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2.5 Implementation of Discrete-Time Systems

Our treatment of discrete-time systems has been focused on the time-domain char-
acterization and analysis of linear time-invariant systems described by constant-
coefficient linear difference equations. Additional analytical methods are developed
in the next two chapters, where we characterize and analyze LTI systems in the fre-
quency domain. Two other important topics that will be treated later are the design
and implementation of these systems. '

In practice, system design and implementation are usually treated jointly rather
than separately. Often, the system design is driven by the method of implemen-
tation and by implementation constraints, such as cost, hardware limitations, size
limitations, and power requirements. At this point, we have not as yet developed the
necessary analysis and design tools to treat such complex issues. However, we have
developed sufficient background to consider some basic implementation methods
for realizations of LTI systems described by linear constant-coefficient difference
equations.

2.5.1 Structures for the Realization of Linear
Time-Invariant Systems

In this subsection we describe structures for the realization of systems described
by linear constant-coefficient difference equations. Additional structures for these
systems are introduced in Chapter 9.

As a beginning, let us consider the first-order system

y(n) = —ayy(n — 1) + box(n) + b1x(n — 1) (2.5.1)

which is realized as in Fig. 2.5.1(a). This realization uses separate delays (memory)
for both the input and output signal samples and it is called a direct form I structure.
Note that this system can be viewed as two linear time-invariant systems in cascade.
The first is a nonrecursive system described by the equation

v(n) = box(n) + brx(n — 1) (2.5.2)
whereas the second is a recursive system described by the equation
yn) = —ary(n — 1) + v(n) (2.5.3)

However, as we have seen in Section 2.3.4, if we interchange the order of the
cascaded linear time-invariant systems, the overall system response remains the same.
Thus if we interchange the order of the recursive and nonrecursive systems, we
obtain an alternative structure for the realization of the system described by (2.5.1).
The resulting system is shown in Fig. 2.5.1(b). From this figure we obtain the two
difference equations

wn) = —aiwrn — 1) + x(n) (2.5.4)

y(n) = byw®) + bywn — 1) (2.5.5)
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x(n)

Figure 2.5.1

Steps in converting from
the direct form I realization
in (a) to the direct form II
realization in (c).

which provide an alternative algorithm for computing the output of the system de-
scribed by the single difference equation given in (2.5.1). In other words, the two
difference equations (2.5.4) and (2.5.5) are equivalent to the single difference equa-
tion (2.5.1).

A close observation of Fig. 2.5.1 reveals that the two delay elements contain the
same input w(n) and hence the same output w(n — 1). Consequently, these two
elements can be merged into one delay, as shown in Fig. 2.5.1(c). In contrast to the
direct form I structure, this new realization requires only one delay for the auxiliary
quantity w(r), and hence it is more efficient in terms of memory requirements. It is
called the direct form II structure and it is used extensively in practical applications.

These structures can readily be generalized for the general linear time-invariant
recursive system described by the difference equation

N M
ym) == ay(n =)+ Y bix@n — k) (2.5.6)

k=1 k=0

Figure 2.5.2 illustrates the direct form I structure for this system. This structure
requires M + N delays and N + M -+ 1 multiplications. It can be viewed as the
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cascade of a nonrecursive system

M
v(n) =Y _ bex(n — k) (25.7)
k=0
and a recursive system
N
y(n) = — Zaky(n —k)+vn) (2.5.8)
k=1

By reversing the order of these two systems, as was previously done for the first-
order system, we obtain the direct form II structure shown in Fig. 2.5.3for N > M.
This structure is the cascade of a recursive system

N
w(n) = — Zakw(n — k) + x(n) (2.5.9)
k=1
followed by a nonrecursive system
M
y(n) = Zbkw(n —k) (2.5.10)
k=0
x(r) by m v(r) c\ y(n)
N N J,
7! 7
() O
7! !

by @ —y
T

Figure 2.5.2 Direct form I structure of the system described by
(2.5.6).
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We observe that if N > M, this structure requires a number of delays equal to
the order N of the system. However, if M > N, the required memory is specified
by M. Figure 2.5.3 can easily be modified to handle this case. Thus the direct form
11 structure requires M + N + 1 multiplications and max{M, N} delays. Because it
requires the minimum number of delays for the realization of the system described
by (2.5.6), it is sometimes called a canonic form.

