constituent spectral modes, the temporal correlation

function of these biphoton frequency combs consists of a train of peaks, the number

of which is approximately equal to the spectral mode spacing divided by the linewidth.

Indirect measurements based on HOM interference have revealed the periodic coin-

cidence dips indicative of such correlation trains [134, 139, 140], and with sufficiently

low repetition rates, direct correlation measurements have been made possible as

well [135, 137, 141]. Moreover, it has been predicted theoretically [146] that propa-

gation of these two-photon frequency combs through dispersive media will produce

The results in Section 6.4 have been published in [132].
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revivals of the temporal correlation function at discrete dispersion values, through an

extension of the classical temporal Talbot effect described in Section 2.2.

Specifically, we experimentally examine a new method for generating biphoton

correlation trains based on optical pulse shaping. Our technique permits the creation

of extremely high-repetition-rate (∼THz) trains, with programmable control of peak

number and spacing. We explore both amplitude and phase filtering approaches,

each with its own advantages. With amplitude filtering, we create coherent biphoton

frequency combs with tunable properties and observe the two-photon temporal Tal-

bot effect for the first time. Alternatively, when the temporal phase of the biphoton

wavepacket is unimportant, we show that spectral phase-only filtering can yield cor-

relation trains with much greater efficiency, even though the filtered spectrum does

not contain a series of discrete frequencies—i.e., it is not comb-like.

The experimental setup matches that in the previous two sections [Fig. 6.1(a)

with the pulse shaper in place], and as before the effect of pulse shaping is described

by signal and idler filters as in Eq. (4.31). Now, however, we consider spectral filters

designed to introduce multiple peaks in the temporal correlation function. Specif-

ically, we first program an amplitude-only filter consisting of a series of separated

passbands, converting the continuous biphoton spectrum into a set of discrete spec-

tral lines which corresponds in the time domain to a pseudo-periodic train of peaks.

We note that in this method there exists a fundamental tradeoff between overall flux

and the number of peaks generated. Defining ωc as the bandwidth of a given spectral

passband and ωFSR as the spacing between passbands, the total number of peaks

in the train is proportional to the ratio ωFSR/ωc, whereas the total power transmis-

sivity is inversely proportional to this quantity [147]. Combined with the fact that

the optical energy is now distributed among many peaks, the maximum count rate

actually decreases quadratically with the number of correlation peaks. Therefore to

remain comfortably above the background, we program on the signal spectrum three

passbands spaced at 650 GHz, each with the fractionally broad bandwidth of 250

GHz, and leave the idler untouched. The measured signal spectrum is given in Fig.
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Fig. 6.8. Amplitude filtering. (a) Signal spectrum measured after the
pulse shaper (with idler blocked). The nearly flat spectrum of Fig. 4.2(b)
is converted to a set of three passbands, spaced by 650 GHz and each
of width 250 GHz. (b) Measured temporal correlation function for the
spectrum in (a), but with the low-frequency idler passed. A 650-GHz cor-
relation train with three peaks is generated, in accordance with theoretical
predictions (given by the dashed curve).

6.8(a), acquired with an optical spectrum analyzer at a resolution of 62.5 GHz. The

spacing-to-passband ratio predicts about three temporal peaks, and this is precisely

what we find for the filtered biphoton correlation function, as shown in Fig. 6.8(b).

(Error bars represent the standard deviation of five 1-s measurements, and the dotted

curve gives the theoretical result; this statement holds for all subsequent plots in this

section as well.) The result is in excellent agreement with theory, confirming the

ability to produce correlation trains through straightforward amplitude filtering by

the pulse shaper.

This biphoton comb lends itself well to the examination of the temporal Talbot

effect. For although the spatial Talbot effect has been observed with entangled pho-

tons [148, 149], its temporal counterpart has been analyzed only theoretically [146].

The origin of this effect for biphoton frequency combs can be understood most simply

by considering the ideal case of a series of comb lines with infinitely narrow linewidths
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followed by second-order dispersion—the same situation examined for a classical input

in Section 2.2. Specifically, in Eq. (4.31) we take

Hs(ω0 + Ω) =
N−1∑
n=0

anδ(Ω− nωFSR)e
iΦ

(2)
s Ω2/2 (6.4)

and

Hi(ω0 − Ω) = eiΦ
(2)
i Ω2/2, (6.5)

which yields the final biphoton amplitude

ψ(τ) =
N−1∑
n=0

φ(nωFSR)ane
iΦ+n2ω2

FSR/2e−inωFSRτ , (6.6)

where Φ+ = Φ
(2)
s + Φ

(2)
i , with the familiar Franson dispersion cancellation condition

resulting when Φ
(2)
s = −Φ

(2)
i [106]. As an aside, we note that the entanglement

shared between signal and idler photons allows the same expression to be obtained

when applying all narrowband filters on the idler instead, for it is only the product

of signal-idler spectral filters which enters in Eq. (4.31). Returning to Eq. (6.6) we

readily observe that the periodic wavepacket completely replicates itself for values of

Φ+ that are integer multiples of the Talbot dispersion ΦT , where

ΦT =
4π

ω2
FSR

, (6.7)

as this ensures that the dispersion factor in Eq. (6.6) evaluates to unity for all

n [34]. Taking the limit of infinitesimal linewidth for the signal spectrum shown

in Fig. 6.8(a) gives the theoretical Talbot carpet shown in Fig. 6.9(a). At integer

multiples of ΦT , perfect reconstruction of the biphoton train is realized; at half-integer

multiples, revivals with a half-period delay shift are obtained.

For real biphoton combs, the temporal train is not perfectly periodic, but damped

by an envelope with duration inversely proportional to the non-vanishing linewidth,

a well-known effect in classical pulse shaping [3]; therefore only approximate coher-

ence revivals are possible. In particular, dispersion eventually spreads out the entire

wavepacket, meaning that the self-imaging phenomenon is discernible only up to a
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Fig. 6.9. Simulated Talbot carpets. (a) Theoretical temporal correlation
as a function of applied dispersion, for our three-peak signal spectrum but
with infinitely narrow linewidth. Perfect revivals are observed at integer
multiples of the Talbot dispersion. (b) Corresponding correlation function
when the linewidth is 250 GHz, as in Fig. 6.8(a). Dashed horizontal lines
indicate the values of dispersion considered in Fig. 6.10. Imperfect—but
still clear—self-imaging is obtained over the first Talbot length, limited
by dispersive spreading. (An overall delay shift has been subtracted off
for clarity.)

finite multiple of ΦT [146]. With the fractionally large linewidth in our experiments

(ωFSR/ωc = 2.6), chosen to minimize loss, measurable Talbot interference is limited

to approximately the dispersion regime 0 < |Φ+| < ΦT . This is nevertheless sufficient

to observe the basic effect. Figure 6.9(b) presents the theoretical Talbot carpet for

our filtered biphoton source, plotting the temporal two-photon correlation function

Γ(2,2)(τ) as a function of net dispersion; horizontal lines mark the specific dispersions

which we consider experimentally below. At each value of the dispersion, we have

shifted the wavepacket center to zero delay, in much the same way as retarded time

is calculated for classical pulses [30]. For in general, the applied dispersion intro-

duces a frequency-dependent delay given by τ(Ω) = Φ+Ω, and since the mean signal

frequency offset ⟨Ω⟩ ̸= 0, the mean signal-idler delay varies with applied dispersion.

