Quadrature-Mirror Fllter Bank

* In many applications, a discrete-time signal
x[n] 1s split into a number of subband

signals {v;[7]} by means of an analysis filter
bank

* The subband signals are then processed

 Finally, the processed subband signals are
combined by a synthesis filter bank
resulting in an output signal y[#]
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Quadrature-Mirror Filter Bank

« If the subband signals {vi[#]} are
bandlimited to frequency ranges much
smaller than that of the original input signal
x[n], they can be down-sampled before
processing

* Because of the lower sampling rate, the
processing of the down-sampled signals can
be carried out more efficiently
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Quadrature-Mirror Fllter Bank

« After processing, these signals are then up-
sampled before being combined by the
synthesis filter bank into a higher-rate signal

* The combined structure is called a
quadrature-mirror filter (OMF) bank
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Quadrature-Mirror Filter Bank

* If the down-sampling and up-sampling
factors are equal to or greater than the
number of bands of the filter bank, then the
output y[n] can be made to retain some or
all of the characteristics of the input signal
x|n] by choosing appropriately the filters in
the structure
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Quadrature-Mirror Filter Bank

e If the up-sampling and down-sampling
factors are equal to the number of bands,
then the structure is called a critically
sampled filter bank

e The most common application of this
scheme 1s 1n the efficient coding of a signal
x[n]
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Two-

Channel QVIF Bank

* Figure below shows the basic two-channel
QMF bank-based subband codec (coder/

decoder)

—ul Hyx) 4 |2 —»| Coder

.r[n ]-—0

_,l Hiz) 12 _.| Coder

J

MUX

DEMUX

» Decoder

Go(2)

—" G](Z)

}‘.\’[n]
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Two-Channel QVIF Bank

 The analysis filters Hy(z)and H;(z) have
typically a lowpass and highpass frequency
responses, respectively, with a cutoff at p/2

1| [Hy(@®) |H )]
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Two-Channel QVMF Bank

» Each down-sampled subband signal is
encoded by exploiting the special spectral
properties of the signal, such as energy
levels and perceptual importance

* It follows from the figure that the sampling
rates of the output y[#] and the 1nput x[#]
are the same
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Two-Channel QWVIF Bank

e The analysis and the synthesis filters are
chosen so as to ensure that the reconstructed
output y[n] 1s a reasonably close replica of
the input x[n]

* Moreover, they are also designed to provide
good frequency selectivity in order to
ensure that the sum of the power of the
subband signals 1s reasonably close to the
input signal power
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Two-Channel QMF Bank

 In practice, various errors are generated 1n
this scheme

 In addition to the coding error and errors
caused by transmission of the coded signals
through the channel, the QMF bank itself
introduces several errors due to the
sampling rate alterations and imperfect
filters

* We ignore the coding and the channel errors
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Two-Channel QVMF Bank

* We investigate only the errors caused by the
sampling rate alterations and their effects on
the performance of the system

* To this end, we consider the QMF bank
structure without the coders and the
decoders as shown below

voln] 12 ugln] . TZ {\’0["-]

" Hp(2) q * Go(2)
xn] —¢ }‘ y[n]
vqln] uq[n] v[n]
» Hi(z) et 12 1 > TZ S Gi(2)
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* Making use of the mnput-output relations of
the down-sampler and the up-sampler 1n the
z-domain we arrive at

Vi(z)=H;(z)X(z),
Up(2) = "2+ V(=2 D)}, k=0, 1
Vi (2)=U, (%)
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e [wo-Channel

Analysis of tr
QOMF Bank

* From the first and the last equations we
obtain after some algebra

Vie(2) = Vi (2)+ Vi (=)}
— ;{Hk(z)X(Z) +Hy(-2)X(-2)}

* The reconstructed output of the filter bank

1S given by
Y(2) = Go(2)Wy(2)+ Gy (2)V(2)
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Analysis of the Two-Channel
OMF Bank

* From the two equations of the previous
slide we arrive at

Y(2) = {H(2)Gy(2) + H (2)G(2)}X (2)
+ {H(=2)Gy(2) + Hy(=2)G(2)}X (~2)

* The second term in the above equation 1s
due to the aliasing caused by sampling rate
alteration
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Analysis of the Two-Channel
QOMF Bank