A special case of (2.5.6) occurs if we set the system parameters a; = 0, k =
1,..., N. Then the input-output relationship for the system reduces to

M
y(m) =Y bpx(n k) (2.5.11)
k=0

which is a nonrecursive linear time-invariant system. This system views only the most
recent M + 1 input signal samples and, prior to addition, weights each sample by
the appropriate coefficient b, from the set {b;}. In other words, the system output
is basically a weighted moving average of the input signal. For this reason it is
sometimes called a moving average (MA) system. Such a system is an FIR system

D @) %o N .
() () + ) y(n)

—ay w(n—N)

Figure 2.5.3 Direct form II structure for the system described by (2.5.6).
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with an impulse response A (k) equal to the coefficients by, that is,

|k, O0<k=M
hiky = {O, otherwise (2512)

If we return to (2.5.6) and set M = 0, the general linear time-invariant system
reduces to a “purely recursive” system described by the difference equation

N
ym) ==Y ay(n — k) + box(n) (2.5.13)
k=1

In this case the system output is a weighted linear combination of N past outputs
and the present input. '

Linear time-invariant systems described by a second-order difference equation
are an important subclass of the more general systems described by (2.5.6) or (2.5.10)
or (2.5.13). The reason for their importance will be explained later when we discuss
quantization effects. Suffice to say at this point that second-order systems are usually
used as basic building blocks for realizing higher-order systems.

The most general second-order system is described by the difference equation

y(n) =—ary(n — 1) —azxy(n —2) + box(n)
(2.5.14)

+bix(n =1 +byx(n—2)

which is obtained from (2.5.6) by setting N = 2 and M = 2. The direct form II
structure for realizing this system is shown in Fig. 2.5.4(a). If we set a; = a; = 0,
then (2.5.14) reduces to

y(n) = box(n) + bix(n — 1) + bax(n —2) (2.5.15)

which is a special case of the FIR system described by (2.5.11). The structure for real-
izing this system is shown in Fig. 2.5.4(b). Finally, if we set by = b, = 0 in (2.5.14), we
obtain the purely recursive second-order system described by the difference equation

y(n) = —a1y(n — 1) —azy(n — 2) + box(n) (2.5.16)

which is a special case of (2.5.13). The structure for realizing this system is shown in
Fig. 2.5.4(c).

2.5.2 Recursive and Nonrecursive Realizations of FIR Systems

We have already made the distinction between FIR and IIR systems, based on
whether the impulse response /(n) of the system has a finite duration, or an infinite
duration. We have also made the distinction between recursive and nonrecursive sys-
tems. Basically, a causal recursive system is described by an input-output equation
of the form

y(n) = Fly(n —1),...,y(n — N),x(n), ..., x(n — M)] (2.5.17)
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x(n)
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b A@f

x(1)

Z—] — Z—I

Figure 2.5.4 Structures for the realization of second-order sys-
tems: (a) general second-order system; (b) FIR system; (c) “purely
recursive system.”

and for a linear time-invariant system specifically, by the difference equation

N M
) = = S awy(n =) + ) bix(n =) (2.5.18)

k=1 k=0

On the other hand, causal nonrecursive systems do not depend on past values of the
output and hence are described by an input-output equation of the form

y(n) = F[x(n),x(n——1),...,x(n-M)] (2.5.19)

and for linear time-invariantsystems specifically, by the difference equationin (2.5.18)
with gy =0fork=1,2,..., N.

In the case of FIR systems, we have already observed that it is always possible to
realize such systems nonrecursively. In fact, witha, =0,k =1,2,..., N, in (2.5.18),
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¥

]

M+1

Figure 2.5.5 Nonrecursive realization of an FIR moving average system.

we have a system with an input-output equation

M
Yy =y bpx(n =k (2.520)

k=0

This is a nonrecursive and FIR system. Asindicated in (2.5.12), the impulse response
of the system is simply equal to the coefficients {bx}). Hence every FIR system can
be realized nonrecursively. On the other hand, any FIR system can also be realized
recursively. Although the general proof of this statement is given later, we shall give
a simple example to illustrate the point.

