2.0 INTRODUCTION

In Section 1.6 we introduced and discussed a number of basic system properties. Two of
these, linearity and time invariance, play a fundamental role in signal and system analysis
for two major reasons. First, many physical processes possess these properties and thus
can be modeled as linear time-invariant (LTI) systems. In addition, LTI systems can be
analyzed in considerable detail, providing both insight into their properties and a set of
powerful tools that form the core of signal and system analysis.

A principal objective of this book is to develop an understanding of these proper-
ties and tools and to provide an introduction to several of the very important applications
in which the tools are used. In this chapter, we begin the development by deriving and
examining a fundamental and extremely useful representation for LTI systems and by in-
troducing an important class of these systems.

One of the primary reasons LTI systems are amenable to analysis is that any such
system possesses the superposition property described in Section 1.6.6. As a consequence,
if we can represent the input to an LTI system in terms of a linear combination of a set of
basic signals, we can then use superposition to compute the output of the system in ferms
of its responses to these basic signals.

As we will see in the following sections, one of the important characteristics of the
unit impulse, both in discrete time and in continuous time, is that very general signals
can be represented as linear combinations of delayed impulses. This fact, together with
the properties of superposition and time invariance, will allow us to develop a complete
| characterization of any LTI system in terms of its response to a unit impulse. Such a
representation, referred to as the convolution sum in the discrete-time case and the convo-
lution integral in continuous time, provides considerable analytical convenience in dealing
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with LTI systems. Following our development of the convolution sum and the convolution
integral we use these characterizations to examine some of the other properties of LTT sys-
tems. We then consider the class of continuous-time systems described by linear constant-
coefficient differential equations and its discrete-time counterpart, the class of systems
described by linear constant-coefficient difference equations. We will return to examine
these two very important classes of systems on a number of occasions in subsequent chap-
ters. Finally, we will take another look at the continuous-time unit.impulse function and -
a number of other signals that are closely related to it in order to provide some additional
insight into these idealized signals and, in particular, to their use and interpretation in the
context of analyzing LTI systems.

JISCRETE-TIME LTI SYSTEMS: THE CONVOLUTION SUM

2.1.1 The Representation of Discrete-Time Signals in Terms
of Impulses

The key idea in visualizing how the discrete-time unit impulse can be used to construct
any discrete-time signal is to think of a discrete-time signal as a sequence of individual im-
pulses. To see how this intuitive picture can be turned into a mathematical representation,
consider the signal x[n] depicted in Figure 2.1(a). In the remaining parts of this figure,
we have depicted five time-shifted, scaled unit impulse sequences, where the scaling on
each impulse equals the value of x[n] at the particular instant the unit sample occurs. For

example,
*[~1380n + 1] = { delhon =l
X[018[n] = { A0 =0

X118[n — 1] = {g[”’ ‘ 2;11

Therefore, the sum of the five sequences in the figure equals x[n] for =2 = n < 2. More
generally, by including additional shifted, scaled impulses, we can write.
x[n] = ... + x[=316[n + 3] + x[—216[n + 2] + x[—1]8[n + 1] + x[0]18[n]

, 2.1
+ x[116[n — 11 + x[216[n ~ 2] + x[3]6[n — 3] +.... @1

For any value of n, only one of the terms on the right-hand side of eq. (2.1) is nonzero, and
the scaling associated with that term is precisely x[n]. Writing this summation in a more
compact form, we have ‘

400

x[n] = > x[k16[n — k). (2.2)

k=—o

This corresponds to the representation of an arbitrary sequence as a linear combination of
shifted unit impulses 8[rn — k], where the weights in this linear combination are x[k]. As
an example, consider x[n] = u[n], the unit step. In this case, since u[k] = 0 for k < 0
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Figure 2.1  Decomposition of a
discrete-time signal into a weighted
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and u[k] = 1 for k = 0; eq. (2.2) becomes
+0 ¢
uln] = > 8ln~ kj,
k=0

which is identical to the expression we derived in Section 1.4. [See eq. (1.67).]