* The mput-output equation of the filter bank
can be compactly written as

Y(z2)=T(2)X(z2)+ A(2) X (—2)
where 7(z), called the distortion transfer
function, is given by

T(z)=){Ho(2)Go(2)+ H{(2)Gy(2)}

and
A(z) = ;{H 0(—2)Gy(2)+ H(—2)G(2)}
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Allas-Free Filter Bank

» Since the up-sampler and the down-sampler
are linear time-varying components, 1n
general, the 2-channel QMF structure 1s a
linear time-varying system

* [t can be shown that the 2-channel QMF
structure has a period of 2

 However, 1t 1s possible to choose the
analysis and synthesis filters such that the

aliasing effect 1s canceled resulting 1n a
time-1nvariant operation
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Allas-rFree rilter Bank
* To cancel aliasing we need to ensure that
A(z) =0, 1.e.,
Ho(—Z)Go(Z) + Hl(—Z)Gl(Z) =0

* For aliasing cancellation we can choose
Go(2) _ _ Hi(-2)
) . Gi(z) Hy(-2z)
e This yields

Go(2)=C(2)H(~2), G(2)=-C(2)Hy(-2),

where C(z) 1s an arbitrary rational function
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Allas-Free Filter Bank

o If the above relations hold, then the QMF
system 1s time-invariant with an iput-
output relation given by

Y(z) = T(2)X(2) where
T(z)= {Ho(2)H,(=2)+ H,(z)H((-2)}

* On the unit circle, we have

Y(e/?)=T(’®) X (e/?)=IT(e’?)| /%@ X (e/?)
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Allas-Free Filter Bank

o If 7(2) is an allpass function, 1.e.,|T CAEY
with d #0 then

1Y(e/P) =d 11X (e/?)
indicating that the output of the QMF bank
has the same magnitude response as that of
the mput (scaled by d) but exhibits phase
distortion

—

» The filter bank is said to be magnitude
preserving
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 If 7(z) has linear phase, 1.¢.,

arg{T(e’“)} = ¢(w) = aw + f3
then

arg{Y(ejw)} = arg{X(ejw)}+ ow+ B

 The filter bank is said to be phase-
preserving but exhibits magnitude distortion
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Allas-Free Filter Bank

 If an alias-free filter bank has no magnitude
and phase distortion, then 1t 1s called a

perfect reconstruction (PR) QMF bank
* Insuch a case, 7(z) = dz* resulting 1n
Y(z)=dz ' X(2)
* In the time-domain, the input-output

relation for all possible mputs 1s given by
ylnl=dx[n—{]
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Allas-Fre

e Fllter

)

Bank

* Thus, for a perfect reconstruction QMF bank,
the output 1s a scaled, delayed replica of the

input

» Example - Consider the system shown below

x|n] I {12

| ;12

:Tz

[ 3

22

:Tz

Z.
—é—» yln]
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Allas-rree Fillter Bank

e Comparing this structure with the general
QMF bank structure we conclude that here
we have

Ho(z)=1, H{(z)=z"", Gy(z)=z"", Gi(z)=1

* Substituting these values in the expressions
for 7(z) and A(z) we get

T(z)= ;(Z_l + Z_l) =7
A(z) = ;(2_1 —z =0
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Allas-Free Filiter Bank

e Thus the simple multirate structure 1s an
alias-free perfect reconstruction filter bank

 However, the filters in the bank do not
provide any frequency selectivity
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An Allas-Free Realization

* A very simple alias-free 2-channel QMF
bank 1s obtained when

H1(Z) — Ho(—Z)

 The above condition, in the case of a real
coefficient filter, implies

|H,(e’?)=IHy(e/ ")
indicating that if Hy(z) is a lowpass filter,
then H(z) is a highpass filter, and vice versa
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An Alias-rree Realization

» The relation |H{(e/®)I=1Hy(e/ ")
indicates that |H{(e’®)l is a mirror-image of

|H (e/?)| with respect to p/2, the quadrature
frequency

o This has given rise to the name quadrature-
mirror filter bank

26 Copyright © S. K. Mitra
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An Allas-rree Realization

* Substituting H{(z) = Hy(—z) In
Go(2)=C(2)H (=2), Gi(2)=-C(2)H((-2),
with C(z) = 1 we get
Go(z)=H|(-2), Gi(z)=—-H(z2)=—-Hy(-2)