Suppose that we have an FIR system of the form

1 M
Y =375 Zax(n -k (2.5.21)

for computing the moving average of a signal x(n). Clearly, this system is FIR with
impulse response

O0<n=<M

h(n) = m,

Figure 2.5.5 illustrates the structure of the nonrecursive realization of the system.
Now, suppose that we express (2.5.21) as

. M
)’(n)=————M+1gx(n—1—k)

1 B 4 (2.522)
+M+1[x(n) x(n—1— M)]

=yn—1)+ [x(n) —x(n — 1= M)]

M+1

Now, (2.5.22) represents a recursive realization of the FIR system. The structure of
this recursive realization of the moving average system is illustrated in Fig. 2.5.6.
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x(n)

yn—1)

Figure 2.5.6 Recursive realization of an FIR moving average system.

In summary, we can think of the terms FIR and IR as general characteristics
that distinguish a type of linear time-invariant system, and of the terms recursive
and nonrecursive as descriptions of the structures for realizing or implementing the
system.

2.6 Correlation of Discrete-Time Signals

A mathematical operation that closely resembles convolution is correlation. Justasin
the case of convolution, two signal sequences are involved in correlation. In contrast
to convolution, however, our objective in computing the correlation between the two
signals is to measure the degree to which the two signals are similar and thus to extract
some information that depends to a large extent on the application. Correlation of
signals is often encountered in radar, sonar, digital communications, geology, and
other areas in science and engineering.

To be specific, let us suppose that we have two signal sequences x(n) and y(n)
that we wish to compare. In radar and active sonar applications, x (1) can represent
the sampled version of the transmitted signal and y(n) can represent the sampled
version of the received signal at the output of the analog-to-digital (A/D) converter.
If a target is present in the space being searched by the radar or sonar, the received
signal y(n) consists of a delayed version of the transmitted signal, reflected from
the target, and corrupted by additive noise. Figure 2.6.1 depicts the radar signal
reception problem.

We can represent the received signal sequence as

y(n) = ax{n — D) +wk) (2.6.1)

where « is some attenuation factor representing the signal loss involved in the round-
trip transmission of the signal x(rn), D is the round-trip delay, which is assumed to
be an integer multiple of the sampling interval, and w(n) represents the additive
noise that is picked up by the antenna and any noise generated by the electronic
components and amplifiers contained in the front end of the receiver. On the other
hand, if there is no target in the space searched by the radar and sonar, the received
signal y(n) consists of noise alone.
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Figure 2.6.1 Radar target detection.

Having the two signal sequences, x(n), which is called the reference signal or
transmitted signal, and y(n), the received signal, the problem in radar and sonar
detection is to compare y(n) and x(n) to determine if a target is present and, if so,
to determine the time delay D and compute the distance to the target. In practice,
the signal x(n — D) is heavily corrupted by the additive noise to the point where
a visual inspection of y(rn) does not reveal the presence or absence of the desired
signal reflected from the target. Correlation provides us with a means for extracting
this important information from y(n).

Digital communications is another area where correlationis often used. In digital
communications the information to be transmitted from one point to another is
usually converted to binary form, that is, a sequence of zeros and ones, which are
then transmitted to the intended receiver. To transmit a 0 we can transmit the signal
sequence xo(n) for 0 <n < L —1,and to transmit a 1 we can transmit the signal
sequence x1(n) for 0 <n < L—1,where L issome integer that denotes the number of
samples in each of the two sequences. Very often, x; (n) is selected to be the negative
of xo(n). The signal received by the intended receiver may be represented as

y(n) = x;(n) + w(n), i=0,1, O<n<L~-1 (2.6.2)

where now the uncertainty is whether xo(n) or x1(n) is the signal component in y(n),
and w(n) represents the additive noise and other interference inherent in any com-
munication system. Again, such noise has its origin in the electronic components
contained in the front end of the receiver. In any case, the receiver knows the pos-
sible transmitted sequences xo(n) and x1(n) and is faced with the task of comparing
the received signal y(n) with both xo(n) and xi(n) to determine which of the two
signals better matches y(n). This comparison process is performed by means of the
correlation operation described in the following subsection.
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2.6.1 Crosscorrelation and Autocorrelation Sequences

Suppose that we have two real signal sequences x(n) and y(n) each of which has
finite energy. The crosscorrelation of x(n) and y(n) is a sequence ry,(l), which is
defined as