Equation (2.2) is called the sifting property of the discrete-time unit impulse. Be-
cause the sequence 8[n — k] is nonzero only when k = n, the summation on the right-
hand side of eq. (2.2) “sifts” through the sequence of values x[k] and preserves only the
value corresponding to k = n. In the next subsection, we will exploit this representa-
tion of discrete-time signals in order to develop the convolution-sum representation for a
~ discrete-time LTT system.

2.1.2 The Discrete-Time Unit Impulse Response and the Convolution-
Sum Representation of LTI Systems

The importance of the sifting property of eqgs. (2.1) and (2.2) lies in the fact that it repre-
sents x[r] as a superposition of scaled versions of a very simple set of elementary functions,
namely, shifted unit impulses 8[n — k], each of which is nonzero (with value 1) at a single
point in time specified by the corresponding value of k. The response of a linear system
to x[n] will be the superposition of the scaled responses of the system to each of these
shifted impulses. Moreover, the property of time invariance tells us that the responses of a
time-invariant system to the time-shifted unit impulses are simply time-shifted versions of
one another. The convolution-sum representation for discrete-time systems that are both
linear and time invariant results from putting these two basic facts together.

More specifically, consider the response of a linear (but possibly time-varying) sys-
tem to an arbitrary input x[n]. We can represent the input through eq. (2.2) as a linear
combination of shifted unit impulses. Let /;[n] denote the response of the linear system
to the shifted unit impulse 8[n — k]. Then, from the superposition property for a linear
system [eqs. (1.123) and (1.124)], the response y[n] of the linear system to the input x[n]
in eq. (2.2) is simply the weighted linear combination of these basic responses. That is,
with the input x[~] to a linear system expressed in the form of eq. (2.2), the output y[n]
can be expressed as

o0
yinl = > xlklkln] 23)

k=~

Thus, according to eq. (2.3), if we know the response of a linear system to the set of
shifted unit impulses, we can construct the response to an arbitrary input. An interpreta-
tion of eq. (2.3) is illustrated in Figure 2.2. The signal x[n] is applied as the input to a
linear system whose responses h_[n], holn], and k;[n] to the signals 8[n + 1], 8[x], and
o[n — 1], respectively, are depicted in Figure 2.2(b). Since x[r] can be written as a linear
combination of 8[n + 1], 8[n], and 8[rn — 1], superposition allows us to write the response
to x[n] as a linear combination of the responses to the individual shifted impulses. The
individual shifted and scaled impulses that constitute x[x] are illustrated on the left-hand
side of Figure 2.2(c), while the responses to these component signals are pictured on the
right-hand side. In Figure 2.2(d) we have depicted the actual input x[#], which is the sum
of the components on the left side of Figure 2.2(c) and the actual output y[#], which, by
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x[n]

h_y[n] hg [n] hy [n]

(b)

Figure 2.2  Graphical interpretation of the response of a discrete-time linear
system as expressed in eq. (2.3).

superposition, is the sum of the components on the right side of Figure 2.2(c). Thus, the
response at time # of a linear system is simply the superposition of the responses due to
the input value at each point in time.

In general, of course, the responses 4[] need not be related to each other for differ-
ent values of k. However, if the linear system is also time invariant, then these responses
to time-shifted unit impulses are all time~shifted versions of each other. Specifically, since
6[n — k] is a time-shifted version of 8[x], the response A;[n] is a time-shifted version of
ho[nl; ie., '

hiln] = holn — k). (2.4)
For notational convenience, we will drop the subscript on hp[n] and define the unit impulse
(sample) response

hin] = ho[n]. - (25)
Thatis, h{n] is the output of the LTI system when 8[#] is the input. Then for an LTI system,
eq. (2.3) becomes

o0

ylnl = > x[klhln — K]. : (2.6)

k=—o

This result is referred to as the convolution sum ot superposition sum, and the oper-
ation on the right-hand side of eq. (2.6) is known as the convolution of the sequences x[n]
and h[n]. We will represent the operation of convolution symbolically as

ytn] = x[n] * hin]. @




Sec. 2.1 Discrete-Time LTI Systems: The Convolution Sum 79

x[—1] 3[n +1] x[=1]h_4[n]

x{0] 3[n] ' x{0] ho[n]

x[1] 3[n—1] X[1] hy[n]

©

Xin] T yin]

@ ' Figure 2.2 Continued

Note that eq. (2.6) expresses the response of an LTI system to an arbitrary input in
terms of the system’s response to the unit impulse. From this, we see that an LTI system
is completely characterized by its response to a single signal, namely, its response to the
unit impulse.