Intuitively, the fact that signal and idler are separated by frequency implies that group

velocity dispersion forces them to travel at different mean speeds; therefore their av-
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erage temporal separation increases as they propagate through greater amounts of

dispersion.

As in the theoretical proposal of [146], we have specialized this development to

the case of continuous-wave-pumped SPDC, in which the sum of signal and idler

frequencies is fixed to a single value. If short-pulse pumping were considered instead,

signal and idler would then be correlated about a range of frequencies, and we expect

this broadened correlation bandwidth to impose an additional temporal envelope

analogous to those resulting from finite filter linewidth or pulse-shaper resolution.

Thus when the pump bandwidth exceeds these other characteristic frequencies, the

correlation train would be severely damped. Yet for a pump whose spectrum is

still narrower than the other relevant frequency scales, we expect self-imaging to

nevertheless be observable. Accordingly, it would be interesting to explore the effects

of such pulsed pumping in future studies—particularly the transition from the short-

to long-pulse regimes—although for this first demonstration we focus on the more

direct continuous-wave limit.

Experimentally, we explore the temporal Talbot effect by programming the optical

dispersion directly on the pulse shaper and observing the change to the biphoton

correlation function of Fig. 6.8(b). As before, measurement of Γ(2,2)(τ) is made

possible by applying additional, oppositely sloped linear spectral phase terms to the

signal and idler spectra, to programmably control the relative delay. For our 650-GHz

correlation trains, the Talbot dispersion parameter ΦT is 0.753 ps2, and we apply net

dispersions satisfying

Φ+ = 0.25ΦT , 0.35ΦT , 0.5ΦT ,ΦT . (6.8)

The result for the quarter-Talbot case is presented in Fig. 6.10(a). The correlation

train has doubled in repetition rate to 1.3 THz and matches theory well. Similar

quarter-Talbot-based repetition-rate multiplication has been used to generate classical

pulse trains as well [150–152]. In Fig. 6.10(b), the dispersion is now 35% of the Talbot

value, with the odd peaks increasing in relative magnitude and the even ones falling

off, a transition which is made complete at the half-Talbot mark, as highlighted in
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Fig. 6.10. Examples of Talbot interference. Biphoton correlation func-
tions measured for dispersion Φ+ equal to (a) 0.25ΦT , (b) 0.35ΦT , (c)
0.5ΦT , and (d) ΦT . Dashed lines represent simulation predictions, scaled
separately for each plot.

Fig. 6.10(c). High-extinction peaks at 650 GHz are again clearly evident, shifted

under the envelope by half a period with respect to the zero-dispersion case. Finally,

the function is returned to its original state at a full Talbot dispersion [Fig. 6.10(d)],

although the effects of finite linewidth are taking their toll as the train spreads out,

resulting in a lower maximum count rate and the formation of extra satellite peaks.

For direct comparison of the coherence revivals, we numerically correct for the

temporal offset due to signal-idler group velocity difference and overlay the zero-,

half-, and full-Talbot correlation functions in Fig. 6.11(a), which clearly shows resur-

gence of the 650-GHz train due to temporal Talbot interference. In likewise fashion,

we superpose the quarter- and zero-Talbot results in Fig. 6.11(b), highlighting the

repetition-rate doubling. Such rate multiplication through the temporal Talbot effect

is particularly advantageous in that it is achieved without removing spectral lines,
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Fig. 6.11. Coherence revival comparison. (a) Overlay of the zero-, half-,
and full-Talbot cases, after delay correction to center all at zero delay.
650-GHz trains are seen in all cases, with the finite linewidth responsible
for overall spreading. (b) Overlay of the zero- and quarter-Talbot cases,
again shifted so both are centered at zero delay. The original 650-GHz
train is doubled to 1.3 THz at the quarter-Talbot dispersion, as expected
from theory.

which would instead reduce overall flux by an amount equal to the frequency multi-

plication factor [153–155]. Notwithstanding the ultrahigh efficiency of the ultrafast

biphoton correlator we use [87], an obvious goal for the future would be to realize

even higher detection efficiencies, which would permit demonstrations with narrower

spectral filters and hence longer trains. Nonetheless, the current experiments fully

confirm the theory of [146] in extending the temporal Talbot effect to biphotons.

For circumstances in which the temporal biphoton phase is unimportant, and one

is concerned only with the correlation function itself, an alternative method based

on spectral phase-only filtering can be used to produce correlation trains much more

efficiently than amplitude filtering, utilizing a technique developed early in the history

of classical femtosecond pulse shaping [147] and applied to, e.g., control of molecular

motion [156]. To understand this approach, consider the modulus squared of Eq.

(4.31), where we define K(Ω) = φ(Ω)Hs(ω0 + Ω)Hi(ω0 − Ω) for simplicity. This

allows us to write the fourth-order correlation function as

Γ(2,2)(τ) =

∫
dΩ

∫
dΩ′K∗(Ω)K(Ω′)ei(Ω−Ω′)τ . (6.9)
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Redefining a new integration variable ∆ according to ∆ = Ω′ − Ω and replacing Ω′

gives

Γ(2,2)(τ) =

∫
d∆ e−i∆τ

∫
dΩK∗(Ω)K(Ω + ∆). (6.10)

Thus the measured correlation function is given by the inverse Fourier transform of

the autocorrelation of the filtered biphoton spectrum, and so the condition for a peri-

odic train requires only that this autocorrelation consist of discrete peaks—K(Ω) itself

need not be comb-like. In our case, we achieve the desired spectral peaks by taking

Hi(ω) = 1 and choosing Hs(ω) to be a periodic repetition of a maximal-length binary

phase sequence (M-sequence) [157], which indeed possesses discrete spikes in its auto-

correlation. Since the input biphoton spectrum is essentially flat over the pulse-shaper

passband, no additional amplitude equalization is required, and so the spectral filter-

ing is ideally lossless. In stark contrast to amplitude filtering, the maximum count rate

drops only linearly with the number of peaks generated by phase filtering—instead of

quadratically—thereby offering the potential for significantly longer biphoton trains

at a given flux. However, we emphasize that temporal interference effects, such as

the Talbot phenomenon, do not carry over to these non-comb-like states, since the

inter-peak temporal phase varies widely.

We first consider the length-7 M-sequence [0 1 1 1 0 1 0], where we map the

zeros to phase 0 and the ones to phase π. Each element is programmed to cover a

bandwidth of 115 GHz, giving a total of three repetitions of the M-sequence over the

2.415-THz signal passband set on the pulse shaper here. The measured correlation

train is presented in Fig. 6.12(a), again showing good agreement with theory. The

missing peak at zero delay results from destructive interference between the 0 and π

phase elements. We can restore the central peak by changing the binary phase shift;

taking 0.78π for the shift instead of the original π, we obtain the blue curve in Fig.

6.12(b). A high-contrast train at 805 GHz is generated under a smooth envelope,

without any amplitude filtering of the biphoton spectrum.