Py =Y xmym—0,  [=0,%1,42,... (2.6.3)

n=~00
or, equivalently, as

oo

Py = Y x(n+Dym), 1=0+1,£2,... (2.6.4)

n=—00

The index [ is the (time) shift (or lag) parameter and the subscripts xy on the cross-
correlation sequence ry, (/) indicate the sequences being correlated. The order of
the subscripts, with x preceding y, indicates the direction in which one sequence
is shifted, relative to the other. To elaborate, in (2.6.3), the sequence x(n) is left
unshifted and y(n) is shifted by ! units in time, to the right for / positive and to the
left for [ negative. Equivalently, in (2.6.4), the sequence y(n) is left unshifted and
x(n) is shifted by [ units in time, to the left for I positive and to the right for [ negative.
But shifting x(n) to the left by I units relative to y(n) is equivalent to shifting y(n)
to the right by / units relative to x(n). Hence the computations (2.6.3) and (2.6.4)
yield identical crosscorrelation sequences.

If we reverse the roles of x(n) and y(n) in (2.6.3) and (2.6.4) and therefore reverse
the order of the indices xy, we obtain the crosscorrelation sequence

(o]

P =Y ymx(n =D (2.6.5)

n=—0o

or, equivalently,
x>

ra) =Y yo+Dx@m) (2.6.6)

n=—0od

By comparing (2.6.3) with (2.6.6) or (2.6.4) with (2.6.5), we conclude that
rey) = ryx (=) (2.6.7)

Therefore, ry, (1) is simply the folded version of ry, (1), where the folding is done with
respect to [ = 0. Hence, ryx (/) provides exactly the same information as ry, (1), with
respect to the similarity of x(rn) to y(n).

EXAMPLE 2.6.1

Determine the crosscorrelation sequence ryy, (1) of the sequences

x(n)={...,0,0,2,—1,3,7,%,2,—3,0,0,...}

}’(”):{-~-,O,0a1,—1»2,—2,?,1,—2,5,0,0,...}
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Solution.  Let us use the definition in (2.6.3) to compute 7, (). For [ = 0 we have

[e o)

Fey(0) = Z x(n)y(n)

n=—00

The product sequence vo(n) = x(n) y(n) is

vo(n) =1{...,0,0,2,1,6,-14, éTl, 2,6,0,0,...}

and hence the sum over all values of n is
rey(@) =7
For | > 0, we simply shift y(n) to the right relative to x(n) by ! units, compute the product

sequence v{n) = x(m)y(n —1), and finally, sum over all values of the product sequence. Thus

we obtain
rey ) =13, ry@)= —~18, ry,(3) =16, @ =-7

Fy(S) =5,  ry6)=-3, ry@) =0, 127

For | < 0, we shift y(n) to the left relative to x(n) by [ units, compute the product
sequence v (n) = x(m)y(n — 1), and sum over all values of the product sequence. Thus we

obtain the values of the crosscorrelation sequence

rxy(_l) =0, rxy(_z) = 33, rxy(_3> = —14, rxy(—4) =36
rxy(_s) =19, rxy(_6) =-9, rxy(_7) = 10, rxy(l) =0,1=<-8

Therefore, the crosscorrelation sequence of x (1) and y(n) is

roy () = {10, -9, 19, 36, 14, 33, 0, Z 13, 18,16, 7,5, =3}

The similarities between the computation of the crosscorrelation of two se-
quences and the convolution of two sequences is apparent. In the computation
of convolution, one of the sequences is folded, then shifted, then multiplied by the
other sequence to form the product sequence for that shift, and finally, the values
of the product sequence are summed. Except for the folding operation, the compu-
tation of the crosscorrelation sequence involves the same operations: shifting one
of the sequences, multiplying the two sequences, and summing over all values of
the product sequence. Consequently, if we have a computer program that performs
convolution, we can use it to perform crosscorrelation by providing as inputs to the
program the sequence x(n) and the folded sequence y(—n). Then the convolution
of x(n) with y(—n) yields the crosscorrelation 7y, ), that is,

roy@) = x() * y(=1) (2.6.8)

We note that the absence of folding makes crosscorrelation a noncommutative
operation. In the special case where y(n) = x(n), we have the autocorrelation of
x(n), which is defined as the sequence

o0

ra) = Y xmx(n—1) (2.6.9)

n=—00
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or, equivalently, as
oo

ra = Y x(n+Dx(n) (2.6.10)

