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The two algorithms given above have the same complexity. However, they ditfer
in the arrangement of the computations. In the following sections we exploit the
divide-and-conquer approach to derive fast algorithms when the size of the DFT is
restricted to be a power of 2 or a power of 4.

8.1.3 Radix-2 FFT Algorithms

In the preceding section we described four algorithms for efficient computation of
the DFT based on the divide-and-conquer approach. Such an approach is applicable
when the number N of data points is not a prime. In particular, the approach is
very efficient when N is highly composite, that is, when N can be factored as N =
rirars - - - 1y, where the {r;} are prime.

Of particular importance is the case inwhichry =r =--- =r, = r, so that
N = r”. Insuch a case the DFTs are of size r, so that the computation of the N -point
DFT has a regular pattern. The number r is called the radix of the FFT algorithm.

In this section we describe radix-2 algorithms, which are by far the most widely
used FFT algorithms. Radix-4 algorithms are described in the following section.

Let us consider the computation of the N = 2" point DFT by the divide-and-
conquer approach specified by (8.1.16) through (8.1.18). We select M = N/2 and
L = 2. This selection results in a split of the N-point data sequence into two N/2-
point data sequences fi(n) and f2(n), corresponding to the even-numbered and
odd-numbered samples of x(n), respectively, that is,

filn) =x(2n)
N (8.1.23)
Hn)=x2n+1), n=0,1,...,—2——1
Thus fi(n) and f>(n) are obtained by decimating x(n) by a factor of 2, and hence
the resulting FFT algorithm is called a decimation-in-time algorithm.
Now the N -point DFT can be expressed in terms of the DFTs of the decimated
sequences as follows:

N-1
Xk = x@ws, k=01 ,N-1

n=0

= Z XMWY + Z x(n) Wi (81.24)
n even n odd
(N/2)-1 (N/2)—-1

= > xemwyt+ Y x@m+ WD

m=0 m=0

But Wi = Wy/2. With this substitution, (8.1.24) can be expressed as

(N/2)-1 (N/2)~1
X(k) = FLm)WE + W Hm)Wy
n{‘; neee mzzo i (8.1.25)

= Fi(k)+ WEFy(k), k=0,1,...,N—1
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where Fi(k) and F,(k) are the N/2-point DFTs of the sequences fj(m) and f>(m),
respectively.

Since Fi(k) and F(k) are periodic, with period N/2, we have F;(k + N /2) =
Fi(k) and Fa(k + N/2) = Fy(k). In addition, the factor Wy’ = —W¥. Hence
(8.1.25) can be expressed as

N
X (k) = Fi(k) + Wk By (k), k=0,1,..., 5 -1 (8.1.26)
N

We observe that the direct computation of Fj (k) requires (N/2)2 complex mul-
tiplications. The same applies to the computation of F,(k). Furthermore, there are
N/2 additional complex multiplications required to compute WX F, (k). Hence the
computation of X (k) requires 2(N/2)* + N/2 = N?/2 + N/2 complex multiplica-
tions. This first step results in a reduction of the number of multiplications from N2
to N2/2 + N /2, which is about a factor of 2 for N large.

To be consistent with our previous notation, we may define

N
Gik) =Fi (k) k=0,1,...,7~1
x N
Gy (k) = Wy Fa(k), k=0,1,...,§—1
Then the DFT X (k) may be expressed as
. N
- X(k) = G1(k) + G2 (k), k=0,1,-.-,—2~~1

(8.1.28)

N N
X(k—l—z-):Gl(k)—Gz(k), k:o,l,...,?—l

This computation is illustrated in Fig. 8.1.4.
Having performed the decimation-in-time once, we can repeat the process for

each of the sequences f(n) and f>(n). Thus fi(n) would result in the two N /4-point

sequences
N

v11(n) = f1(2n), n=0,1,.‘.,z—1
N (8.1.29)
vip(n) = fi2n+1), n=0,1,..., T 1
and f,(n) would yield
N
v1(n) = f,(2n), n=0, 1,...,2——1
; N (8.1.30)
vpm) = L@n+1), n=0,1,..., Z -1
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x(0) x(2) x(4) x(N-2)

x(1) x(3) N/2-Point

DFT

Fi(0) Fi(1) Fi(2)

Phase
factors

Gak) ' X(N-1)

Figure 8.1.4 First step in the decimation-in-time algorithm.