* The above equations imply that the two
analysis filters and the two synthesis filters

are essentially determined from one transfer
function Hy(z)
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An Allas-rree Realization

* Moreover, if Hy(z) is a lowpass filter, then
G (z)1s also a lowpass filter and Gy(z) 1s a
highpass filter

 The distortion function in this case reduces
to

T(z)={Hj(2)- H{ ()} = {H{ (2)- Hj(-2)}
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An Alias-rree Realization

* A computationally efficient realization of
the above QMF bank 1s obtained by

realizing the analysis and synthesis filters in
polyphase form

* Let the 2-band Type 1 polyphase
representation of Hy(z) be given by

Ho(z)=Ey(z*)+z ' E(z%)
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An Allas-Free Realization

e Then from the relation H{(z) = Hy(—2z)1t
follows that

H(z)=Ey(z*) -z 'E|(z%)

« Combining the last two equations 1n a
matrix form we get

_Ho(Z)_:[l 1}' Eo(z*)
Ho(z)| L1 =1 g %)
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An Allas-rree Realization

» Likewise, the synthesis filters can be
expressed 1in a matrix form as

Go(2) Gia)l= kB EoD]] ]

« Making use of the last two equations we can
redraw the two-channel QMF bank as
shown below

x[n]

31

’Eo(ZZ)

|2

:TZ

El(Zz)

El(Zz)

v
=1
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e

|2
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An Alias-rree Realization
* Making use of the cascade equivalences, the
above structure can be further simplified as

shown below

Al —4 | 2 P Eglo) E\op]2
71 71
=112 PE Eo P 12 @ ot
Analysis filter bank Syntheis filter bank
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D

An Allas-Free Realization

» Substituting the polyphase representations
of the analysis filters we arrive at the
expression for the distortion function 7(z) in
terms of the polyphase components as

T(z)=2z"'Ey(z*)E (%)
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An Allas-rree Realization

* Example - Let Hy(z)=1+ 77!

* Its polyphase components are
E)(z9)=1, E|(z*)=1
 Hence
Hi(z)=Hy(-z)=Ey(z*)—z 'Ej(z*)=1-2""
e [ikewise
Gy(z) =z 'E/(z})+ Ey(z*)=1+z""
G(z)=z'E(z*)— Ey(z*)=—1+z""!

34 Copyright © S. K. Mitra



35

D

An Alias-rree Realization

 The distortion transfer function for this
realization 1s thus given by

T(z)=2z"'Ey(z*)E|(z*)=2z""

- mmmp The resulting structure is a perfect
reconstruction OMF bank
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Allas-Free FIR QMF Bank

« If in the above alias-free QMF bank H(z)
1s a linear-phase FIR filter, then 1ts
polyphase components Ey(z) and £;(z), are
also linear-phase FIR transfer functions

o In this case, T(2) =2z Ey(z%)E;(z?)
exhibits a linear-phase characteristic

* As aresult, the corresponding 2-channel
QMEF bank has no phase distortion
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Allas-Free FIR QMF Bank

» However, in general |T(e/®)| is not a
constant, and as a result, the QMF bank
exhibits magnitude distortion

e We next outline a method to minimize the
residual amplitude distortion

e Let Hy(z) be a length-N real-coefficient
linear-phase FIR transfer function:

Hy(2)=3 N holn]z""
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Alias-rree FIR QMF Bank

Note: Hy(z) can either be a Type 1 or a
Type 2 linear-phase FIR transfer function
since 1t has to be a lowpass filter

Then hg[n] satisfy the condition
holn]=hol N —n]

In this case we can write
Ho(e/®) = /N2 [ ()

In the above Hy(®)is the amplitude
function, a real function of w
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Allas-Free FIR QMF Bank

* The frequency response of the distortion

transfer function can now be written as
: —j Mo . .
T(e/®)="° , (| Hy(e/®) |2 (DN | Hy(e/ "D |2}