R=—00
In dealing with finite-duration sequences, it is customary to express the auto-
correlation and crosscorrelation in terms of the finite limits on the summation. In
particular, if x(n) and y(n) are causal sequences of length N [ie., x(n) = y(n) =0
for n < 0 and n > NJ, the crosscorrelation and autocorrelation sequences may be

expressed as
N—|k|-1

)= Y, xmyn-D (2.6.11)

n=[

N—[k|-1
ra®) = Y xx@m-1D (2.6.12)

n=i

wherei =1,k =0for!>0,andi =0,k =1forl <0.

2.6.2 Properties of the Autocorrelation and Crosscorrelation

Sequences
The autocorrelation and crosscorrelation sequences have a number of important
properties that we now present. To develop these properties, let us assume that we
have two sequences x(n) and y(n) with finite energy from which we form the linear
combination,

ax(n) + by(n — D)

where a and b are arbitrary constants and / is some time shift. The energy in this
signal is

o0 o0

3 [ax() + by(n =D =a* ) P ORI ECE

n=—00 n=—00 n=-—00

(2.6.13)

+2ab Y x(n)y(n—1)

n=—00

= a1y (0) 4 b?ryy(0) + 2abryy (1)

First, we note that r,(0) = E, and ry,(0) = E,, which are the energies of x(n)
and y(n), respectively. It is obvious that

a%ryx(0) + b?ryy (0) + 2abryy (1) = 0 (2.6.14)

Now, assuming that b # 0, we can divide (2.6.14) by b? to obtain

ree(0) (5) 2420 (5) +ry(© 20
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We view this equation as a quadratic with coefficients r,,(0), 2r,;, (1), and r,,(0).
Since the quadratic is nonnegative, it follows that the discriminant of this quadratic
must be nonpositive, that is,

4[r2 (1) = rex(O)ryy(0)] < 0

Xy

Therefore, the crosscorrelation sequence satisfies the condition that

Py (D] = v/ Txx O)ryy(0) =/ ELE, (2.6.15)

In the special case where y(n) = x(n), (2.6.15) reduces to
[rex (D] < rex(0) = Ex (2616)

This means that the autocorrelation sequence of a signal attains its maximum value
at zero lag. This result is consistent with the notion that a signal matches perfectly
with itself at zero shift. In the case of the crosscorrelation sequence, the upper bound
on its values is given in (2.6.15).

Note that if any one or both of the signals involved in the crosscorrelation are
scaled, the shape of the crosscorrelation sequence does not change; only the am-
plitudes of the crosscorrelation sequence are scaled accordingly. Since scaling is
unimportant, it is often desirable, in practice, to normalize the autocorrelation and
crosscorrelation sequences to the range from —1 to 1. In the case of the autocorrela-
tion sequence, we can simply divide by r,(0). Thus the normalized autocorrelation

sequence is defined as
Fex(l)

() = 2.6.17
Per(®) rex (0) ( )
Similarly, we define the normalized crosscorrelation sequence
Xy l
sy @) (2.6.18)

() = ————==
P )( V rxx(o)ryy(o)

Now [pxx ()] < 1 and |py,(D)] < 1, and hence these sequences are independent of

signal scaling.
Finally, as we have already demonstrated, the crosscorrelation sequence satisfies

the property

rxy(l) = Fyx (=D
With y(n) = x(n), this relation results in the following important property for the
autocorrelation sequence

Fox (D) = rex (D) (2619)

Hence the autocorrelation function is an even function. Consequently, it suffices to
compute ry,(I) for [ > 0.

EXAMPLE 2.6.2
Compute the autocorrelation of the signal
x(n)=ad"u@m),0<a<1

Solution.  Since x(n) is an infinite-duration signal, its autocorrelation also has infinite dura-
tion. We distinguish two cases.
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If / > 0, from Fig. 2.6.2 we observe that

n=1

ra) = ix(n)x(n -1 = ia”a"'l =a™ i(az)"
n=1

n=1

Since a < 1, the infinite series converges and we obtain

1

re) = T

Figure 2.6.2
Computation of

the autocorrelation
of the signal
x(ny=a",0<a<1.
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For I < 0 we have

ra) =Y xmx@ - =a"y @) = jaza_l, 1<0

n=0 =0

But when / is negative, a~! = g!. Thus the two relations for r,,(!) can be combined into the
following expression:

a' —00 <1 <00 (2.6.20)