By computing N/4-point DFTs, we would obtain the N/2-point DFTs Fj(k) and
F>(k) from the relations )

Fi(k) = Viu(k) + Wy ,Vio k), k=0,1,..., -1
N N
P (k + Z) = Vi) = WypVo®), k=01..., -1 (8131
Fy(k) = Var (k) + Wy , Vo (), k=0,1,...,——1

N N
F (k + Z) = Vo (k) = Wy, Vo (k), k=0,..., 7! (8.1.32)

where the {V;;(k)} are the N/4-point DFTs of the sequences {v;;(n)}.

We observe that the computation of {V;;(k)} requires 4(N /4)? multiplications
and hence the computation of Fj (k) and F,(k) can be accomplished with N 2/44+N/2
complex multiplications. An additional N/2 complex multiplications are required
to compute X (k) from Fy(k) and F,(k). Consequently, the total number of multipli-
cations is reduced approximately by a factor of 2 again to N?/4 + N.

The decimation of the data sequence can be repeated again and again until the
resulting sequences are reduced to one-point sequences. For N = 2V, this decimation
can be performed v = log, N times. Thus the total number of complex multiplica-
tions is reduced to (N/2)log, N. The number of complex additions is N log, N.
Table 8.1 presents a comparison of the number of complex multiplications in the
FFT and in the direct computation of the DFT.

For illustrative purposes, Fig. 8.1.5 depicts the computation of an N = §-point
DFT. We observe that the computation is performed in three stages, beginning with
the computations of four two-point DFTs, then two four-point DFTs, and finally, one
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TABLE 8.1 Comparison of Computational Complexity for the Direct Computation of the
DFT Versus the FFT Algorithm

Number of Complex Multiplications Complex Multiplications Speed
Points, in Direct Computation, in FFT Algorithm, Improvement

N N2 (N/2)log, N Factor

4 16 4 4.0

8 64 12 53

16 256 32 8.0

32 1,024 80 12.8

64 4,096 192 21.3

128 16,384 448 - 36.6

256 65,536 1,024 64.0

512 262,144 2,304 113.8

1,024 1,048,576 5,120 204.8

eight-point DFT. The combination of the smaller DFTs to form the larger DFT is
illustrated in Fig. 8.1.6 for N = 8.

Observe that the basic computation performed at every stage, as illustrated in
Fig. 8.1.6, is to take two complex numbers, say the pair (a, b), multiply b by W}, and
then add and subtract the product from a to form two new complex numbers (A, B).
This basic computation, which is shown in Fig. 8.1.7, is called a butterfly because the
flow graph resembles a butterfly.

In general, each butterfly involves one complex multiplication and two complex
additions. For N = 2", there are N /2 butterflies per stage of the computation process
and log, N stages. Therefore, as previously indicated, the total number of complex
multiplications is (N /2) log, N and complex additions is N log, N.

Once a butterfly operation is performed on a pair of complex numbers (a, b)
to produce (A, B), there is no need to save the input pair (a,b). Hence we can
store the result (A, B) in the same locations as (a, b). Consequently, we require a
fixed amount of storage, namely, 2N storage registers, in order to store the results

x(0) 2-point
) brr Combine e X(0)
2-point
3 ———e X(1)
x(2) 2-point DFT’s X2)
x(6) DFT .
Combine | 4 x(3)
4-point
, —e X(4)
x(1) 2-point DFT’s X65)
x(5) DFT .
gom.bme L e X(6)
-point
) ) —e X(7)
x(3) 2-point DrT’s
x(7) DFT

Figure 8.1.5 Three stages in the computation of an N = 8-point DFT.
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Stage 1 Stage 2 Stage 3
x(0) o » » X(0)
Xd) —— e 1 » . » * X(1)
y \/ /
*2) o ‘ - » X(2)
X(6) o—r -~ ¢ . . ° X(3)
-1 -1
x(l) o . . . » ° X(4)
w) ><
%(5) o—r—o - R . » X(5)

w) w2
x3) o . -~ 4 8 o X(6)
>< N B
w) wa w3
X(T) o—rrs i id o X(7)

-1 -1 -1

Figure 8.1.6 Eight-point decimation-in-time FFT algorithm.

(N complex numbers) of the computations at each stage. Since the same 2N storage
locations are used throughout the computation of the N-point DFT, we say that the
computations are done in place.