The interpretation of eq. (2.6) is similar to the one we gave for eq. (2.3), where, in the
case of an LTI system, the response due to the input x[k] applied at time k is x[k]h[n — kI,
i.e., it is a shifted and scaled version (an “echo”) of A[n]. As before, the actual output is
the superposition of all these responses.




80 ’ Linear Time-Invariant Systems Chap. 2

Example 2.1

Consider an LTI system with impulse response k[n] and input x[n], as illustrated iy
Figure 2.3(a). For this case, since only x[0] and x[1] are nonzero, eq. (2.6) simplifies to
the expression

yin] = x[0]a[rn — O] + x[1]A[n — 11 = 0.5h[n] + 2h[n — 1]. (2.8)
The sequences 0.5k[#] and 2k[n — 1] are the two echoes of the impulse response needed
for the superposition involved in generating y[n]. These echoes are displayed in Fig-

ure 2.3(b). By summing the two echoes for each value of n, we obtain y[n], which is
shown in Figure 2.3(c).

hin]

—H&H‘
o 1 2 n
2
xin]
0.5
o 1 n
@)
0.5 0.5h[n]
0 1 2 n
2 2h[n—1]
o 1 2 3 n
N (b)

Figure 2.3 (a) The impulse response h[n] of an LTI system and an input
x[n] to the system; (b) the responses or “echoes,” 0.5A[n] and 2h{n — 1], to
the nonzero values of the input, namely, x[0] = 0.5 and x[1] = 2; (c) the

- overall response y[n], which is the sum of the echos in (b).
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By considering the effect of the superposition sum on each individual output sample,
we obtain another very useful way to visualize the calculation of y[#] using the convolution
sum. In particular, consider the evaluation of the output value at some specific time n. A
particularly convenient way of displaying this calculation graphically begins with the two
signals x[k] and hin — k] viewed as functions of k. Multiplying these two functions, we
obtain a sequence g[k] = x[k]h[n — k], which, at each time £, is seen to represent the
contribution of x[k] to the output at time n. We conclude that summing all the samples
in the sequence of g[k] yields the output value at the selected time n. Thus, to calculate
y[n] for all values of n requires repeating this procedure for each value of ». Fortunately,
changing the value of 7 has a very simple graphical interpretation for the two signals x{k]
and A[n — k], viewed as functions of k. The following examples illustrate this and the use
of the aforementioned viewpoint in evaluiating convolution sums.

Example 2.2

13

Let us consider again the convolution problem encountered in Example 2.1. The se-
quence x[k] is shown in Figure 2.4(a), while the sequence h[n — k], for n fixed and
viewed as a function of k, is shown in Figure 2.4(b) for several different values of x. In
sketching these sequences, we have used the fact that [n — k] (viewed as a function of
k with n fixed) is a time-reversed and shifted version of the impulse response A[k]. In
particular, as k increases, the argument n — k decreases, explaining the need to perform a
time reversal of A[k]. Knowing this, then in order to sketch the signal h[n — k], we need
only determine its value for some particular value of . For example, the argument n— £
will equal 0 at the value k = n. Thus, if we sketch the signal A[— k], we can obtain the
signal A[n — k] simply by shifting to the right (bhy r) if  is positive or to the left if n'is
negative. The result for our example for values ofn<0,n=0123,andn>3are
shown in Figure 2.4(b).

