7.29 Frequency-domain sampling The signal $x(n) = a^{|n|}$, -1 < a < 1 has a Fourier transform

$$X(\omega) = \frac{1 - a^2}{1 - 2a\cos\omega + a^2}$$

(a) Plot $X(\omega)$ for $0 \le \omega \le 2\pi$, a = 0.8. Reconstruct and plot $X(\omega)$ from its samples $X(2\pi k/N)$, $0 \le k \le N-1$ for

Fig

Re Fo

is

(a)

(b)

(c)

(d)

(e)

7.32

- **(b)** N = 20
- (c) N = 100
- (d) Compare the spectra obtained in parts (b) and (c) with the original spectrum $X(\omega)$ and explain the differences.
- (e) Illustrate the time-domain aliasing when N = 20.
- **7.30** Frequency analysis of amplitude-modulated discrete-time signal The discrete-time signal

$$x(n) = \cos 2\pi f_1 n + \cos 2\pi f_2 n$$

where $f_1 = \frac{1}{18}$ and $f_2 = \frac{5}{128}$, modulates the amplitude of the carrier

$$x_c(n) = \cos 2\pi f_c n$$

where $f_c=\frac{50}{128}.$ The resulting amplitude-modulated signal is

$$x_{\rm am}(n) = x(n)\cos 2\pi f_{\rm c}n$$

- (a) Sketch the signals x(n), $x_c(n)$, and $x_{am}(n)$, $0 \le n \le 255$.
- **(b)** Compute and sketch the 128-point DFT of the signal $x_{am}(n)$, $0 \le n \le 127$.
- (c) Compute and sketch the 128-point DFT of the signal $x_{am}(n)$, $0 \le n \le 99$.
- (d) Compute and sketch the 256-point DFT of the signal $x_{am}(n)$, $0 \le n \le 179$.
- (e) Explain the results obtained in parts (b) through (d), by deriving the spectrum of the amplitude-modulated signal and comparing it with the experimental results.
- **7.31** The sawtooth waveform in Fig. P7.31 can be expressed in the form of a Fourier series as

$$x(t) = \frac{2}{\pi} \left(\sin \pi t - \frac{1}{2} \sin 2\pi t + \frac{1}{3} \sin 3\pi t - \frac{1}{4} \sin 4\pi t \cdots \right)$$

- (a) Determine the Fourier series coefficients c_k .
- (b) Use an N-point subroutine to generate samples of this signal in the time domain using the first six terms of the expansion for N = 64 and N = 128. Plot the signal x(t) and the samples generated, and comment on the results.