EE538 Final Exam Digital Signal Processing I

Fall 2002 9 December 2002

Cover Sheet

Test Duration: 2 hours.

Open Book but Closed Notes.

Calculators allowed (but not necessary).

This test contains **five** problems.

All work should be done in the blue books provided.

You must show all work for each problem to receive full credit.

Do **not** return this test sheet, just return the blue books.

No.	Topic(s) of Problem	Points
1.	Multi-Stage Up-Sampling	20
2.	Principles of Upsampling and Downsampling	20
3.	DFT and Properties	20
4.	AR/ARMA Spectral Estimation	20
5.	Sum of Sinewaves Spectral Analysis	20

Digital Signal Processing I Final Exam 9 Dec. 2002

GIVEN NOBLE'S IDENTITIES TO USE IN PROBLEM 1.

(a) If $E(\omega)$ in Figure 1(b) in terms of $G(\omega)$ in Figure 1(a) satisfies $E(\omega) = G(M\omega)$, the I/O relationship of the system in Figure 1(b) is exactly the same as the I/O relationship of the system in Figure 1(a). This result is known as Noble's First Identity.

(b) If $F(\omega)$ in Figure 2(b) in terms of $H(\omega)$ in Figure 2(a) satisfies $F(\omega) = H(M\omega)$, the I/O relationship of the system in Figure 2(b) is exactly the same as the I/O relationship of the system in Figure 2(a). This result is known as Noble's Second Identity.

Problem 1. [20 points]

(a) Determine the impulse response h[n] in Figure 3(b) so that the I/O relationship of the system in Figure 3(b) is exactly the same as the I/O relationship of the system in Figure 3(a). Plot the magnitude AND the phase (two separate plots) of the DTFT of h[n] over $-\pi < \omega < \pi$. Hint: Analyze the system of Figure 3(a) in the frequency domain using Noble's First Identity.

(b) Determine the numerical values of the impulse response $h_{eq}[n]$ in Figure 4(b) so that the I/O relationship of the system in Figure 4(b) is exactly the same as the I/O relationship of the system in Figure 4(a). *Hint:* Analyze the system of Figure 4(a) in the time domain using Noble's First Identity.

Problem 2. [20 points]

In the system below, each of the analysis filters, $h_0[n]$ and $h_1[n]$, and each of the two synthesis filters, $f_0[n]$ and $f_1[n]$, is a causal FIR filter of length 2. The specific values of $h_0[n]$ and $h_1[n]$ are indicated. The arrow denotes the value at n = 0. (See the hints at the bottom of the page.)

where $z_i[n] = x_i[2n]$, i = 1, 2 and $y_i[n] = \sum_{\ell=-\infty}^{\infty} z_i[\ell] \delta[n-2\ell]$, i = 1, 2. Determine the numerical values of $f_0[n]$, n = 0, 1 and $f_1[n]$, n = 0, 1, such that y[n] = 2x[n-1] for any input sequence x[n].

- Hint 1. The series combination of a downsampler followed by an upsampler does NOT reduce to an identity transformation they don't "cancel" each other.
- Hint 2. This problem can be solved either in the time domain or the frequency domain with about equal complexity.

Problem 3. [20 points]

Consider an input sequence, x[n], of length L=6 and an FIR filter with impulse response h[n] of length M=6 as described below.

$$x[n] = u[n] - u[n-6] = \{1, 1, 1, 1, 1, 1\}$$

 $h[n] = u[n] - u[n-6] = \{1, 1, 1, 1, 1, 1\}$

We compute an N=8-pt. DFT of each of these two sequences as

$$\begin{array}{ccc}
\text{DFT} & & \text{DFT} \\
x[n] & \longleftrightarrow & X_8[k] & & h[n] & \longleftrightarrow & H_8[k] \\
8 & & & & & & & & & & & \\
\end{array}$$

Next, we point-wise multiply the DFT sequences to form $Y_8[k] = X_8[k]H_8[k]$, k = 0, 1, ..., 7.. Finally, we compute an N = 8-pt. inverse DFT of $Y_8[k]$ to obtain $y_P[n]$. Determine the numerical values of $y_P[n]$ for n = 0, 1, 2, 3, 4, 5, 6, 7.. You can solve the problem any way you like but briefly explain how you got your answer. Actually computing the DFT's is NOT the way to solve this problem.