To directly compare the flux improvement over the equivalent amplitude filter,

we also program three repetitions of the amplitude sequence [1 0 0 0 0 0 0] over the
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Fig. 6.12. M-sequence filtering. (a) Measured correlation function for
length-7 M-sequence with a π phase shift. (b) Correlation function for
the same M-sequence but with a 0.78π phase shift (blue), compared to an
amplitude filter at the same repetition rate (red). (c) Correlation function
for a length-3 M-sequence with a 0.65π phase shift (blue) and the corre-
sponding amplitude filter. Dashed lines give theoretical predictions for
all results. In both (b) and (c), phase filtering yields a flux improvement
roughly equal to the number of peaks.

same bandwidth, which gives the desired 805-GHz train but at the cost of removing

much of the original biphoton spectrum. This result (red curve) is compared to the

phase-only approach in Fig. 6.12(b); the amplitude case is reduced approximately

7-fold in integrated flux and is barely visible above the noise. We run a similar

comparison for length-3 sequences as well, giving each symbol a bandwidth of 160

GHz and replicating the sequence five times over a 2.4-THz total signal bandwidth.

For the phase filter, we use the M-sequence [1 0 1], where ones now map to a phase

shift of 0.65π; for the amplitude filter, we take the transmission sequence of [1 0 0].

Both results are compared in Fig. 6.12(c), and a count rate improvement of about
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3:1 is observed for the phase-only sequence. These results stress the substantial flux

increases facilitated by pure phase filtering, which—coupled with the programmable

control of peak number and spacing—make such states valuable tools for future work

with high-repetition-rate biphotons.

Yet despite the considerable improvement in biphoton flux effected by phase-only

filtering, both amplitude and phase approaches face a separate restriction which limits

the maximum length of obtainable biphoton trains: pulse-shaper time aperture. The

time aperture, or the maximum temporal duration over which the shaped waveform

will accurately reproduce that of the ideal infinite-resolution mask, is fixed by the

resolvable frequency spacing [1–3]. If we model this temporal window as a Gaussian

function with an intensity FWHM TFWHM = (2 ln 2)1/2T , the effect of finite resolution

is to yield the impulse response h(t) [the inverse Fourier transform of the transfer

function H(ω)]

h(t) = h(0)(t)e−t2/T 2

, (6.11)

where h(0)(t) is the impulse response corresponding to an infinite-resolution pulse

shaper. Therefore the generated trains are restricted to a time window roughly equal

to the inverse of the spectral resolution. Now when the characteristic frequency scale

δω over which the ideal mask H(0)(ω) varies satisfies 1/δω ≪ T , h(t) ≈ h(0)(t),

and the effects of finite resolution are negligible (which was the case in the previous

experiments). However, to explicitly examine the limits of our biphoton correlation

train generator, now we choose filter functions that are significantly modified by the

time aperture. Moreover, because we use the pulse shaper not only for generation

but also for imposing the relative signal-idler delay, we suffer on two counts: first in

the creation of the correlation train, and second in its measurement. Letting ψ̃(τ)

denote the measured wavepacket under the effects of finite pulse-shaper resolution,

to best reflect the experimental conditions of our measurement, the expression in Eq.

(4.31) must be modified to

ψ̃(τ) =

∫
dΩφ(Ω)H̃s(ω0 + Ω, τ/2)H̃i(ω0 − Ω,−τ/2), (6.12)



86

where the delay τ is explicitly imposed by the filters, with the signal temporally shifted

by τ/2 and the idler by −τ/2 [72]. The corresponding infinite-resolution filters are

thus

H̃(0)
s (ω0 + Ω, τ/2) = C(Ω)e−iΩτ/2 (6.13)

and

H̃
(0)
i (ω0 − Ω,−τ/2) = e−iΩτ/2, (6.14)

where C(Ω) is the ideal spectral code applied to the signal photon. The finite-

resolution filters H̃s(ω, τ) and H̃i(ω, τ) are obtained by convolving H̃
(0)
s (ω, τ) and

H̃
(0)
i (ω, τ) with the Fourier transform of the time aperture function e−t2/T 2

. In this

way we can incorporate the effect of finite resolution on both the spectral code and

imposition of signal-idler delay.

Experimentally, we take the same periodically repeated length-3 phase sequence

as before ([0.65π 0 0.65π]), but this time consider very narrow spectral chips. In

order to correct for count-rate reduction due to alignment drift, we normalize each

correlation function to a peak value of unity; since the time aperture term is equal to

one at zero signal-idler delay, such renormalization has no effect on examination of

aperture effects. In the first case, we program a chip bandwidth of 16 GHz, for a total

of 50 repetitions of the fundamental sequence over the 2.4-THz signal bandwidth; the

measured correlation function is given in Fig. 6.13(a). Compared to the 160-GHz

chip case in Fig. 6.12(c), the peak separation has been pushed from 2.1 to 21 ps, and

the two side peaks are lowered slightly in relative intensity by the pulse-shaper time

aperture. Further reductions are evident for even smaller chips; Fig. 6.13(b) shows

the results for 9-GHz chips (total signal bandwidth 2.403 THz), and Fig. 6.13(c) those

for 5-GHz chips (2.4-THz total signal bandwidth). We find that a value for T of 50

ps (TFWHM = 58.9 ps) gives good agreement with the observed peak reduction, as

evident by the dotted theoretical curves in Fig. 6.13. This experimentally measured

time aperture corresponds to a 3-dB spectral resolution of about 7.5 GHz, slightly

better than the 10 GHz specified for the WaveShaper 1000S. From these results,

it is clear that pulse-shaper resolution limits the overall duration of the generated



87

(b) 

Fig. 29 

−40 0 40 
0 

0.5 

1 

−60 0 60 
0 

0.5 

1 

Signal-Idler Delay [ps] 

N
o
rm

a
li
ze

d
 C

o
u
n
t 

R
a
te

 

−20 0 20 
0 

0.5 

1 

N
o
rm

a
li
ze

d
 C

o
u
n
t 

R
a
te

 

(a) (b) 

(c) 

Fig. 6.13. Examination of pulse-shaper time aperture. Normalized co-
incidence rate for periodic repetitions of length-3 M-sequences with (a)
16-GHz chips, (b) 9-GHz chips, and (c) 5-GHz chips. The theoretical
curves (dashed lines) are obtained with T = 50 ps in Eq. (6.11).

biphoton correlation function to a window of around 60 ps. Any detection schemes

with slower response times are therefore unable to resolve these correlation trains,

so while this phase-only filtering method is well suited for programmable generation

of high-repetition-rate biphoton trains, the narrow linewidth available from resonant

photon-pair generation [134–137,141–145] or filtering with an etalon [139,140] would

prove more appropriate when temporally long trains are required.

6.5 Tunable Delay Control

The fourth and final set of experiments on ultrafast biphoton manipulation fo-

cuses on programmable control of signal-idler delay. In classical photonics, tunable

delay systems are used in a variety of applications, including metrology and commu-

The results in Section 6.5 have been described in [158].
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nications [34, 159]. In its most basic form, delay control can be realized by simply

varying the optical path length traversed by the field through the system. Unfor-

tunately, the switching speed of this approach is limited to the ∼kHz range by the

mechanical motion of a delay stage or mirror. Alternatively, drastically faster mod-

ulation is possible through a setup using wavelength conversion followed by disper-

sion [160]. Since different frequencies propagate at distinct group velocities through a

dispersive medium, the amount of wavelength shift applied to the input field (either

through electro-optic modulation or nonlinear mixing) maps directly to the delay of

the output; thus, by tuning the frequency shift, it is possible to modulate the applied

delay, in some cases with GHz switching speeds [159]. However, this delay comes

at a price: dispersion not only shifts the arrival time, but also causes the pulse to

spread. Therefore compensation is typically achieved by propagating through equal

and opposite group velocity dispersion, either before shifting the original wavelength

or after shifting the output wavelength back to its original value [160,161].