 From the above, 1t can be seen that 1f NV 1s
even, then T (e/®) =0 at w = p/2, implying
severe amplitude distortion at the output of
the filter bank
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Allas-Free FIR QMF Bank

« mmp N must be odd, in which case we have

. —J Mo . .
T(e/) =" | Ho(el®) P +] Ho(e/ ™))
—J No . .
=€ A Ho(e/) P +| Hy(e®) )
* It follows from the above that the FIR 2-

channel QMF bank will be of perfect
reconstruction type if

| Ho(e/®) [P +| Hy(e/) =1
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Allas-Free FIR QMF Bank

Now, the 2-channel QMF bank with linear-
phase filters has no phase distortion, but
will always exhibit amplitude distortion
unless IT(e’?)l is a constant for all w

If Hy(2) is a very good lowpass filter with
|Hy(e/®)|=1 in the passband and |[Hy(e/?)| =

Int
hig]
wit

he stopband, then H{(z)is a very good
pass filter with 1ts passband coinciding

h the stopband of Hy(z), and vice-versa
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Allas-Free FIR QMF Bank

e As aresult, IT (e N=1/2 in the passbands
of Hy(z) and Hy(2)

- mmmp Amplitude distortion occurs primarily
in the transition band of these filters

* Degree of distortion determined by the
amount of overlap between their squared-
magnitude responses
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Alias-rree FIR QMF Bank
* This distortion can be minimized by
controlling the overlap, which 1n turn can be
controlled by appropriately choosing the
passband edge of Hy(z)

* One way to minimize the amplitude
distortion 1s to iteratively adjust the filter
coefficients Agln] of Hy(z) on a computer
such that

| Hy(e/®) 1 +1H{(e/®)P=1
1s satisfied for all values of w
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Allas-Free FIR QMF Bank

* To this end, the objective function f to be
minimized can be chosen as a linear
combination of two functions:

(1) stopband attenuation of Hy(z), and

(2) sum of squared magnitude responses of
Hy(z) and H;(z)
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Alias-rree FIR QMF Bank
* One such objective function 1s given by

¢ =ap+(1-0)p,
where . 5
o= | H('®) dw

Q)
and 5

0 = T(l —Ho(ejw)2 —H1(€jw)2 jzdw
0

and 0 <a<1, and @ =72Z+8f0r some
s Smalle>0
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Allas-Free FIR QMF Bank

o Since|T(e/®)|is symmetric with respect to
p/2, the second integral in the objective

function f can be replaced with
/2

02=2 | (1—H0<efw>2—H1<efw>2 ) dos
0 /

» After f has been made very small by the
optimization procedure, both ¢; and ¢,
will also be very small

46 Copyright © S. K. Mitra



47

Allas-Free rFIR QMF Bank

» Using this approach, Johnston has designed
a large class of linear-phase FIR filters
meeting a variety of specifications and has
tabulated their impulse response coefficients

* Program 10 9 can be used to verify the
performance of Johnston’s filters
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Allas-Free FIR QMF Bank

o Example - The gain responses of the
length-12 linear-phase FIR lowpass filter
12B and 1ts power-complementary highpass
filter obtained using Program 10 9 are
shown below

20
. HO(Z) H 1(2)
2 20 \\
§ 40} i Vf\vﬂ\
60 =
80
0 02 04 06 08 1
48 o
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Allas-Free FIR QMF Bank

e The program then computes the amplitude
distortion |Hy(e/?)]* + |H{(e/®)]* in dB as
shown below

Amplitude distortion 1n dB
0.03

A ALy
N AT
MANRVAVRY
-0.02 \/q :4 ;6 0.8 !
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Allas-Free FIR QMF Bank

* From the gain response plot it can be seen
that the stopband edge ®, of the lowpass
filter12B 1s about 0.71p, which corresponds
to a transition bandwidth of

(0, —0.5m)/2=0.1057

e The minimum stopband attenuation 1s
approximately 34 dB

Copyright © S. K. Mitra



51

Alias-Free FIR QMF Bank

The amplitude distortion function 1s very
close to 0 dB 1n both the passbands and the

stopbands of the two filters, with a peak
value of £0.02 dB
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Alias-rFree IR QMF Bank