Problem 4. [20 points]

Consider the ARMA(1,1) process generated via the difference equation

$$x[n] = -\frac{1}{2}x[n-1] + w[n] - w[n-1]$$

where w[n] is a stationary white noise process with variance $\sigma_w^2 = 1$.

- (a) Determine the numerical values of $r_{xx}[0]$, $r_{xx}[1]$, $r_{xx}[2]$, where $r_{xx}[m]$ is the autocorrelation sequence $r_{xx}[m] = E\{x[n]x[n-m]\}$. (Note that $r_{xx}[m]$ is the inverse DTFT of the spectral density $S_{xx}(\omega)$ asked for in Part (b) below, but there at least three different ways you can solve this part of the problem.)
- (b) Determine a simple closed-form expression for the spectral density for x[n], $S_{xx}(\omega)$, which may be expressed as the DTFT of $r_{xx}[m]$:

$$S_{xx}(\omega) = \sum_{m=-\infty}^{\infty} r_{xx}[m]e^{-jm\omega}$$

(c) Consider the first-order predictor

$$\hat{x}[n] = -a_1(1)x[n-1]$$

Determine the numerical value of the optimum predictor coefficient $a_1(1)$ and the corresponding minimum mean-square error.

Problem 5. [20 points]

Consider the discrete-time complex-valued random process defined for all n:

$$x[n] = D + A_1 e^{J(\omega_1 n + \Theta_1)} + A_2 e^{J(\omega_2 n + \Theta_2)} + \nu[n]$$

where the respective frequencies, ω_1 and ω_2 , of the two complex sinewaves are deterministic but unknown constants. The amplitudes, A_1 and A_2 , and the constant D are also deterministic but unknown constants. Θ_1 and Θ_2 are independent random variables with each uniformly distributed over a 2π interval and $\nu[n]$ is a stationary random process with zero mean and $r_{\nu\nu}[m] = E\{\nu[n]\nu^*[n-m]\} = \delta[m]$. That is, $\nu[n]$ forms an i.i.d. sequence with a variance of unity. Note, $\nu[n]$ is independent of both Θ_1 and Θ_2 for all n. The values of the autocorrelation sequence for x[n], $r_{xx}[m] = E\{x[n]x^*[n-m]\}$, for three different lag values are given below.

$$r_{xx}[0] = 5$$
, $r_{xx}[1] = -1 + j$, $r_{xx}[2] = 2$, $r_{xx}[3] = -1 - j$

- (a) Determine the numerical values of ω_1 and ω_2 . You have to use what you've learned during the parametric spectral analysis portion of this course. You will be given no credit if you simply set up a system of equations to solve based on the form of $r_{xx}[m] = \sum_{i=1}^{p} A_i^2 e^{j\omega_i m}$ and solve this nonlinear system of equations.
- (b) Consider a first-order predictor

$$\hat{x}[n] = -a_1(1)x[n-1]$$

Determine the numerical values of the optimum predictor coefficient $a_1(1)$, and the numerical value of the corresponding minimum mean-square error.

(c) Consider a second-order predictor

$$\hat{x}[n] = -a_2(1)x[n-1] - a_2(2)x[n-2]$$

Determine the numerical values of the optimum predictor coefficients $a_2(1)$ and $a_2(2)$, and the numerical value of the corresponding minimum mean-square error.

(d) Consider a third-order predictor

$$\hat{x}[n] = -a_3(1)x[n-1] - a_3(2)x[n-2] - a_3(3)x[n-3]$$

Determine the numerical values of the optimum predictor coefficients $a_3(1)$, $a_3(2)$ and $a_3(3)$, and the numerical value of the corresponding minimum mean-square error.