A second important observation is concerned with the order of the input data
sequence after it is decimated (v — 1) times. For example, if we consider the case
where N = 8, we know that the first decimation yields the sequence x(0), x(2), x(4),
x(6), x(1), x(3), x(5), x(7), and the second decimation results in the sequence x(0),
x4@), x(2), x(6), x(1), x(5), x(3), x(7). This shuffling of the input data sequence
has a well-defined order as can be ascertained from observing Fig. 8.1.8, which
illustrates the decimation of the eight-point sequence. By expressing the index n,
in the sequence x(n), in binary form, we note that the order of the decimated data
sequence is easily obtained by reading the binary representation of the index n in
reverse order. Thus the data point x(3) = x(011) is placed in position m = 110 or
m = 6 in the decimated array. Thus we say that the data x(n) after decimation is
stored in bit-reversed order.

ae . e A=a+Wy b
Figure 8.1.7
Basic butterfly computation W
. . . . . N
in the decimation-in-time be " " eB=a—-Wj b

FFT algorithm. -1
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Datg ) Daga )
Memory address Memory decimation 1 decimation 2
(decimal) (binary)’
0 000 x(0) x(0) x(0)
1 001 x(1) x(2) >< x(4)
2 010 x(2) x(4) x(2)
3 011 x(3) x(6) x(6)
4 100 x(4) x(1) x(1)
5 101 x(5) x(3) x(5)
6 110 x(6) x(5) >< x(3)
7 111 x(7) x(7) x(7)
Natural Bit-reversed
order order

(a)

(mning) —  (mnon2) —  (noning)

©00) — (000) — (000
©001)) — (0100 — (100
0100 — (100 — (010
©011) - (1100 — (110
(100) — (©01) — (01
(101) — (1) - @101
1100 —- (@101) — (011
111y - A1y - d1n
(®)

Figure 8.1.8 Shuffling of the data and bit reversal.

With the input data sequence stored in bit-reversed order and the butterfly com-
putations performed in place, the resulting DFT sequence X (k) is obtained in natural
order (ie, k = 0,1,..., N —1). On the other hand, we should indicate that it is
possible to arrange the FFT algorithm such that the input is left in natural order
and the resulting output DFT will occur in bit-reversed order. Furthermore, we can
impose the restriction that both the input data x(n) and the output DFT X (k) be in
natural order, and derive an FFT algorithm in which the computations are not done
in place. Hence such an algorithm requires additional storage.

Another important radix-2 FFT algorithm, called the decimation-in-frequency
algorithm, is obtained by using the divide-and-conquer approach described in Sec-
tion 8.1.2 with the choice of M =2 and L = N/2. This choice of parameters implies
a column-wise storage of the input data sequence. To derive the algorithm, we begin
by splitting the DFT formula into two summations, of which one involves the sum
over the first N/2 data points and the second the sum over the last N/2 data points.

Thus we
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Thus we obtain

(N/2)-1 N-1
X = > xmW+ Y xmWwy
n=0 n=N/2
(8.1.33)
(N/2)-1 (N/2)—1 N
= > xWE+wy? Y x (n + —) Wi
2
n=0 n=0
Since W;\‘,N/ 2 = (—1)*, the expression (8.1.33) can be rewritten as
(N/2)—1 N
X =Y [x(m (-1 <n + —)} Wi (8.134)
n=0 2

Now, let us split (decimate) X (k) into the even- and odd-numbered samples. Thus
we obtain

(N/2)—1 N N
kn _
X(2k) = X_:O [x(n) +x (n + 5)] Wi k=01, 5—1 (8.1.35)
and
(N/2)-1 N N
xe+n= 3 ([ =x (4 3) Wi} Wi k=02, 5 -1

(8.1.36)

where we have used the fact that WI%, = Wyy2.

If we define the N/2-point sequences gi(n) and g>(n) as
N
g1(n) =x(n) +x (n + 5)
v (8.1.37)
N
gg(n)=|:x(n)—x<n+—2—)}W{f,, n=0,1,2,...,7—1
then
(N/2)—1
XQh= Y amw,
n=0

(8.1.38)

(N/2)—1

XQk+D= Y amwy,
n=0

The computation of the sequences gi(n) and g»(n) according to (8.1.37) and the
subsequent use of these sequences to compute the N/2-point DFTs are depicted in
Fig. 8.1.9. We observe that the basic computation in this figure involves the butterfly
operation illustrated in Fig. 8.1.10.
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x(0) « ' ——e X(0)
x(1) & » —e X(2)
4-point
DFT
x(2) ——e X(4)
x(3) & ® ——e X(6)

x(4) —e X(1)
x(5) —e X(3)
4-point
DFT
x(6) ¢ T ——e X(5)
Figure 8.1.9
First stage of the w3
decimation-in-frequency x(7) & * $ ——e X(7)

FFT algorithm.