Having sketched x[k] and A[n — k] for any particular value of n, we multiply
these two signals and sum over all values of k. For our example, for r < 0, we see from
Figure 2.4 that x[k]A[n — k] = O for all k, since the nonzero values of x[k] and A{n — k]
do not overlap. Consequently, y[n] = 0 for n < 0. For n = 0, since the product of the
sequence x[k] with the sequence [0 — k] has only one nonzero sample with the value
0.5, we conclude that

o

y[0] = Z x[k]h[0 — k] = 0.5. 29

= =00

The product of the sequence x[k] with the sequence A{1 — k] has two nonzero samples,
which may be summed to obtain '

y[1] = i x[k]h[1 — k] = 0.5+ 2.0 = 2.5. (2.10)

= ~00

©

y[2] = Z x[k]h[2 — k] = 0.5+ 2.0 = 2.5, 2.11)

k=—co
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Figure 2.4 Interpretation of eq. (2.6) for the signals A{n] and x{n} in Fig-
ure 2.3; (a) the signal x[k] and (b) the signal h{n — k] (as a function of k
with 71 fixed) for several values of n(n < 0; n = 0, 1, 2, 3; n > 3). Each

of these signals is obtained by reflection and shifting of the unit impulse re-

" sponse h[k]. The response y[n] for each value of n is obtained by multiplying
the signals x[k] and h[n — k] in (a) and (b) and then summing the products
over all values of k. The calculation for this example is carried out in detail in
Example 2.2.

0

yi31= Z x[k)h[3 — k] = 2.0. (2.12)

k= -

Finally, for n > 3, the product x[k}h[n — k] is zero for all k, from which we conclude
that y[n] = 0 for n > 3. The resulting output values agree with those obtained in Exam-
ple 2.1.




Sec. 2.1 Discretg-Tin%e LTI Systems: The Gonvolution Sum 83

Examplé 2.3

i Consider an input x[r] and a unit impulse response h[n] given by

x[n] = a"uln),
h[n] = uln],

with 0 < a < 1. These signals are illustrated in Figure 2.5. Also, to help us in visualizing
and calculating the convolution of the signals, in Figure 2.6 we have depicted the signal
x[k] followed by A[— k], h[—1 — k], and k1 — k] (thatis, h[n— k] forn = 0, —1, and +1)
and, finally, 2[n — k] for an arbitrary positive value of 7 and an arbitrary negative value
of n. From this figure, we note that for n < 0, there is no overlap between the nonzero
points in x[k] and A[n— k). Thus, for n < 0, x[k}h[n — k] = O for all values of k, and
hence, fmm eq. (2.6), we see that y[n] = 0,n < 0. Forn = 0,

k

x[n] = «"uln}

h[n] = ufn]

(b)
Figure 2.5 The signals x[n] and A[n] in Example 2.3.
Thus, fq_f n=0,

ylnl = > ok,
k=0

and using the result of Problem 1.54 we can write this as

n+1

il =>at =120 =0 2.13)
k=0

Thus, fqg all n,

yln] = (%)u[n].

The signal y[r] is sketched in Figure 2.7.
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Figure 2.6 Graphical interpretation of the calculation of the convolution
sum for Example 2.3.
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. n+1
yin] = (1—9‘-—> uln]
1—a

L ]ll”

Figure 2.7 Qutput for Example 2.3.

The operation of convolution is sometimes described in terms of “sliding” the se-
quence h[n — k] past x[£]. For example, suppose we have evaluated y[n] for some partic-
ular value of n, say, n = ny. That is, we have sketched the signal h[ny — k], multiplied it
by the signal x[k], and summed the result over all values of k. To evaluate y[n] at the next
value of n—i.e., n = ng + 1—we need to sketch the signal A[(ng + 1) — k]. However, we
can do this simply by taking the signal A[ny — k] and shifting it to the right by one point.
For each successive value of n, we continue this process of shifting A[n — k] to the right
by one Qoint, multiplying by x[k], and summing the result over k.

Example 2.4
> As a further example, consider the two sequences

x[n] = 1, 0=n=<4
0, otherwise

_Ja" 0=n=6
hin] = {0, . otherwise

' These signals are depicted in Figure 2.8 for a positive value of & > 1. In order to calculate
. the convolution of the two signals, it is convenient to consider five separate intervals for
= n. This is illustrated in Figure 2.9. :

Interval 1. For n < 0, there is no overlap between the nonzero portions of x[k] and
" h[n — k], and consequently, y[n] = O.

| Interval2. For0 < n =< 4,

n~k
HHlAln = K = lg ’ gthir\lfvisin'
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x[n]

012345 n
@

| hin]
...=====_—§;'T‘]]' ======.'.
012345867 n
(b)
Figure 2.8 The signals to be convolved in Example 2.4.
Thus, in t}ﬁs interval,
ylnl = > a7k (2.14)
k=0

We can evaluate this sum using the finite sum formula, eq. (2.13). Specifically, changing
the variable of summation in eq. (2.14) from k to r = n — k, we obtain

n+l

“ -«
yinl = > o' = ———.