Fex (D) = 1—a2 s

The sequence r,, () is shown in Fig. 2.6.2(d). We observe that

Pax (1) = rax (D

and
1
Fxx (0) = 1__‘(;2‘

Therefore, the normalized autocorrelation sequence is

oy =20 i o ci<oo (2.6.21)
7 (0}

2.6.3 Correlation of Periodic Sequences

In Section 2.6.1 we defined the crosscorrelation and autocorrelation sequences of
energy signals. In this section we consider the correlation sequences of power signals
and, in particular, periodic signals.

Let x(n) and y(n) be two power signals. Their crosscorrelation sequence is
defined as

=

M

> xmy(n =D (2.6.22)

Fey() = lim
M n=—M

So02M +1

If x(n) = y(n), we have the definition of the autocorrelation sequence of apower

signal as
M

Z x(mMx(n —1) (2.6.23)

n=—M

rel) = Hm s

In particular, if x(n) and y(n) are two periodic sequences, each with period N,
the averages indicated in (2.6.22) and (2.6.23) over the infinite interval are identical
to the averages over a single period, so that (2.6.22) and (2.6.23) reduce to

N-1

1
ro®) =+ > xmyn =1 (2.6.24)

n=0
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and
N-1

reel) = % > xmxn - 1) (2.625)

n=0

It is clear that ry,(I) and ry,(I) are periodic correlation sequences with period N.
The factor 1/N can be viewed as a normalization scale factor.

In some practical applications, correlation is used to identify periodicities in
an observed physical signal which may be corrupted by random interference. For
example, consider a signal sequence y(n) of the form

y(n) = x(n) +w(n) (2.6.26)

where x(n) is a periodic sequence of some unknown period N and w(n) represents
an additive random interference. Suppose that we observe M samples of y(n), say
0 <n<M-—1,where M >> N. For all practical purposes, we can assume that
y(n) = 0 for n < 0 and n > M. Now the autocorrelation sequence of y(n), using
the normalization factor of 1/M, is

M-1

1
ry® =723 Yy —1) (26.27)
=0

If we substitute for y(n) from (2.6.26) into (2.6.27) we obtain

M~1

1
ry®) = 22 3 ) + wmllx =) +w =]

n=0

M-1

1
= — x(n)yx(n —1)
ZpS

1 M-l (2.6.28)
+ 77 > rmwe =D +wmx(n = D]

n=0

1 M-1
+ = Z w(mw(n — 1)

M n=0

= rex () + 7o @) F rux (D) + 1w @)

The first factor on the right-hand side of (2.6.28) is the autocorrelation sequence
of x(n). Since x(n) is periodic, its autocorrelation sequence exhibits the same period-
icity, thus containing relatively large peaks at [ = 0, N, 2N, and so on. However, as
the shift / approaches M, the peaks are reduced in amplitude due to the fact that we
have a finite data record of M samples so that many of the products x(n)x(n —[) are
zero. Consequently, we should avoid computing r,, (I) for large lags, say, [ > M/2.




(2.6.25)

with period N.

periodicities in
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The crosscorrelations r,,, (1) and ry, (I) between the signal x(n) and the additive
random interference are expected to be relatively small as a result of the expectation
that x(n) and w(n) will be totally unrelated. Finally, the last term on the right-hand
side of (2.6.28) is the autocorrelation sequence of the random sequence w(rn). This
correlation sequence will certainly contain a peak at I = 0, but because of its random
characteristics, ry,,(!) is expected to decay rapidly toward zero. Consequently, only
rxx (1) is expected to have large peaks for [ > 0. This behavior allows us to detect the
presence of the periodic signal x(n) buried in the interference w(n) and to identify
its period.

An example that illustrates the use of autocorrelation to identify a hidden pe-
riodicity in an observed physical signal is shown in Fig. 2.6.3. This figure illustrates
the autocorrelation (normalized) sequence for the Wolfer sunspot numbers in the
100-year period 1770-1869 for 0 <! < 20, where any value of / corresponds to one
year. There is clear evidence in this figure that a periodic trend exists, with a period
of 10 to 11 years.

