NAME: Digital Signal Processing I Ex Session 40

Exam 3 Nov. 2011 Fall 2011 30 Nov. 2011

Cover Sheet

WRITE YOUR NAME ON EACH EXAM SHEET

Test Duration: 60 minutes. Open Book but Closed Notes. Calculators NOT allowed. This test contains **two** problems.

All work should be done in the space provided. Do **not** just write answers; provide concise reasoning for each answer. **Problem 1.** Let x[n] be a discrete-time rectangular pulse of length L=5 and h[n] be a discrete-time rectangular pulse of length M=3 as defined below:

$$x[n] = u[n] - u[n-5]$$
 $h[n] = u[n] - u[n-3]$

(a) With $X_N(k)$ computed as the 5-pt DFT of x[n] = u[n] - u[n-5] and $H_N(k)$ computed as the 5-pt DFT of h[n] = u[n] - u[n-3]. The 5-point sequence $y_5[n]$ is computed as the 5-pt inverse DFT of the product $Y_N(k) = X_N(k)H_N(k)$. Write out the 5 numerical values of $y_5[n]$ in sequence form as $\{y_5[0], y_5[1], y_5[2], y_5[3], y_5[4]\}$.

or use time-domain aliasing formula:

y (n)= x(n) * h(n) = {1,2,3,3,3,2,1}

Moting = M(n) + M(n+s) => last two entries aliased into first two entries

$$y_{s}[\bar{w}] = \left(3_{3}^{3}, 3_{3}^{3}, 3_{3}^{3}\right)$$

(b) With $X_N(k)$ computed as the 8-pt DFT of x[n] = u[n] - u[n-5] and $H_N(k)$ computed as the 8-pt DFT of h[n] = u[n] - u[n-3]. The 8-point sequence $y_8[n]$ is computed as the 8-pt inverse DFT of the product $Y_N(k) = X_N(k)H_N(k)$. Write out the 8 numerical values of $y_8[n]$ in sequence form.

linear convolution of length
$$5+3-1=7$$

Since $N=8 > 7 \Rightarrow no$ time-domain aliasing
 $y_8[n] = \{1,2,3,3,3,2,1,0\}$

(c) With $X_N(k)$ computed as the 10-pt DFT of x[n] = u[n] - u[n-5] and $H_N(k)$ computed as the 10-pt DFT of h[n] = u[n] - u[n-3]. The 10-point sequence $y_{10}[n]$ is computed as the 10-pt inverse DFT of the product $Y_N(k) = X_N(k)H_N(k)$. Write out the 10 numerical values of $y_{10}[n]$ in sequence form.

$$N = 10 > 7 =$$

$$M_{10}[n] = \left\{ 1, 2, 3, 3, 3, 2, 1, 0, 0, 0, 0 \right\}$$

Problem 2.

For all parts of this problem, the reconstructed spectrum is computed according to the equation below:

$$Y_r(\omega) = \sum_{k=0}^{N-1} Y_N(k) \frac{\sin\left[\frac{N}{2}\left(\omega - \frac{2\pi k}{N}\right)\right]}{N\sin\left[\frac{1}{2}\left(\omega - \frac{2\pi k}{N}\right)\right]} e^{-j\frac{N-1}{2}\left(\omega - \frac{2\pi k}{N}\right)}$$
(1)

Let x[n] be a finite-length sinewave of length L=8 and h[n] be a discrete-time rectangular pulse of length M=5 as defined below:

$$x[n] = e^{j\frac{\pi}{2}n} \left\{ u[n] - u[n-8] \right\}$$
 $h[n] = u[n] - u[n-5]$

(a) With $X_N(k)$ computed as the 16-pt DFT of x[n] and $H_N(k)$ computed as the 16-pt DFT of h[n], the product $Y_N(k) = X_N(k)H_N(k)$ is used in Eqn (1) with N = 16. Write a closed-form expression for the reconstructed spectrum $Y_r(\omega)$.