Building on these classical systems, we propose and demonstrate tunable delay

control of nonclassical time-frequency entangled photons for the first time, through

shifting the pump frequency and propagating the generated biphotons through opti-

cal dispersion. By exploiting the effect of nonlocal dispersion cancellation described

in detail in Sec. 6.2, we can also compensate for the spreading which would otherwise

degrade the sharpness of the temporal correlations. A schematic of this concept is

shown in Fig. 6.14. Unlike the classical case, delay shifting and dispersion compensa-

tion occur simultaneously, circumventing the need for a second wavelength shifter or

dispersive medium, and highlighting a unique advantage of quantum entanglement.

We note that this new method for entangled photon control represents a quantum

optical analogue of classical pulse-position modulation.

The origin of such tunable delay is readily observed on taking two second-order

dispersive filters in Eq. (4.31). Specifically, if we consider equal and opposite signal
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Fig. 6.14. General scheme for delay control of time-frequency entangled
photons through pump frequency tuning and propagation in dispersive
media.

and idler dispersion coefficients such that Hs(ω) = exp[iA(ω − ω0)
2/2] and Hi =

exp[−iA(ω − ω0)
2/2], Eq. (4.31) reduces to the simple result

ψ(τ) =

∫ ∞

0

dΩφ(Ω)e−iΩτ ≡ ψ0(τ), (6.15)

and we recover the original biphoton, unaffected by dispersion—i.e., dispersion can-

cellation. Yet as examined in Sec. 6.2, opposite signs of dispersion give cancellation

only for even spectral phase orders; for odd orders, opposite signs add cumulatively.

This implies an important distinction between delay (first-order spectral phase) and

second-order dispersion, for if we detune the center frequency of the biphotons relative

to the quadratic dispersion by an amount δω such that ω′
0 = ω0+δω is the new center,

the fixed filters Hs and Hi now introduce additional phase terms linear in frequency,

which add rather than cancel. Specifically, Hs(ω
′
0 + Ω)Hi(ω

′
0 − Ω) = exp(2iAδωΩ)

and the biphoton wavepacket is of the form

ψ(τ) =

∫ ∞

0

dΩφ(Ω)e−iΩ(τ−2Aδω) = ψ0(τ − 2Aδω). (6.16)

The additional phase term exp(i2AΩδω) directly corresponds to a temporal delay

of 2Aδω, proportional to both the strength of the dispersion and magnitude of the

frequency tuning. In this way the delays imparted by the signal and idler dispersive

media are retained, while the associated wavepacket spreading is removed, a fortu-

itous situation made possible by the spectral anticorrelation of the entangled state.

Moreover, in principle the size of this delay per unit frequency is unbounded, provided
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sufficiently strong and low-loss dispersive media are available, although in the exper-

iment described below, we do suffer from additional limitations. Nevertheless, this

finding indicates that by simply shifting the pump laser frequency, one can modulate

the relative arrival times of entangled photons with minimal impact on the shape of

their correlation. In contrast to tunable optical delay lines requiring mechanical ad-

justment, the filters here are fixed, so that our scheme could be implemented rapidly

by simply switching between pump lasers along a fixed frequency grid—although we

have not yet examined this possibility in our preliminary experiments.

To realize the necessary antisymmetric quadratic phase, we again exploit the flex-

ibility of our high-resolution pulse shaper, making use of the experimental setup of

Fig. 6.1(a) for biphoton control and ultrafast coincidence detection. And because of

the pulse shaper’s programmability, we are also free to consider an alternative de-

lay scenario. In the proposed arrangement above, we assume fixed dispersion and a

tunable pump laser; this is most compatible with previous classical approaches and

rapid switching capabilities. But the basic physics is based only on modulation of

the relative frequency spacing between the dispersion and SPDC center, so equiva-

lently we can fix the pump-laser wavelength and shift the center of the antisymmetic

quadratic phase imparted by the pulse shaper, a practically simpler endeavor which

we tackle first. However, before delving into these experiments, it is profitable first

to address in more detail the limitations imposed by our pulse shaper. In the simple

development above, we have assumed signal and idler are perfectly distinct and expe-

rience quadratic spectral phase over a bandwidth wider than what they occupy. Yet

because of the nature of the downconversion process here, portions of the signal and

idler spectra can pass through the wrong filter; and due to the 5-THz pulse-shaper

bandwidth, additional loss is incurred for frequency shifts approaching the band edge.



91

To place these general comments on a concrete footing, we more precisely model

the signal and idler spectral filters as

Hs,i(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ; ω < ωL

e−iA(ω−ω0)2/2 ; ωL < ω < ω0

eiA(ω−ω0)2/2 ; ω0 < ω < ωH

0 ; ωH < ω.

(6.17)

Here ωL and ωH are the lower and upper cutoff frequencies of the pulse shaper, and

from now on we take ω0 as the center frequency of the antisymmetric phase and ω′
0 as

that of the biphoton. Since both photons propagate through the same physical pulse

shaper, the signal and idler filters can formally be taken as identical—the difference

is the frequencies at which they are evaluated. For example, when ω′
0 = ω0, none of

the signal spectrum will “see” a dispersion coefficient of −A (vice versa for the idler),

and we can unambiguously assign unique phase filters to each photon; such was the

case in our previous dispersion cancellation experiments. Now, though, when one of

the frequencies ω0 or ω′
0 is shifted (δω ̸= 0), some signal-idler frequency pairs will

experience the same sign of dispersion and temporally spread.

Taking the above form for Hs(ω) and Hi(ω) and inserting them into Eq. (4.31)

(with ω′
0 as the biphoton center frequency), we obtain the more complicated wavepacket

ψ(τ) =

∫ ∆

|δω|
dΩφ(Ω)e−iΩ(τ−2Aδω) + e±iAδω2

∫ |δω|

0

dΩφ(Ω)e−iΩ(τ∓AΩ) ; δω ≷ 0,

(6.18)

where the upper (lower) conditionals are taken when the detuning δω is greater (less)

than zero, and ∆ = min{|ωH − ω′
0|, |ωL − ω′

0|}. The first integral has the desired

time-shift form, but now only the signal spectrum with offset frequency in the inter-

val (|δω|,∆) contributes. The second integral shows that the offsets less than |δω|

experience a net quadratic dispersion and thereby spread. Therefore, both increasing

the relative frequency shift δω and moving the pump frequency toward either edge

of the pulse shaper passband lower the bandwidth and energy of the time-shifted

portion of the biphoton, introducing observable distortion. These effects explain well
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the experimental results below, but we emphasize that this nonideality stems only

from the nature of the experiment here and is not inherent to the method itself. For

example, in situations where it is possible to spatially separate signal and idler for all

pump frequencies (e.g., in noncollinear or type-II downconversion), one could ensure

that the entire spectrum of each photon sees the desired dispersion, giving perfect

cancellation at all delay shifts.

With these considerations in mind, we first demonstrate tunable delay control

by keeping the pump wavelength fixed and shifting the dispersion curve applied by

the pulse shaper. Figure 6.15(a) shows the phase applied in each of the five cases

considered. We take as dispersion coefficient A = 3/π ps2 and examine frequency

shifts of δω = 2πp × 250 GHz, where p is an integer from the list [−2 −1 0 1 2].