EXAMPLEZ2.6.3

Suppose that a signal sequence x(n) = sin(z/5)n, for 0 < n <99 is corrupted by an additive
noise sequence w(n), where the values of the additive noise are selected independently from
sample to sample, from a uniform distribution over the range (—A/2, A/2), where A is a
parameter of the distribution. The observed sequence is y(n) = x(n) + w(n). Determine the
autocorrelation sequence ry, (/) and thus determine the period of the signal x(n).

Solution.  The assumption is that the signal sequence x(n) has some unknown period that
we are attempting to determine from the noise-corrupted observations {y(n)}. Although x(n)
is periodic with period 10, we have only a finite-duration sequence of length M = 100 [i.e.,
10 periods of x(n)]. The noise power level P, in the sequence w(n) is determined by the
parameter A. We simply state that P, = A?/12. The signal power levelis P, = ;. Therefore,

the signal-to-noise ratio (SNR) is defined as

P, 3 6

P, A2j12 AZ

Usually, the SNR is expressed on a logarithmic scale in decibels (dB) as 101log,, (P./Pu).
Figure 2.6.4 illustrates a sample of a noise sequence w(n), and the observed sequence
y(n) = x(n) + w(n) when the SNR = 1 dB. The autocorrelation sequence ry, () is illustrated
in Fig. 2.6.4(c). We observe that the periodic signal x(n), embedded in y(n), results in a
periodic autocorrelation function r,, () with period N = 10. The effect of the additive noise
is to add to the peak value at I = 0, but for / # 0, the correlation sequence ry,(I) ~ 0 asa
result of the fact that values of w(n) were generated independently. Such noise is usually called
white noise. The presence of this noise explains the reason for the large peak at / = 0. The
smaller, nearly equal peaks at [ = 10, 20, ... are due to the periodic characteristics of x(n).

2.6.4 Input-Output Correlation Sequences

In this section we derive two input—output relationships for LT1 systems in the “cor-
relation domain.” Let us assume that a signal x(r) with known autocorrelation ry, (/)
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Figure 2.6.3 Identification of periodicity in the Wolfer sunspot numbers: (a) annual
Wolfer sunspot numbers; (b) normalized autocorrelation sequence.

is applied to an LTT system with impulse response h(n), producing the output signal

o0

y() =h@) xx() = Y h@x(n =k

=—00

The crosscorrelation between the output and the input signal is

ryn(D) = y(O) * x(=1) = h(l) * [x (D) * x(=D]
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Figure 2.6.4 Use of autocorrelation to detect the presence of a periodic signal
corrupted by noise.

or
ryx(D) = R(l) % 7ex (D) (2.6.29)

where we have used (2.6.8) and the properties of convolution. Hence the cross-
correlation between the input and the output of the system is the convolution of
the impulse response with the autocorrelation of the input sequence. Alternatively,
ryx (1) may be viewed as the output of the LTI system when the input sequence is
rex (D). This is illustrated in Fig. 2.6.5. If we replace [ by ~[ in (2.6.29), we obtain

rxy(l) = h(—1) * rex (D)

The autocorrelation of the output signal can be obtained by using (2.6.8) with
x(n) = y(n) and the properties of convolution. Thus we have

ryy (@) = y () % ¥(=D)
= [h®) # x®] # [A(=D) % x(=D)]
= Q) % h(=D] * [x (D) * x(=D)]
= rin) % 7 () |

(2.6.30)
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The autocorrelation ry,;, (1) of the impulse response % (n) exists if the system is stable.
Furthermore, the stability insures that the system does not change the type (energy
or power) of the input signal. By evaluating (2.6.30) for / = 0 we obtain

o0

ryy©) = Y ran(k)rax (k) (2.6.31)

k=~00

which provides the energy (or power) of the output signal in terms of autocorre-
lations. These relationships hold for both energy and power signals. The direct
derivation of these relationships for energy and power signals, and their extensions
to complex signals, are left as exercises for the student.

LTI Output
SYSTEM =
Figure 2.6.5 h(n) )
Input-output relation for
crosscorrelation ry,(n).

2.7 Summary and References

The major theme of this chapter is the characterization of discrete-time signals and
systems in the time domain. Of particular importance is the class of linear time-
invariant (LTI) systems which are widely used in the design and implementation
of digital signal processing systems. We characterized LTI systems by their unit
sample response h(n) and derived the convolution summation, which is a formula
for determining the response y(n) of the system characterized by A (n) to any given
input sequence x(n).

