
EE538 Final Exam Fall 2001
Digital Signal Processing I 12 December 2001

Cover Sheet

Test Duration: 2 hours.
Open Book but Closed Notes.

Calculators not allowed.
This test contains five problems.

All work should be done in the blue books provided.
You must show all work for each problem to receive full credit.

Do not return this test sheet, just return the blue books.

No. Topic(s) of Problem Points
1. Digital Upsampling 20
2. Properties and Design of Symmetric (Linear Phase) FIR Filters 20
3. Sum of Sinewaves Spectral Analysis 20
4. Spectral Characteristics of ARMA Processes 20
5. Autoregressive (AR) Spectral Estimation 20
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Digital Signal Processing I Final Exam 12 Dec. 2001

Problem 1. [35 points]
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Figure 1.

The analog signal xa(t) with CTFT Xa(F ) shown above is input to the system above,
where x[n] = xa(n/Fs) with Fs = 4W , and

hLP [n] =
sin(π

2
n)

π
2
n

cos(π
4
n)

1− n2

4

, −∞ < n <∞,

such that HLP (ω) = 2 for |ω| ≤ π
4
, HLP (ω) = 0 for 3π

4
≤ |ω| ≤ π, and HLP (ω) has a cosine

roll-off from 1 at ωp = π
4

to 0 at ωs = 3π
4

. Finally, the zero inserts may be mathematically
described as

w[n] =

{
x(n

2
), n even

0, n odd

(a) Plot the magnitude of the DTFT of the output y[n], Y (ω), over −π < ω < π.

(b) Given that

x[n] =
sin(π

2
n)

πn
−∞ < n <∞,

provide an analytical expression for y[n] for −∞ < n < ∞ (similar to the expression
for either x[n] above, for example.)

(c) The up-sampling by a factor of 2 in Figure 1 can be efficiently done via the block
diagram in Figure 2 on the next page. THIS PROBLEM IS CONTINUED ON
THE NEXT PAGE.
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(i) Provide an analytical expression for h0[n] = hLP [2n] for −∞ < n <∞. Simplify
as much as possible.

(ii) Plot the magnitude of the DTFT of h0[n], |H0(ω)|, over −π < ω < π.

(iii) Provide an analytical expression for the output y0[n] for −∞ < n < ∞. Is
y0[n] = x[n]? Explain why they are the same if you said “YES” or explain why
they are not the same if you said “NO.”

(iv) Describe an advantage of employing this lowpass filter, hLP [n], in the process of
upsampling by a factor of 2.
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Figure 2.

Problem 2. [20 points]
Let h[n], n = 0, 1, 2, be the impulse response of a symmetric FIR filter of length M = 3.

The frequency response of the filter is the DTFT

H(ω) =
2∑

n=0

h[n]e−jωn

Suppose we desire to design a LPF with passband edge, ωp = π/6. The design criterion
for selecting the filter coefficients, {h[0], h[1], h[2]}, is to maximize the ratio of the energy in
the passband to the total energy, i.e.,

Maximize
{h[0], h[1], h[2]}

1
2π

∫ ωp
−ωp |H(ω)|2dω

1
2π

∫ π
−π |H(ω)|2dω

where ωp = π/6. Determine the specific numerical values of {h[0], h[1], h[2]} that meet
this design criterion, i. e., solve the above optimization problem. In fact, since the filter is
symmetric h[2] = h[0] and we can also assign h[1] = 1 without loss of generality. Constraining
the problem in this manner, the primary task is to find the value of h[0]. Clearly indicate the
steps required in arriving at the solution and show all work. Note that sin(π/6) = 1/2 and
sin(π/3) =

√
3/2. If you lose the latter sine value, you can simply carry the

√
3 throughout

the calculation. You don’t need to approximate it by a numerical value.
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Problem 3. [20 points]
Consider the discrete-time complex-valued random process defined for all n:

x[n] = D +A1e
(ω1n+Θ1) +A2e

(ω2n+Θ2) + ν[n]

where the respective frequencies, ω1 and ω2, of the two complex sinewaves are deterministic
but unknown constants. The amplitudes, A1 and A2, and the constant D are also deter-
ministic but unknown constants. Θ1 and Θ2 are independent random variables with each
uniformly distributed over a 2π interval and ν[n] is a stationary random process with zero
mean and rνν [m] = E{ν[n]ν∗[n −m]} = δ[m]. That is, ν[n] forms an i.i.d. sequence with a
variance of unity. Note, ν[n] is independent of both Θ1 and Θ2 for all n. The values of the
autocorrelation sequence for x[n], rxx[m] = E{x[n]x∗[n −m]}, for three different lag values
are given below.