Because the pump remains fixed, we employ a PPLN waveguide with a uniform

poling pattern for maximum efficiency. Figure 6.15(b) displays the second-harmonic-

generation efficiency as a function of pump frequency for the waveguide used for SFG;

the waveguides for both SPDC and SFG have similar forms. Stepping through each

of the frequency shifts, we find the results in Fig. 6.15(c) (theory) and Fig. 6.15(d)

(experiment). As expected, the signal-idler delay is shifted by integer multiples of 3

ps, with the reduction in peak probability away from zero delay—and even the small

∼5-ps-wide pedestals for p = ±2—in good agreement with theory, thus corroborating

the development culminating in Eq. (6.18).

We now move on to our main demonstration of biphoton tunable delay: tuning

the pump frequency relative to a fixed antisymmetric dispersion profile. The pump-

dispersion relationship is now given by Fig. 6.16(a). As before, the dispersion coef-

ficient A is 3/π ps2, but now the biphoton center frequency is shifted; the numerical

labels in Fig. 6.16 again correspond to the value of p in the expression δω = 2πp×250

GHz. Since the PPLN waveguides used in all experiments up to this point accept

only a small range of pump wavelength (∼0.1 nm), and so are not suited for the ∼nm

pump shifts required in this experiment, we now employ PPLN waveguides with

phase-modulated poling patterns designed to give roughly equal down-conversion ef-
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Fig. 37 
Fig. 6.15. Experiments with fixed pump. (a) Schematic of a fixed
pump with shifts in the antisymmetric dispersion curve, displayed over 3
THz of the 5-THz pulse shaper window. (b) Phase-matching curve for
PPLN waveguide with a uniform poling pattern. (c) Theoretical and (d)
experimental results showing delay control of the biphoton correlation
function. The numbers [−2 −1 0 1 2] correspond to the amount the
dispersion curve is shifted in each case, in units of 250 GHz. The curves
connecting the measured results in (d) were obtained via cubic spline
interpolation.

ficiency at five distinct pump wavelengths [162]. Figure 6.16(b) shows an example

phase-matching curve of this grating, suggesting comparable down-converted power

at each frequency. Ideally, for a fixed waveguide length, the integrated efficiency re-

mains constant over different poling patterns, and therefore the maximum efficiency

drops for the five-wavelength guide by roughly a factor of 5, as evident in comparing

Figs. 6.15(b) and 6.16(b). This reduced efficiency, impacting both SPDC and SFG, is

the main reason for the added difficulty of these experiments. Theoretical results [Fig.
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6.16(c)] and measurements [Fig. 6.16(d)] again display good agreement, although the

total count rate is diminished by the lower nonlinear efficiencies. Moreover, the rela-

tive height of the shifted peaks (compared to the p = 0 case) are appreciably shorter

for the pump-shifted implementation than the dispersion-shifted approach; cf. Figs.

6.15(c) and 6.16(c) or Figs. 6.15(d) and 6.16(d). The origin of this additional suppres-

sion is exposed by Eq. (6.18): the energy and height of the desired shifted correlation

peak is limited by δω and ∆; the former is identical for the shifts in both experiments,

but the latter is not. When the pump ω′
0 is fixed, ∆ = min{|ωH − ω′

0|, |ωL − ω′
0|}

remains unchanged for all values of p. Yet when the pump is frequency-shifted, ∆

decreases for larger values of |p| as more of the biphoton is eliminated by the band

edge of the pulse shaper. It is precisely this additional nonideality which causes the

more pronounced reduction in relative count rates in Fig. 6.16.

One useful metric to characterize system performance is the fractional delay: the

ratio of the delay of the correlation peak to the FWHM of the zero-delay correlation

function. We adopt this from a common figure of merit in classical delay lines, where

one takes the ratio of the output pulse delay to the input pulse width [163]. Another

metric we include is the normalized peak number of counts, which provides a measure

of the fraction of each biphoton successfully shifted in delay—and accordingly some

information about the distortion. In the case of a fixed pump with shifts in the

dispersion profile, the measured correlation peaks for ±250- and ±500-GHz shifts

correspond to fractional delays of ±7.5 (normalized peak count rate at 87%) and

±15 (normalized peak count rate at 58%), respectively, while in the case of a fixed

dispersion profile with shifts in the pump frequency, we obtain the same fractional

delays but now with normalized peak count rates at 73% and 38%. These results

are confirmed by simulation (Fig. 6.17)—we emphasize that our simulation results

account for the segments of the biphoton spectrum that experience the same sign of

dispersion and the finite bandwidth of our pulse shaper, both of which contribute to

reduced count rates for delayed correlations. As a side note, if we are not limited by

the pulse shaper bandwidth, we predict fractional delays up to ±60 should be possible
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Fig. 6.16. Experiments with fixed dispersion. (a) Schematic of the fixed
antisymmetric dispersion curve with shifts in pump frequency, displayed
over 3 THz of the 5-THz pulse shaper window. (b) Phase-matching curve
for PPLN waveguide with a non-uniform poling pattern. (c) Theoretical
and (d) experimental results showing delay control of the biphoton cor-
relation function. The numbers [−2 −1 0 1 2] correspond to the amount
the center frequency of the biphoton is shifted in each case, in units of
250 GHz; the experimental results in (d) are connected with cubic spline
interpolants.

while maintaining a normalized peak count rate exceeding 50%. In fact, much longer

fractional delays can be achieved by increasing the value of our dispersion constant A;

however, we cannot increase A without bound due to the finite resolution of our pulse

shaper. Based on previous tests with this pulse shaper (Section 6.4), we anticipate

maximum absolute delay shifts up to around ±30 ps.

In summary, we have described and demonstrated a new way to tune the temporal

position of the fourth-order correlation function for entangled photons. By shifting
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Fig. 6.17. Fractional delay and normalized peak count rate versus shift
in center frequency for (a) the case of a fixed pump with shifts in the
antisymmetric dispersion curve and (b) the case of a fixed antisymmet-
ric dispersion curve and shifts in pump frequency. The markers denote
experimental results; the curves, simulation.

the frequency of the pump and applying dispersion cancellation, we can control the

relative delay of signal and idler photons without introducing significant distortion.

We believe that our scheme will be useful for delay correction in time-energy quantum

key distribution systems. In future experiments, optical fibers and chirped fiber Bragg

gratings could be used to provide the necessary dispersion, replacing the pulse shaper

and in principle permitting much longer delays that are resolvable with electronic

coincidence detection. Finally, it will be interesting to explore some other capabilities

with this technique, such as rapidly modulating the pump frequency and encoding it

with binary information.

6.6 Conclusion

The four sets of biphoton experiments described in this chapter—high-order dis-

persion cancellation, spectral coding, generation of correlation trains, and tunable

delay control—herald not only new technical capabilities in the manipulation and

measurement of entangled photon states, but also the demonstration of new physics:

e.g., the first detailed tests of high-order dispersion cancellation and the first ob-
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servation of the biphoton temporal Talbot effect. Furthermore, experiments such as

orthogonal spectral coding and tunable delay control reveal how classical optical com-

munication techniques offer unique potential in quantum systems. For this reason,

our work represents so much more than simply a reprise of experiments realized at

high power now at low light levels, for the quantum systems furnish new opportunities

for nonlocal and paradoxical effects. Therefore we are only just beginning to uncover

the full potential at the interface between classical signal processing and quantum

information; the results demonstrated here should provide a valuable springboard for

practical developments in the future.
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7. OUTLOOK

7.1 General Comments

The experiments chronicled in this dissertation represent significant contributions

to the fields of temporal cloaking and biphoton pulse shaping. In realizing high-

speed temporal cloaks compatible with optical communications, we look to bring

time cloaking to the verge of practical application; in manipulating the correlations

of entangled photon pairs with unprecedented sophistication, we hope to enable new

tools for novel quantum information systems. Due to the relative youth of both of

these fields, predicting exactly what role our work will ultimately assume is a nebulous

endeavor. Nonetheless, in this concluding chapter we provide our educated guesses

on what research avenues to pursue—and how we envision these fields to mature in

the future.