. Imterval 3. Forn>4butn—6 < 0(e.,4<n =<6),

a™k 0=k=4
0, otherwise

x[klhaln — k] = {

- Thus, in this interval,
4
yinl = > o™k c @13
k=0

~ Once again, we can use the geometric sum formula in eq. (2.13) to evaluate eq>. (2.15).
. Specifically, factoring out the constant factor of " from the summation in eq. 2.15)

yields
. 4 Ik nl - (a-—l)5 an—4 _ an+l 16
Ml =a" > @ =t = (2.16)

k=0

Interval4. Forn>6butn—6 < 4 (ie,for6 <n = 10),

a"k (n—-6)=k=s4
0, otherwise ’

x[klh[n — k] = {




Figure 2.9 Graphical interpretation of the convolution performed in
Example 2.4.




88 Linear Time-Invariant Systems ~ Chap, »

so that

4

Ml = > ark,
k=n—6

We can again use eq. (2.13) to evaluate this summation. Letting r = k—n+ 6, we obtaip

10—n 10—n 1 n—11 n—4 7
Z 6-r 6 Z -1y 61" & @ —a
n| = 84 = o = = .
yln] < r=o( ) 1-

a! l-«a

Interval 5. For n — 6 > 4, or equivalently, n > 10, there is no overlap between the
nonzero portions of x[k] and A[n — k], and hence,

yln] = 0.
: Summariiing, then, we obtain
0, n<o0
— i
I__Q’ 0=<n=<4
-«
n=-4'__ . n+l
y[n] = u————, 4<n=6,
l-a
n—4 __ 7
¢ a’ 6<n=10
l—-«a i
L 0, 10<n
which is pictured in Figure 2.10.
[
1 yin]
======='TII| ll::
0 4 6 10 n

Figure 2.10 Result of performing the convolution in Example 2.4.

Example 2.5

1 Consider an LTI system with input x[r] and unit impulse response h{r] specified as
follows:

x[n} = 2"u[—n], VAV
hln] = uln]. (2.18)
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Figure 2.11 (a) The sequences x[k] and h[n—k] for the convolution prob-
lem considered in Example 2.5; (b) the resulting output signal y[n].

The sequences x[k] and h[rn — k] are plotted as functions of k in Figure 2.11(a). Note that
x[k] is zero for k > 0 and h[n — k] is zero for k > n. We also observe that, regardless of
. the value of n, the sequence x[k]h[n — k] always has nonzero samples along the k-axis.
. When n = 0, x[k]h[n — k] has nonzero samples in the interval k < 0. It follows that,
} forn = 0,

0

0
yinl = > x[kliln—k] = > 2% (2.19)

k=—o k=—
| To evaluate the infinite sum in eq. (2.19), we may use the infinite sum formula,
Slak= ——, 0<la|<l. (2.20)
pard l-a
. Changing the variable of summation in eq. (2.19) from k to r = —k, we obtain

0 . © 1 k 1 :
k;mz = %(2) =1y = > (2.21)

Thus, y[#] takes on a constant value of 2 for n = 0.
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When n < 0, x[k}h[n — k] has nonzero samples for £k = n. It follows that, for
n<a0,

yinl = > xlklkln—K = > 2% (2.22)
k=—o k=—x
By performing a change of variable [ = —k and then m = [ + n, we can again make

“%: use of the infinite sum formula, eq. (2.20), to evaluate the sum in eq. (2.22). The result
1. is the following for n < 0:

| eSS ST e e

=-n m=0 m=0

The complete sequence of y[n] is sketched in Figure 2.11(b).