rxx[0] = 5, rxx[1] = −1 + j, rxx[2] = 2, rxx[3] = −1− j

(a) Determine the numerical values of ω1 and ω2. You have to use what you’ve learned
during the parametric spectral analysis portion of this course. You will be
given no credit if you simply set up a system of equations to solve based on
the form of rxx[m] =

∑p
i=1A

2
i e
jωim and solve this nonlinear system of equations.

You might want to do the other parts of this problem first.

(b) Consider a first-order predictor

x̂[n] = −a1(1)x[n− 1]

Determine the numerical values of the optimum predictor coefficient a2(1), and the
numerical value of the corresponding minimum mean-square error.

(c) Consider a second-order predictor

x̂[n] = −a2(1)x[n− 1]− a2(2)x[n− 2]

Determine the numerical values of the optimum predictor coefficients a2(1) and a2(2),
and the numerical value of the corresponding minimum mean-square error.

(d) Consider a second-order predictor

x̂[n] = −a3(1)x[n− 1]− a3(2)x[n− 2]− a3(3)x[n− 3]

Determine the numerical values of the optimum predictor coefficients a2(1) and a2(2),
and the numerical value of the corresponding minimum mean-square error.

Problem 4. [20 points]
Consider the ARMA(1,1) process generated via the difference equation

x[n] =
1

4
x[n− 1] + w[n]− w[n− 1]

where w[n] is a stationary white noise process with variance σ2
w = 1.
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(a) Determine the numerical values of rxx[0], rxx[1], rxx[2], where rxx[m] is the autocorrela-
tion sequence rxx[m] = E{x[n]x[n−m]}. (Note that rxx[m] is the inverse DTFT of the
spectral density Sxx(ω) asked for in Part (b) below, but there at least three different
ways you can solve this part of the problem.)

(b) Determine a simple closed-form expression for the spectral density for x[n], Sxx(ω),
which may be expressed as the DTFT of rxx[m]:

Sxx(ω) =
∞∑

m=−∞

rxx[m]e−jmω

(c) Consider the first-order predictor

x̂[n] = −a1(1)x[n− 1]

Determine the numerical value of the optimum predictor coefficient a1(1) and the
corresponding minimum mean-square error.

Problem 5. [20 points]
Suppose that the random process x[n] is the output of a stable LTI system with impulse

response

h[n] =

{ (
1
2

)n
n ≥ 0

2n n < 0

when the input ν[n] is a zero-mean white noise process with variance σ2. In the following
let H(z) denote the Z-Transform of h[n] and let

x̂p[n] = −
p∑

k=1

ap[k]x[n− k]

denote the order pminimum mean–square linear predictor of x[n] given {x[n−k] : 1 ≤ k ≤ p}.
Let fp[n] = x[n]− x̂p[n] be the prediction error, let Ep = E{|fp[n]|2}, and let

Ap(z) = 1 +
p∑

k=1

ap[k]z
−k

denote the order p prediction error filter.

(a) Find the transfer function H(z) of the system and indicate its region of convergence.

(b) Find the (true) power spectral density of x[n], Sxx(ω).

(c) Suppose that another LTI system is placed in series with H(z) having a transfer func-
tion P (z). The new output is called y[n]. If P (z) is an all-pass filter for which
|P (ω)| = 1 for all ω, find the (true) power spectral density of y[n], Syy(ω). Is ryy[m]
equal to rxx[m]? Explain your answer.

(d) For the original system H(z) and the process x[n] determine the cofficients, a2[1] and
a2[2], of the optimum second order linear predictor. Hint: A first-order all-pass filter
has a transfer function of the form

Hall−pass(z) = −a
z − 1

a

z − a
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