7.2 Temporal Cloaking

Of the two, temporal cloaking is perhaps the most uncertain. Proposed a mere

four years ago [25] and first demonstrated in 2012 [28], relatively few researchers have

entered the field; indeed, apart from our work [11,46], only one other experiment has

surfaced since 2012 [164], and this example would more accurately be classified as a

“polarization cloak,” for it utilizes polarization scrambling to hide events rather than

creating true temporal gaps. And in none of these examples has the practical question

of combining time and spatial cloaking been evaluated in any detail. Nevertheless,

the implications of realizing a space-time cloak are truly exciting. P. Kinsler and M.

W. McCall [26,27] have recently noted some of the more exotic possibilities, including

causality editors which alter the order of a sequence of events (causality is not in fact
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violated, just made to appear as such to an observer), and “tardis” cloaks which give

viewers the temporary impression a region of space is larger that it actually is; these

draw their moniker from Doctor Who, a fitting science fiction connection for such

a curious concept as cloaking! While such capabilities remain theoretical only—and

experimental realization seems distant at best, impossible at worse—we impress the

importance of still supporting research directed in such pathways, for it would be

reckless to obstruct the potential scientific advances which await.

Yet temporal cloaking’s true niche may indeed lie in optical communication sys-

tems, not only in the more clandestine avenues implied by the name “cloak,” but

also in expanding the toolkit for routing and multiplexing signals effectively. For

example, the proposal of [47] describes methods for applying time cloaking in a data

center switch to route information streams without increasing packet duration. And

the proof-of-principle experiments detailed in Chapter 3 provide further examples of

how cloaking can enable successful communication as well as thwart it. So although

we cannot guarantee that time cloaking will transform optical communication, we are

excited with its potential.

7.3 Biphoton Pulse Shaping

The examples of biphoton pulse shaping considered in this dissertation indicate

the rapid development of biphoton manipulation in general, and accordingly there

exist several important avenues of research to bring such fundamental experiments to

more applied specializations, such as secure QKD. In some ways SFG, which proves

so valuable in the central demonstrations of biphoton pulse shaping in Chapter 6,

now sits as a hindrance to further development. For by requiring signal-idler recom-

bination, any experiments utilizing biphoton SFG are intrinsically ill-suited for QKD

implementations, in which the two communicating parties must obviously be spa-

tially separated for any useful application. Moreover, the use of SFG in the previous

Much of the discussion of Section 7.3 can be found in [165].
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demonstrations of ultrafast biphoton dispersion cancellation (ours and that of [103])

means that a fully nonlocal implementation—in which both photons are measured

on separated detectors—has not been realized with such high timing resolution. It is

therefore desirable to find alternative high-time-resolution detection methods which

could observe these effects nonlocally. Pending further improvements in single-photon

detector jitter to the picosecond level [129], methods based on single-photon mixing

with ultrashort [166] or chirped [167] classical pulses seem particularly promising,

and so nonlocal generalizations of ultrafast dispersion cancellation and orthogonal

coding may be possible with such techniques, although they have yet to be demon-

strated. Furthermore, high-dimensional time-frequency QKD protocols based on dis-

persion [69] or temporal modulation [68] have recently been proposed, and it would

be interesting to investigate how sophisticated biphoton control could be exploited to

realize these schemes in practice.

In fact, it is their potential as information carriers that has motivated much of

the previous work on biphoton pulse shaping, and so here we briefly discuss some of

the basic ideas behind time-frequency entanglement for QKD. Such correlations prove

particularly promising for key distribution in fiber networks, as they are well-preserved

through long propagation distances and can generate multiple bits of information per

biphoton. A rough schematic of how this process could work is provided in Fig.

7.1. Signal and idler photons produced through SPDC are sent to Alice and Bob,

respectively, who measure randomly either the arrival time or frequency of their

received photon. Due to the strong spectro-temporal entanglement, measurements

in the same basis produce highly correlated results, so by dividing frequency and

time into discrete bins, it is possible to construct a secret key through measurements

on successive biphotons. And since results in two different bases are uncorrelated—

as time and frequency are Fourier conjugates—the presence of an eavesdropper is

revealed by publicly comparing some subset of the measured bits and looking for an

increased error rate.
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Fig. 7.1. Schematic of time-frequency QKD with entangled photons.
Alice and Bob measure either the arrival time or frequency of their re-
spective photons, using results with the same bases to construct a secure
key.

The expanded information potential resulting from high-dimensional entangle-

ment can be quantified through the Schmidt decomposition [126, 127], in which the

biphoton spectrum is expressed as a sum of factorable two-photon states. Roughly

speaking, the number of modes with non-negligible coefficients can be estimated by

the Schmidt number K [127]. The larger K is, the greater the amount of information

obtainable from the biphoton. As a reference, we note that the idealized biphoton

state of Eq. (4.14) with a perfectly monochromatic pump has K = ∞; in reality, the

finite linewidth of our pump drops our realistic estimate of K to several million or

so. Yet actually extracting this information potential can prove extremely difficult.

For example, in our experiments [118], the maximum number of frequency chips is

limited by the 10-GHz spectral resolution of the pulse shaper—not the ∼200-kHz

pump linewidth. Similar behavior has been shown for time binning [67] and orbital

angular momentum [130], in which there were observed maximum dimensions beyond

which the secure information capacity dropped. The ability to optimize both the in-

trinsic and practical information potential of biphoton states will prove essential in

the experimental development of high-dimensional QKD.

Interestingly, electro-optic modulators have already been proposed for implement-

ing a time-frequency QKD system [68]. Conceptually, the protocol matches Fig. 7.1;

however, instead of directly measuring the time variable with a single-photon detector,

the authors propose to use a second spectrometer preceded by a time-to-frequency
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converter. In this fashion, the arrival time of each photon is converted to a particular

frequency, so that a wavelength measurement is equivalent to a temporal measure-

ment. The time-to-frequency converter itself consists of a dispersive element and an

electro-optic phase modulator. An advantage of this approach is the improved timing

resolution over simple avalanche photodiodes; a disadvantage is the increased dark

count rate due to utilization of a detector array in the spectrometer. As might be

expected, the Fourier dual to this approach has the reverse advantage/disadvantage

relationship; as proposed in [69] and demonstrated with modest success in [70], the

spectrometers in the setup of Fig. 7.1 can be replaced by two frequency-to-time

converters (highly dispersive elements) with opposite signs of dispersion, followed by

single-photon detectors. Thus if both photons are measured in the dispersed-time ba-

sis, the dispersion cancellation effect described in Section 6.4 ensures that their arrival

times are still synchronized. Intuitively, the connection with a frequency measure-

ment can be understood by the fact that dispersion cancellation is itself a consequence

of narrowband spectral entanglement. Although Fourier-transform pulse shaping was

not explicitly considered in this proposal—and admittedly, pulse shapers cannot apply

dispersions as large as other optical devices such as fiber Bragg gratings—the basic

idea does lend itself to such pulse shaping. In fact, it would be interesting to consider

how the spectral coding in Section 6.5 could be used for similar time spreading and

despreading in a form of code-based time-frequency QKD.