The class of LTT systems characterized by linear difference equations with con-
stant coefficients is by far the most important of the LTI systems in the theory and
application of digital signal processing. The general solution of a linear difference
equation with constant coefficients was derived in this chapter and shown to consist
of two components: the solution of the homogeneous equation, which represents the
natural response of the system when the input is zero, and the particular solution,
which represents the response of the system to the input signal. From the difference
equation, we also demonstrated how to derive the unit sample response of the LTI
system.

Linear time-invariant systems were generally subdivided into FIR (finite-duration
impulse response) and ITR (infinite-duration impulse response) depending on whether
h(n) has finite duration or infinite duration, respectively. The realizations of such
systems were briefly described. Furthermore, in the realization of FIR systems, we
made the distinction between recursive and nonrecursive realizations. On the other
hand, we observed that IIR systems can be implemented recursively, only.
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2.62 Determine the autocorrelation sequences of the following signals.
(@) x(n) = {%, 2,1,1}

) y@n) = {}, 12,1}

What is your conclusion?
What is the normalized autocorrelation sequence of the signal x(n) given by

x(n) = 1, -N<n<N
10, otherwise

Anaudio signal s(r) generated by a loudspeaker is reflected at two different walls
with reflection coefficients r; and r,. The signal x(¢) recorded by a microphone close
to the loudspeaker, after sampling, is

x(n) = s(n) +ris(n — ki) + ras(n — ky)

where k; and k, are the delays of the two echoes.

(a) Determine the autocorrelation ry, (1) of the signal x(n).
(b) Can we obtain ry, 72, k1, and ky by observing rxx N7
(¢c) What happens if rp = 0?

Time-delay estimation in radar Let x,(¢) be the transmitted signal and y, (r) be the
received signal in a radar system, where

Ya(t) = ax, (t —13) + va(t)
and v, (¢) is additive random noise. The signals x,(¢) and y,(¢) are sampled in the
receiver, according to the sampling theorem, and are processed digitally to deter-

mine the time delay and hence the distance of the object. The resulting discrete-time
signals are

x(n) = x,(nT)
y(n) = ya(nT) = ax,(nT — DT) + v (nT)

2 ax(n — D) 4+ v(n)

| Output

0 —1
1— 1

Figure P2.65 * ) Modulo-2 adder
Linear feedback shift
register.
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(a) Explain how we can measure the delay D by computing the crosscorrelation
rey(D).
(b) Let x(n) be the 13-point Barker sequence

x(n) = {+1, +1, +1, 41, 41, =1, =1, +1, +1, =1, +1, -1, +1}

and v(n) be a Gaussian random sequence with zero mean and variance o2 = 0.01.
Write a program that generates the sequence y(n), 0 < n <199 for a = 0.9 and
D = 20. Plot the signals x(n), y(r), 0 <n <199,

(¢) Compute and plot the crosscorrelation ry, (1), 0 < [ < 59. Use the plot to
estimate the value of the delay D.

(d) Repeat parts (b) and (c) for 02 = 0.1 and 62 = 1.

(e) Repeat parts (b) and (c) for the signal sequence

x(n) ={-1, -1, =1, +1, +1, +1, +1, =1, +1, -1, +1, +1, -1, -1, +1}

which is obtained from the four-stage feedback shift register shown in Fig. P2.65.
Note that x(n) is just one period of the periodic sequence obtained from the
feedback shift register.

() Repeat parts (b) and (c) for a sequence of period N = 27 — 1, which is obtained
from a seven-stage feedback shift register. Table 2.2 gives the stages connected
to the modulo-2 adder for (maximal-length) shift-register sequences of length
N=2"—-1.

TABLE 2.2 Shift-Register Connections for Gener-
ating Maximal-Length Sequences

m Stages Connected to Modulo-2 Adder
1 1

2 1,2

3 1,3

4 1,4

5 1,4

6 1,6

7 1,7

8 1,5,6,7
9 1,6

10 1,8

11 1,10

12 1,7,9,12
13 1,10,11,13
14 1,5,9,14
15 1,15

16 1,5,14,16

—
~

1,15