 Under the alias-free conditions of
Go(2)=Hy(~2),  Gy(2)=—H,(~2)
and the relation Hy(z) = Hy(—z) , the
distortion function 7(z) 1s given by

T(z)=2z""Ey(z*)E (z°)
 If 7(2) 1s an allpass function, then 1ts
magnitude response 1s a constant, and as a

result its corresponding QMF bank has no

magnitude distortion
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Allas-Free IR QMF Bank

* Let the polyphase components E(z) and
& (z) H@(@pressed as

Ey(z) = *A o(2), Ei(z)=_A 1(2)

with A o(2) and A 1(2) being stable allpass
functions

© Thus, Ho(2)=! A o(z2)+27A ().
H(2)= A o(z)-27A ().
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Alias-Free IR QWVIF Bank

* In matrix form, the analysis filters can be
expressed as

THo(2)]_ 1[1 1 } A o(z2)

_Ho(Z)__2 1 —1

* The corresponding synthesis filters in
matrix form are given by

Go(2) Gi(2)]= LA (=) Ao(zz)ﬂ _IJ
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Allas-rFree lIR QMF Bank
» Thus, the synthesis filters are given by

Gy(z) = ;[A o(z2)+z71A (z2)1= Hy(2)
Gy (z) = ;[—A 022+ z7IA (22 =-H,(2)

* The realization of the magnitude-preserving
2-channel QMF bank 1s shown below

P Moo~ el
er] Z_l
I +
L o —o—<L—Sofa,oH{T2 [

Analysis filter bank Syntheis filter bank
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Allas-rree IR QMF Bank

 From ]
Ho(2)="Ao(z2) +27A (%)
it can be seen that the lowpass transfer
function fy(z) has a polyphase-like
decomposition, except here the polyphase
components are stable allpass transfer
functions
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Allas-Free lIR QMF Bank

It has been shown earlier that a bounded-
real (BR) transter function Hy(z) = F(z)/ D(z)
of odd order, with no common factors
between its numerator and denominator, can
be expressed 1n the form

Ho(2)= Aoz +27'A 1 (2%).
it 1t satisties the power-symmetry condition
Ho(2)Hy(z Y+ Hy(—2)Hy(—z ") =1
and has a symmetric numerator Fy(z)
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Allas-Free |IR QMF Bank

* It has also been shown that any odd-order

elliptic lowpass half-band filter H,(z)with a
frequency response specification given by

1-8, <IH(e/?)I<], for0<w<w,
H(e/?)<6,, foro, <<

and satistying the conditions w, + W, =7

and 6% = 46, (1-0,) can always be
expressed in the form

Ho(2)="Ao(z2)+27A ().
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Allas-rree IR QMF Bank

* The poles of the elliptic filter satistying the
two conditions on bandedges and ripples lie
on the 1maginary axis

 Using the pole-interlacing property
discussed earlier, on can readily 1dentify the

expressions for the two allpass transfer
functions A ((z) and A {(z2)
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Allas-rree |IR QVIF Bank

» Example - The frequency response
specifications of a real-coefficient lowpass

half-band filter are given by: @,=0.4r,
®.= 0.6, and 0,=0.0155

» From §; =45, (1-5,) we get 5, =0.00012013

* In dB, the passband and stopband ripples are
Rp = 0.0010435178 and Rs = 36.193366
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Alias-rFree |IR QMF Bank
» Using the M-file ellipord we determine

the minimum order of the elliptic lowpass
filter to be 5

* Next, using the M-file e111ip the transfer
function of the lowpass filter 1s determined
whose gain response 1s shown below

Real half-band filter

20 \

Gain, dB
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Allas-Free IR QMF Bank

* The poles obtained using the function
tf2zparecatz=0,z==x j0.486025263
and z = £ j0.486625263

* The pole-zero plot obtained using zplane
1s shown below

1F e

o
= 05}
2
5 O 0
205
-1t | o, X . |
_]_ 0 1
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Allas-Free [IR QMF Bank

* Using the pole-interlacing property we
arrive at the transfer functions of the two
allpass filters as given below:

o 272 +0.2368041466

A o(z7) = )
1402368041466z

272 4+0.7149039978

1+0.71490399782 >

A(z%) =
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