And so while experiments up to this point have already revealed new insights

into the behavior of entangled photons, numerous opportunities remain unrealized,

particularly in the context of quantum cryptography. Thus we expect the next decade

to witness even more advances in biphoton pulse shaping; we have only begun to

scratch the surface of the potential within such entangled quanta, and technologies

developed in classical optics will no doubt continue to find unanticipated uses in the

quantum regime.
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A. DERIVATION OF EQUATION (2.17)

In this section, we fill in the steps between Eqs. (2.16) and (2.17) for the propagation

of a phase-modulated field through quarter-Talbot dispersion. The mathematical pro-

cedure is modeled after [168], which we have adapted to temporal pulse propagation.

Taking aout(t) as the field after propagation through a distance L, Eq. (2.10) can be

expressed in the integral form [1]

aout(t) =
eiπ/4√
2πβ2L

∫ ∞

−∞
dt′ ain(t

′)e−i(t−t′)2/2β2L, (A.1)

where ain(t) is the input time-domain field; although in our case it is given by Eq.

(2.16), for now we deem it a generic periodic waveform. We do specialize to L an

integer fraction N of the Talbot distance LT . That is,

L =
LT

N
=

4π

β2ω2
mN

, (A.2)

assuming for definiteness that β2 > 0. It proves convenient to express the continuous

variable of integration t′ in the somewhat strange form

t′ = t+ η +
4πp

ωm

, (A.3)

where p is an integer ranging from −∞ to ∞. To encompass the full time axis, for

each value of p the variable η must be integrated from η0 to η0 + 4π/ωm, where the

particular value for η0 is chosen for convenience later. For this decomposition of t′

and choice for L, the integral kernel of Eq. (A.1) can be expanded as follows:

exp

[
−i(t− t′)2

2β2L

]
= exp

[
−i(η + 4πp/ωm)

2

2β2

β2ω
2
mN

4π

]
= exp

[
−i

(
ω2
mNη

2

8π
+ ωmNpη + 2πNp2

)]
(A.4)

= e−iω2
mNη2/8πe−iωmNpη.
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Since ain(t) repeats itself with period 2π/ωm, we know that ain(t + η + 4πp/ωm) =

ain(t+ η), and the full integral becomes

aout(t) = eiπ/4
√
ω2
mN

8π2

∫ η0+4π/ωm

η0

dη ain(t+ η)e−iω2
mNη2/8π

∞∑
p=−∞

e−iωmNpη. (A.5)

The usefulness of the peculiar integral substitution finally becomes clear when we

observe that the infinite sum corresponds to a Dirac comb. Specifically,

∞∑
p=−∞

e−iωmNpη =
2π

ωmN

∞∑
p=−∞

δ

(
η − 2πp

ωmN

)
, (A.6)

which permits integration of Eq. (A.5) irrespective of the particular form of the

periodic input. To complete the integration, we now choose a value for η0 such that

0 < η0 <
2π

ωmN
, which limits the only nonzero contributions to values of p ranging

from 1 to 2N . We therefore obtain

aout(t) =
eiπ/4√
2N

2N∑
p=1

ain

(
t+

2πp

ωmN

)
e−iπp2/2N . (A.7)

An additional simplification results by breaking up the sum into its first and last N

terms, i.e.,

aout(t) =
eiπ/4√
2N

N∑
p=1

{
ain

(
t+

2πp

ωmN

)
e−iπp2/2N + ain

(
t+

2π(N + p)

ωmN

)
e−iπ(p+N)2/2N

}
.

(A.8)

Expanding the second exponential gives (−1)p(−i)Ne−iπp2/2N , and invoking the peri-

odicity of ain(t), we finally arrive at

aout(t) =
eiπ/4√
2N

N∑
p=1

ain

(
t+

2πp

ωmN

)
e−iπp2/2N

[
1 + (−1)p(−i)N

]
. (A.9)

At this point, we specialize to the quarter-Talbot case (N = 4). Since the p = 1, 3

terms vanish for N = 4, only two terms remain, giving

aout(t) =
1√
2

{
e−iπ/4ain

(
t+

π

ωm

)
+ eiπ/4ain(t)

}
. (A.10)

Plugging in the phase-modulated input field of Eq. (2.16) produces

aout(t) =
1√
2

{
ei

π
4
(cosωmt−1) + e−iπ

4
(cosωmt−1)

}
, (A.11)
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and by invoking the trigonometric identities cos x−1 = −2 sin2(x/2) and eiz + e−iz =

2 cos z, the output field is simplified to

aout(t) =
√
2 cos

(
π

2
sin2 ωmt

2

)
, (A.12)

which represents Eq. (2.17) of the main text.
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B. THEORY OF BIPHOTON SFG IN PPLN

WAVEGUIDES

In this appendix, we derive the output quantum state produced in the process of

biphoton SFG. Our formulation, based on the interaction picture and similar in form

to that in [102], represents an alternative to the Heisenberg-picture approaches in

[101, 116] and is in our opinion more transparent to the important physics. The

primary purpose of this development, then, is twofold: first, to show that under the

actual conditions in our experiments, biphoton SFG does indeed represent a valid

measurement of the fourth-order correlation function Γ(2,2)(τ); and second, to obtain

an explicit expression for the upconversion efficiency and arrive at the conditions

under which it is equal to that of SPDC.

The appropriate interaction Hamiltonian is of the form

ĤI(t) = ϵ0

∫
V
d3r⃗ γ(z)Ê

(+)
SFG(z, t)Ê

(−)
s (z, t)Ê

(−)
i (z, t) + h.c., (B.1)

which corresponds to Eq. (4.6), but with the pump replaced by a quantized SFG

field. For simplicity, we assume that the upconversion waveguide is identical to that

used for SPDC, and we take its longitudinal extent from z = 0 to z = L; all effects

of propagation between crystals can be incorporated with spectral filters H̃s,i(ω) ap-

plied to the signal and idler photons, respectively. The signal, idler, and SFG field

operators, after factoring out terms slowly varying with frequency, are thus

Ê(+)
s (z, t) = i

[
~ω0

4πϵ0cn0S

]1/2 ∫ ∞

0

dΩ H̃s(ω0 + Ω)âs(ω0 + Ω)ei(ksz−ω0t−Ωt), (B.2)

Ê
(+)
i (z, t) = i

[
~ω0

4πϵ0cn0S

]1/2 ∫ ω0

0

dΩ′ H̃i(ω0 − Ω′)âi(ω0 − Ω′)ei(kiz−ω0t+Ω′t), (B.3)

and

Ê
(−)
SFG(z, t) = −i

[
~ω0

2πϵ0cnpS

]1/2 ∫ ∞

−2ω0

dΩp â
†
SFG(2ω0 + Ωp)e

−i(kpz−2ω0t−Ωpt). (B.4)
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We assume that the input state at some initial time ti is the biphoton of Eq. (4.14),

and invoking the same perturbative approximation as in Eq. (4.11), the generated

quantum state at time t > ti is

|ϕ⟩ =M |Ψ⟩+ 1

i~

∫ t

ti

dt′ ĤI(t
′)|Ψ⟩, (B.5)

with M ∼ 1.