This computational procedure can be repeated through decimation of the N/2-
point DFTs, X (2k) and X (2k +1). The entire process involves v = log, N stages of
decimation, where each stage involves N /2 butterflies of the type shown in Fig. 8.1.10.
Consequently, the computation of the N -point DFT via the decimation-in-frequency
FFT algorithm requires (N /2) log, N complex multiplications and N log, N complex
additions, just as in the decimation-in-time algorithm. For illustrative purposes, the
eight-point decimation-in-frequency algorithm is given in Fig. 8.1.11.

We observe from Fig. 8.1.11 that the input data x(n) occurs in natural order, but
the output DFT occurs in bit-reversed order. We also note that the computations
are performed in place. However, it is possible to reconfigure the decimation-in-
frequency algorithm so that the input sequence occurs in bit-reversed order while
the output DFT occurs in normal order. Furthermore, if we abandon the requirement
that the computations be done in place, it is also possible to have both the input data
and the output DFT in normal order.

Figure 8.1.10 ae o ©A=atbh
Basic butterfly

computation in the Wi
decimation-in-frequency be & — e B= (a—20)Wy

FFT algorithm. -1
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x(0) » < e * . * X(0)
x(1) o — « —— 1- * X(4)
W/ XX
x(2) e W ¢ 1 . o ° X(2)
w3 >< wo
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Figure 8.1.11 N = 8-point decimation-in-frequency FFT algorithm.

8.1.4 Radix-4 FFT Algorithms

When the number of data points N in the DFT is a power of 4 (i.e., N = 4"), we
can, of course, always use a radix-2 algorithm for the computation. However, for this
case, it is more efficient computationally to employ a radix-4 FFT algorithm.

Let us begin by describing a radix-4 decimation-in-time FFT algorithm, which
is obtained by selecting L = 4 and M = N/4 in the divide-and-conquer approach
described in Section 8.1.2. For this choice of L and M, we have [, p =0,1, 2, 3; m,
g=0,1,...,N/4—1;n=4m +1[;and k = (N/4)p + q. Thus we split or decimate
the N -point input sequence into four subsequences, x(4n), x(4n + 1), x(4n + 2),
x@n+3),n=0,1,...,N/4-1.

By applying (8.1.15) we obtain

|

3
X(p) =) [WHFGo| Wy, p=0,1,23 (8.1.39)
=0

where F(l, q) is given by (8.1.16), that is,

/H-1 1=0,1,2,3,
—_ mq N
F(,q) § x(,m)Wyt,, g=0.1.2.... S (8.1.40)

m=0




528 Chapter8 Efficient Computation of the DFT: Fast Fourier Transform Algorithms

and
x(,m) =x(@m+1) (8.1.41)
N
X(p,q) =X (ZP + q) (8.1.42)

Thus, the four N/4-point DFTs obtained from (8.1.40) are combined according to
(8.1.39) to yield the N-point DFT. The expression in (8.1.39) for combining the N/4-
point DFTs defines a radix-4 decimation-in-time butterfly, which can be expressed
in matrix form as

X0, 9) 11 1 1 W&F(o, 9
XL | |1 —j -1 WiF(1,q)

The radix-4 butterfly is depicted in Fig. 8.1.12(a) and in a more compact form
in Fig. 8.1.12(b). Note that since WY = 1, each butterfly involves three complex
multiplications, and 12 complex additions.

This decimation-in-time procedure can be repeated recursively v times. Hence
the resulting FFT algorithm consists of v stages, where each stage contains N/4
butterflies. Consequently, the computational burden for the algorithm is 3vN/4 =
(3N/8)log, N complex multiplications and (3N /2)log, N complex additions. We
note that the number of multiplications is reduced by 25%, but the number of addi-
tions has increased by 50% from N log, N to (3N /2)log, N.

It is interesting to note, however, that by performing the additions in two steps,
it is possible to reduce the number of additions per butterfly from 12 to 8. This can

0

Wy
O & - O
. W§ . 0
q
29
2
wi 3q
w34 _
e N 1 )

i
(a) (®)

Figure 8.1.12 Basic butterfly computation in a radix-4 FFT algorithm.
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