
EE538 Final Exam Fall 2002
Digital Signal Processing I 9 December 2002

Cover Sheet

Test Duration: 2 hours.
Open Book but Closed Notes.

Calculators allowed (but not necessary).
This test contains five problems.

All work should be done in the blue books provided.
You must show all work for each problem to receive full credit.

Do not return this test sheet, just return the blue books.

No. Topic(s) of Problem Points
1. Multi-Stage Up-Sampling 20
2. Principles of Upsampling and Downsampling 20
3. DFT and Properties 20
4. AR/ARMA Spectral Estimation 20
5. Sum of Sinewaves Spectral Analysis 20
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Digital Signal Processing I Final Exam 9 Dec.. 2002

GIVEN NOBLE’s IDENTITIES TO USE IN PROBLEM 1.

(a) If E(ω) in Figure 1(b) in terms of G(ω) in Figure 1(a) satsifies E(ω) = G(Mω), the I/O
relationship of the system in Figure 1(b) is exactly the same as the I/O relationship
of the system in Figure 1(a). This result is known as Noble’s First Identity.

MG (ω) E (ω)M

Figure 1(a). Figure 1(b).

(b) If F (ω) in Figure 2(b) in terms of H(ω) in Figure 2(a) satisfies F (ω) = H(Mω), the
I/O relationship of the system in Figure 2(b) is exactly the same as the I/O relationship
of the system in Figure 2(a). This result is known as Noble’s Second Identity.

H (ω)M MF (ω)

Figure 2(a). Figure 2(b).

Problem 1. [20 points]

(a) Determine the impulse response h[n] in Figure 3(b) so that the I/O relationship of
the system in Figure 3(b) is exactly the same as the I/O relationship of the system in
Figure 3(a). Plot the magnitude AND the phase (two separate plots) of the DTFT
of h[n] over −π < ω < π. Hint: Analyze the system of Figure 3(a) in the frequency
domain using Noble’s First Identity.
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Figure 3(a). Figure 3(b).

(b) Determine the numerical values of the impulse response heq[n] in Figure 4(b) so that
the I/O relationship of the system in Figure 4(b) is exactly the same as the I/O
relationship of the system in Figure 4(a). Hint: Analyze the system of Figure 4(a) in
the time domain using Noble’s First Identity.
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Figure 4(a). Figure 4(b).
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Problem 2. [20 points]
In the system below, each of the analysis filters, h0[n] and h1[n], and each of the two

synthesis filters, f0[n] and f1[n], is a causal FIR filter of length 2. The specific values of h0[n]
and h1[n] are indicated. The arrow denotes the value at n = 0. (See the hints at the bottom
of the page.)
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where zi[n] = xi[2n], i = 1, 2 and yi[n] =
∞∑

`=−∞

zi[`]δ[n − 2`], i = 1, 2. Determine the

numerical values of f0[n], n = 0, 1 and f1[n], n = 0, 1, such that y[n] = 2x[n − 1] for any
input sequence x[n].

Hint 1. The series combination of a downsampler followed by an upsampler does NOT reduce
to an identity transformation – they don’t “cancel” each other.

Hint 2. This problem can be solved either in the time domain or the frequency domain with
about equal complexity.
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Problem 3. [20 points]
Consider an input sequence, x[n], of length L = 6 and an FIR filter with impulse response

h[n] of length M = 6 as described below.

x[n] = u[n]− u[n− 6] = {1, 1, 1, 1, 1, 1}

h[n] = u[n]− u[n− 6] = {1, 1, 1, 1, 1, 1}

We compute an N = 8-pt. DFT of each of these two sequences as

x[n]
DFT
←→

8
X8[k] h[n]

DFT
←→

8
H8[k]

Next, we point-wise multiply the DFT sequences to form Y8[k] = X8[k]H8[k], k = 0, 1, ..., 7..
Finally, we compute an N = 8-pt. inverse DFT of Y8[k] to obtain yP [n]. Determine the
numerical values of yP [n] for n = 0, 1, 2, 3, 4, 5, 6, 7.. You can solve the problem any
way you like but briefly explain how you got your answer. Actually computing
the DFT’s is NOT the way to solve this problem.
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Problem 4. [20 points]
Consider the ARMA(1,1) process generated via the difference equation

x[n] = −
1

2
x[n− 1] + w[n]− w[n− 1]

where w[n] is a stationary white noise process with variance σ2
w = 1.

(a) Determine the numerical values of rxx[0], rxx[1], rxx[2], where rxx[m] is the autocorrela-
tion sequence rxx[m] = E{x[n]x[n−m]}. (Note that rxx[m] is the inverse DTFT of the
spectral density Sxx(ω) asked for in Part (b) below, but there at least three different
ways you can solve this part of the problem.)

(b) Determine a simple closed-form expression for the spectral density for x[n], Sxx(ω),
which may be expressed as the DTFT of rxx[m]:

Sxx(ω) =
∞∑

m=−∞

rxx[m]e−jmω

(c) Consider the first-order predictor

x̂[n] = −a1(1)x[n− 1]

Determine the numerical value of the optimum predictor coefficient a1(1) and the
corresponding minimum mean-square error.
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Problem 5. [20 points]
Consider the discrete-time complex-valued random process defined for all n:

x[n] = D +A1e
(ω1n+Θ1) +A2e

(ω2n+Θ2) + ν[n]

where the respective frequencies, ω1 and ω2, of the two complex sinewaves are deterministic
but unknown constants. The amplitudes, A1 and A2, and the constant D are also deter-
ministic but unknown constants. Θ1 and Θ2 are independent random variables with each
uniformly distributed over a 2π interval and ν[n] is a stationary random process with zero
mean and rνν [m] = E{ν[n]ν∗[n −m]} = δ[m]. That is, ν[n] forms an i.i.d. sequence with a
variance of unity. Note, ν[n] is independent of both Θ1 and Θ2 for all n. The values of the
autocorrelation sequence for x[n], rxx[m] = E{x[n]x∗[n −m]}, for three different lag values
are given below.

rxx[0] = 5, rxx[1] = −1 + j, rxx[2] = 2, rxx[3] = −1− j

(a) Determine the numerical values of ω1 and ω2. You have to use what you’ve learned
during the parametric spectral analysis portion of this course. You will be
given no credit if you simply set up a system of equations to solve based on
the form of rxx[m] =

∑p
i=1A

2
i e
jωim and solve this nonlinear system of equations.

(b) Consider a first-order predictor

x̂[n] = −a1(1)x[n− 1]

Determine the numerical values of the optimum predictor coefficient a1(1), and the
numerical value of the corresponding minimum mean-square error.

(c) Consider a second-order predictor

x̂[n] = −a2(1)x[n− 1]− a2(2)x[n− 2]

Determine the numerical values of the optimum predictor coefficients a2(1) and a2(2),
and the numerical value of the corresponding minimum mean-square error.

(d) Consider a third-order predictor

x̂[n] = −a3(1)x[n− 1]− a3(2)x[n− 2]− a3(3)x[n− 3]

Determine the numerical values of the optimum predictor coefficients a3(1), a3(2) and
a3(3), and the numerical value of the corresponding minimum mean-square error.
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