Ultimately, we are interested in the flux of upconverted photons at the waveguide

output (z = L), which can be represented by the operator [generalizing Eq. (4.17)]

F̂SFG =
npϵ0cS

~ω0

Ê
(−)
SFG(L, t)Ê

(+)
SFG(L, t), (B.6)

so that the expected value of the flux is

FSFG = ⟨ϕ|F̂SFG|ϕ⟩

=
npϵ0cS

~ω0

⟨ϕ|Ê(−)
SFG(L, t)Ê

(+)
SFG(L, t)|ϕ⟩. (B.7)

Making use of Eqs. (4.14), (B.1), (B.5), and (B.7), the only nonzero contribution is

Ê
(+)
SFG(L, t)|ϕ⟩ =

1

i~
Ê

(+)
SFG(L, t)

∫ t

ti

dt′ ĤI(t
′)

∫ ω0

0

dΩφ(Ω)|ω0 + Ω⟩s|ω0 − Ω⟩i. (B.8)

Plugging in the expressions in Eqs. (B.1)-(B.4), and utilizing operator relations Eqs.

(4.2)-(4.5), this simplifies to

Ê
(+)
SFG(L, t)|ϕ⟩ =

i~ω2
0γm

8π2ϵ0c2n0npS
e−2iω0t

∫ ω0

0

dΩφ(Ω)H̃s(ω0 + Ω)H̃i(ω0 − Ω)

×
∫ ∞

−2ω0

dΩp e
ikpL

∫ ∞

−2ω0

dΩ′
p

∫ L

0

dz ei∆kz

∫ t

ti

dt′ eiΩ
′
pt

′

×âSFG(2ω0 + Ωp)â
†
SFG(2ω0 + Ω′

p)|vac⟩, (B.9)

where as before γme
iKmz corresponds to the dominant poling coefficient in the ex-

pansion of γ(z) and ∆k is the phase mismatch defined in Eq. (4.13). The combi-

nation of SFG annihilation and creation operators acting on the vacuum reduces to

δ(Ωp−Ω′
p)|vac⟩, and taking the limit of long t converts the integral over t′ to 2πδ(Ω′

p),

finally reducing the above expression to

Ê
(+)
SFG(L, t)|ϕ⟩ = |vac⟩ i~ω2

0γmL

4πϵ0c2n0npS
ei(kpL−2ω0t) (B.10)

×
∫ ω0

0

dΩφ(Ω)H̃s(ω0 + Ω)H̃i(ω0 − Ω)ei∆kL/2sinc
∆kL

2
.
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The motivation for the tilde notation now becomes clear as we decompose these filters

into “manipulation” and “measurement” components; that is, we extract a factor

from the product H̃s(ω0 + Ω)H̃i(ω0 − Ω) which we deem a part of the measurement

process, rather than of the biphoton itself. Specifically, we consider the contributions

corresponding to signal-idler delay control and compensation of crystal dispersion as

separate from the spectral filtering—i.e., pulse shaping—we wish to measure. Thus

we write

H̃s(ω0 + Ω)H̃i(ω0 − Ω) = Hs(ω0 + Ω)Hi(ω0 − Ω)e−i∆kL/2e−iΩτ , (B.11)

where the Hs,i represent filtering applied to the biphoton apart from the measurement

procedure.

Squaring Eq. (B.10) then leads to the interesting result

FSFG ∝
⏐⏐⏐⏐∫ ω0

0

dΩφ(Ω)Hs(ω0 + Ω)Hi(ω0 − Ω)sinc
∆kL

2
e−iΩτ

⏐⏐⏐⏐2 . (B.12)

If we make the assumption ∆kL≪ 1 so that sinc∆kL/2 ∼ 1, we are left with

FSFG ∝
⏐⏐⏐⏐∫ ω0

0

dΩφ(Ω)Hs(ω0 + Ω)Hi(ω0 − Ω)e−iΩτ

⏐⏐⏐⏐2
∝ Γ(2,2)(τ), (B.13)

where we have recalled the expression for the spectrally filtered biphoton wavepacket

[Eq. (4.31)]. Therefore we reach the paramount conclusion that, assuming all bipho-

ton frequency components can mix with equal probability, the rate of sum-frequency

generation is directly proportional to the fourth-order biphoton correlation function.

And because of the spectral filtering applied by the pulse shaper in our experiments,

which significantly limits the bandwidth of the manipulated photons, we meet the

above condition to a great degree of accuracy. Figure B.1 compares the theoreti-

cally calculated Γ(2,2)(τ) both considering and neglecting the sinc factor of the SFG

guide, where we assume 52-mm-long nonlinear waveguides and filtering by a 5-THz-

bandwidth pulse shaper. With each curve normalized to a value of unity, no notice-

able differences are evident in the temporal shape of the correlations, which confirms
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Fig. B.1. Theoretical comparison of SFG flux between neglecting and
imposing the sinc(∆kL/2) phase-mismatch factor associated with biphoton
SFG. Because of the spectral windowing effected by our pulse shaper, the
two curves are nearly identical, indicating that the SFG process introduces
no distortion of the biphoton correlations and provides an accurate measure
of Γ(2,2)(τ).

that our experiments do indeed operate in a regime in which SFG can be assumed a

near-perfect biphoton cross-correlator. (The absolute rate of upconversion is reduced

by about 5% due to the phase-mismatch factor, but as observed, this has negligible

impact on the shape.)

Returning to Eq. (B.10), we can also estimate the absolute efficiency of biphoton

SFG in the same manner as for SPDC in Section 4.2. We specialize to the case

of maximum efficiency by taking the spectral filters H̃s,i as lossless and perfectly

compensating all spectral phase. Plugging the expression for φ(Ω) from Eq. (4.15)

into Eq. (B.10) and removing any spectral phase, we are left with

Ê
(+)
SFG(L, t)|ϕ⟩ = −|vac⟩ ~ω

3
0γ

2
mL

2E0

8πϵ0c3n2
0npS

ei(kpL−2ω0t)

∫ ω0

0

dΩ sinc2
∆kL

2
. (B.14)

Noting that the factor preceding the inner product in Eq. (B.7) is nothing more than

the input pump photon flux Fp divided by |E0|2 [Eq. (4.17)], we find immediately

that
FSFG

Fp

=
~2ω6

0γ
4
mL

4

64π2ϵ20c
6n4

0n
2
pS

2

(∫ ω0

0

dΩ sinc2
∆kL

2

)2

. (B.15)
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Since the SFG efficiency is the ratio of SFG flux at z = L to the signal flux at L = 0,

we obtain

ηSFG =
FSFG

Fs

=
FSFG

Fp

η−1
SPDC, (B.16)

where the last equality follows from the relation ηSPDC = Fs/Fp. Recalling Eq. (4.19),

and replacing γm by −4deff , we finally obtain

ηSFG =
2~ω3

0d
2
effL

2

πϵ0c3n2
0npS

∫ ω0

0

dΩ sinc2
∆kL

2
, (B.17)

which is identical to the expression for ηSPDC [Eq. (4.21)]! Therefore, at least ideally

(perfect phase compensation), we expect the same quantum efficiency for biphoton

upconversion as in generation, a fact which is indeed qualitatively confirmed in our

experiments.
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