These examples illustrate the usefulness of visualizing the calculation of the con-
volution sum graphically. Moreover, in addition to providing a useful way in which to
calculate the response of an LTI system, the convolution sum also provides an extremely
useful representation for LTI systems that allows us to examine their properties in grea
detail. In particular, in Section 2.3 we will describe some of the properties of convolution
and will also examine some of the system properties introduced in the previous chapter in
order to see how these properties can be characterized for LTI systems.

2.2 CONTINUOUS-TIME LTI SYSTEMS: THE CONVOLUTION INTEGRAL

In analogy with the results derived and discussed in the preceding section, the goal of this
section is to obtain a complete characterization of a continuous-time LTI system in terms
of its unit impulse response. In discrete time, the key to our developing the convolution
sum was the sifting property of the discrete-time unit impulse—that is, the mathematical
representation of a signal as the superposition of scaled and shifted unit impulse functions.
Intuitively, then, we can think of the discrete-time system as responding to a sequence of
individual impulses. In continuous time, of course, we do not have a discrete sequence of
input values. Nevertheless, as we discussed in Section 1.4.2, if we think of the unit im-
pulse as the idealization of a pulse which is so short that its duration is inconsequential for .
any real, physical system, we can develop a representation for arbitrary continuous-time
signals in terms of these idealized pulses with vanishingly small duration, or equivalently,
impulses. This representation is developed in the next subsection, and, following that, we
will proceed very much as in Section 2.1 to develop the convolution integral representation
for continuous-time LTI systems.

2.2.1 The Representation of Continuous-Time Signals in Terms
of Impulses ’

To develop the continuous-time counterpart of the discrete-time sifting property in
eq. (2.2), we begin by considering a pulse or “staircase” approximation, (), to 2
continuous-time signal x(¢), as illustrated in Figure 2.12(a). In a manner similar to that
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Figure 2.12  Staircase approxima-

() tion to a continuous-time signal.
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3(t—1)

t T
(b)
Xx(1)8(t—7) = x(B)d{t—1) X(t)
Figure 2.14 (a) Arbitrary signal
x(7); (b) impulse (t—7) as a function
t + of 7 with £ fixed; (c) product of these
© two signals.

2.2.2 The Continuous-Time Unit Impulse Response and the
Convolution Integral Representation of LTI Systems

As in the discrete-time case, the representation developed in the preceding section provides
us with a way in which to view an arbitrary continuous-time signal as the superposition of
scaled and shifted pulses. In particular, the approximate representation in eq. (2.25) repre-
sents the signal £(¢) as a sum of scaled and shifted versions of the basic pulse signal 8 (2).
Consequently, the response $(#) of a linear system to this signal will be the superposition
of the responses to the scaled and shifted versions of 8(#). Specifically, let us define hia®)
as the response of an LTI system to the input 85(¢ — kA). Then, from eq. (2.25) and the
superposition property, for continuous-time linear systems, we see that

+0o0

9 = > x(kAha®A. (2.29)

=00

The interpretation of eq. (2.29) is similar to that for eq. (2.3) in discrete time. In
particular, consider Figure 2.15, which is the continuous-time counterpart of Figure 2.2.In
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FIX(O)
0A t t
(b)
x(&)h A
” i l:> [\
A t £
©
x(kA)ha (DA
” x(ka) = /\/\
kA t i t
@
X ye)
Jﬁu : /\/‘\/\/
0 t 0 1
€
| = vt
’\/\/\/\, Figure 2.15 Graphicai interpreta-
0 i 0 ¢  tion of the response of a continuous-

time linear system as expressed in
gs. (2.29) and (2.30).
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Figure 2.15(a) we have depicted the input x(#) and its approximation £(¢), while in Figure
2.15(b)~(d), we have shown the responses of the system to three of the weighted pulses in
the expression for £(¢). Then the output $(#) corresponding to £(7) is the superposition of
all of these responses, as indicated in Figure 2.15(¢).

What remains, then, is to consider what happens as A becomes vanishingly small—
i.e.,as A — 0. In particular, with x(r) as expressed in eq. (2.26), %(¢) becomes an increas-
ingly good approximation to x(z), and in fact, the two coincide as A — 0. Consequently,
the response to 2(f), namely, $(¢) in eq. (2.29), must converge to ¥(t), the response to
the actual input x(¢), as illustrated in Figure 2.15(f). Furthermore, as we have said, for A
“small enough,” the duration of the pulse 85(f — kA) is of no significance, in that, as far as
the system is concerned, the response to this pulse is essentially the same as the response
to a unit impulse at the same point in time. That is, since the pulse 84 (¢ — kA) corresponds
to a shifted unit impulse as A — 0, the response izkA(t) to this input pulse becomes the
response to an impulse in the limit. Therefore, if we let h,(#) denote the response at time ¢
to a unit impulse 8(¢ — 7) located at time 7, then

+o0

y® = lim > x(kB)pOA 230)

k=—o

As A — 0, the summation on the right-hand side becomes an integral, as can be seen
graphically in Figure 2.16. Specifically, in Figure 2.16 the shaded rectangle represents one
term in the summation on the right-hand side of eq. (2.30) and as A — 0 the summation
approaches the area under x(7)h.(¢) viewed as a function of 7. Therefore,

~+o0
) = j )y (. 231)

—oo

The interpretation of eq. (2.31) is analogous to the one for eq. (2.29). As we showed
in Section 2.2.1, any input x(¢) can be represented as

x(t) = JHO x(7)8(t — 7)dT.

—oo

x(mh,(t)

Shaded area = x(kA)h (A

RN Figure 2.16  Graphical illustration
kA (k+T)A of egs. (2.30) and (2.31).




Sec. 2.2 Continuous-Time LTI Systems: The Gonvolution Integral 97

That is, we can intuitively think of x(¢) as a “sum” of weighted shifted impulses, where
the weight on the impulse §(¢ — 7) is x(7)d 7. With this interpretation, eq. (2.31) represents
the superposition of the responses to each of these inputs, and by linearity, the weight
on the response k,(¢) to the shifted impulse 8(¢ — 7) is also x(1)d.

Equation (2.31) represents the general form of the response of a linear system in
continuous time. If, in addition to being linear, the system is also time invariant, then
hi(2) = ho(t — 7); i.e., the response of an LTI system to the unit impulse 8(¢ — 7), which
is shifted by 7 seconds from the origin, is a similarly shifted version of the response to the
unit impulse function 6(z). Again, for notational convenience, we will drop the subscript
and define the unit impulse response h(t) as

h(®) = ho(D); 232)

i.e., h(?) is the response to 8(z). In this case, eq. (2.31) becomes

+oo
@) = f MOt — 7. 2.33)

—c0

Equation (2.33), referred to as the convolution integral or the superposition integral,

is the continuous-time counterpart of the convolution sum of ‘eq. (2.6) and corresponds
to the representation of a continuous-time LTI system in terms of its response to a unit
impulse. The convolution of two signals x(¢) and A(¢) will be represented symbolically as

¥(®) = x() * h(?). (2.34)

While we have chosen to use the same symbol * to denote both discrete-time and
continuous-time convolution, the context will generally be sufficient to distinguish the
two cases.

As in discrete time, we see that a continuous-time LTI system is completely char-
acterized by its impulse response—i.e., by its response to a single elementary signal, the
unit impulse 6(¢). In the next section, we explore the implications of this as we examine
a number of the properties of convolution and of LTI systems in both continuous time and
discrete time.

The procedure for evaluating the convolution integral is quite similar to that for its
discrete-time counterpart, the convolution sum. Specifically, in eq. (2.33) we see that, for
any value of 7, the output y(¢) is a weighted integral of the input, where the weight on
x(7) is h(t — 7). To evaluate this integral for a specific value of ¢, we first obtain the signal
h(t — 7) (regarded as a function of 7 with ¢ fixed) from A(r) by a reflection about the origin
and a shift to the right by if # > 0 or a shift to the left by |¢] for # < 0. We next multiply
together the signals x(7) and A(t — 7), and y(z) is obtained by integrating the resulting
product from 7 = —oto 7 = +oo. To illustrate the evaluation of the convolution integral,
let us consider several examples.
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Example 2.6

g Let x(f) be the input to an LT system with unit ﬁnpulse response k(t), where

x() = e “ut), a>0

-

and

h(t) = u?).

In Figure 2.17, we have depicted the functions'h(r), x(7), and A(t — 7) for a negative
value of ¢ and for apositive value of #. From this figure, we see that for # < 0, the product
of x(7) and A(t — 7) is zero, and consequently, y(¢) is zero. For t > 0,

<<t
Xt =) = [ (e) otHe:wise )

h{r)

—— 1
| t<0
i t 0 T
h{t—)
g i t>0
‘ 0 t ' T
‘ ] Figure 2.17 Calculation of the convoliition integral for Example 2.6.
il
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From this expression, we can compute y(¢) for ¢ > 0:

t 1 t
() = J e dr = ——e™"
0 a 0

l(1 —e M),
a
Thus, for all ¢, y(¢) is

¥ = (1= ),

which is shown in Figure 2.18.

vl = 11— e

1

a

0 t

Figure 2.18 Response of the system in Example 2.6 with impulse re-
sponse A(f) = u(f) to the input x(t) = e~ u(t).

Example 2.7
E‘ggﬁi “Consider the convolution of the following two signals:
ot

_]L 0<e<T
M) = [0, otherwise

|t O0<e<2r
k() = [0, otherwise

As in Example 2.4 for discrete-time convolution, it is convenient to consider the evalu-
ation of y(#) in separate intervals. In Figure 2.19, we have sketched x(7) and have illus-
trated h(¢—) in each of the intervals of interest. For ¢ < Qand forz > 3T, x()h(t— T) =
0 for all values of 7, and consequently, y(z) = 0. For the other intervals, the product
x(T)h(t — 1) is as indicated in Figure 2.20. Thus, for these three intervals, the integration
can be carried out graphically, with the result that

0, <0

i, . 0<t<T
¥ = Tt — 177, T<t<2T ,

~32+Tt+3T% 2T <t<3T

0, 3T <t

#: which is depicted in Figure 2.21.




X(‘T) <
I
0T T
h(t—1)
2T
t<0
/ t 0 T
t-2T
h{t—n)
27
o<t<T
0t T
t—2T
h{t—)
27
T<t<2T
. (¢] t T
t—2T
h{t—1)
2T ‘
\ 2T<t< 3T
0 t T
t-2T
h{t—)
2T+
t>3T
o / t T
t-2T7
Figure 2.19 Signals x(7) and h(t — =) for different values of { for
Example 2.7.
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x(1)ht—1)

o<t<T

0 t T

@)

x(tyh(t—1)

t T<t<2T
t-T

0T T
(b)

x(ryh{t—)

o7
t-T h 2T <t<3T

T T
t-27
©

Figure 2.20 Product x(7)h(t — ) for Example 2.7 for the three ranges of
values of ¢ for which this product is not identically zero. (See Figure 2.19)

y(t)

1 ]
0 T 2T 3T t

Figure 2.21  Signal y(f) = x(t} = h(t) for Example 2.7.

Example 2.8

{88 Let y(r) denote the convolution of the following two signals:

x(0) = e*u(~1), (2.35)
h(®) = u(t — 3). (2.36)

The signals x(7) and A(t — ) are plotted as functions of 7 in Figure 2.22(a). We first
observe that these two signals have regions of nonzero overlap, regardless of the value
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x(7) = 62 u(—)

1

0 T
h(t—-1)
1
-3 0 T .
@
vt
1
2
0 3 t

(b)

Figure 2.22 The convolution problem considered in Example 2.8.

of £. When ¢ — 3 = 0, the product of x(7) and At — 7) is nonzero for —o0 < 7 <t -3,
and the convolution integral becomes

-3
y() = f edr = %eﬂ'—”. @37

—oo

Forr—3 = 0, the product x(7)h(¢—) is nonzero for —o < 7 < 0, so that the convolution
integral is

0
¥ = f e”dr = (2.3%)

—o

S

(%0 The resulting signal y(¢) is plotted in Figure 2.22(b).

As these examples and those presented in Section 2.1 illustrate, the graphical in- §
terpretation of continuous-time and discrete-time convolution is of considerable value 11
visualizing the evaluation of convolution integrals and sums.