linear convolution is of length 8+5-1=12

since N=16>12 => no time-domain aliasing

=> perfect reconstruction

Thus,
$$Y_{r}(\omega) = Y(\omega) = X(\omega) H(\omega)$$

$$Y(\omega) = \frac{\sin(\frac{8}{2}(\omega - \frac{\pi}{2})) - \frac{(8-1)(\omega - \frac{\pi}{2})}{\sin(\frac{1}{2}\omega)}}{\sin(\frac{1}{2}(\omega - \frac{\pi}{2}))} = \frac{\sin(\frac{5}{2}\omega)}{\sin(\frac{1}{2}\omega)}$$

$$\frac{\sin(\frac{1}{2}(\omega - \frac{\pi}{2}))}{\sin(\frac{1}{2}\omega)} = \frac{\sin(\frac{5}{2}\omega)}{\sin(\frac{1}{2}\omega)}$$

(b) With $X_N(k)$ computed as the 12-pt DFT of $x[n] = e^{j\frac{\pi}{2}n} \{u[n] - u[n-8]\}$ and $H_N(k)$ computed as the 12-pt DFT of h[n] = u[n] - u[n-5], the product $Y_N(k) = X_N(k)H_N(k)$ is used in Eqn (1) with N = 12. Write a closed-form expression for the reconstructed spectrum $Y_r(\omega)$.

Again,
$$N = 12 = 12$$
 length of linear convolution $Y_r(\omega) = Y(\omega)$ same answer as $2(a)$

- (c) The answer to this part will be useful in determining the answer to part (d). $X_N(k)$ computed as the 8-pt DFT of $x[n] = e^{j\frac{\pi}{2}n} \{u[n] u[n-8]\}$ and $H_N(k)$ computed as the 8-pt DFT of h[n] = u[n] u[n-5]. Develop and delineate your answers to each of the four steps below in the space below. Simplify each answer as much as possible.
 - (i) Determine a closed-form expression for the 8-pt DFT, $X_N(k)$, of $x[n] = e^{j\frac{\pi}{2}n} \{u[n] u[n-8]\}$.
 - (ii) Determine a closed-form expression for the 8-pt DFT, $H_N(k)$, of $h[n] = \{u[n] u[n-5]\}$.
 - (iii) Determine a closed-form expression for the product $Y_N(k) = X_N(k)H_N(k)$.
 - (iv) Determine a simple, closed-form expression for $y_8[n]$ equal to the 8-pt inverse DFT of $Y_N(k) = X_N(k)H_N(k)$. Note that $\sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$ and $\sin\left(\frac{5\pi}{4}\right) = -\frac{1}{\sqrt{2}}$.

(ii)
$$\frac{\pi}{2} = \frac{k}{8} \stackrel{2\pi}{8} \Rightarrow k = 2$$

special case: $\times_{N}(k) = 8 \text{ s}[k-2]$
(iii) $H_{N}(k) = H(\omega)|_{\omega = k} \stackrel{2\pi}{8}$
 $= \frac{\sin\left(\frac{5}{2} \frac{k}{8} \frac{2\pi}{8}\right)}{\sin\left(\frac{1}{2} \frac{k}{8} \frac{2\pi}{8}\right)} e^{-j\frac{(5\cdot 1)}{2} \frac{k}{8} \frac{2\pi}{8}} = \frac{\sin\left(\frac{k}{8} \frac{5\pi}{8}\right) e^{-j\frac{k\pi}{2}}}{\sin\left(\frac{k}{8} \frac{5\pi}{8}\right)} e^{-j\frac{k\pi}{2}}$
(iii) $Y_{N}(k) = 8 \text{ s}(k-i) H_{N}(k)$
 $= 8 H_{N}(2) \text{ s}(k-2)$
 $= 8 \frac{\sin\left(\frac{10\pi}{8}\right)}{\sin\left(\frac{2\pi}{8}\right)} e^{-j\frac{2\pi}{8}} \text{ s}(k-2)$
 $= 8 \frac{-1/\sqrt{12}}{\sqrt{\sqrt{12}}} e^{-j\frac{\pi}{8}} \text{ s}(k-2) = +8 \text{ s}(k-2)$

(iV) $\frac{1}{8}(n) = H_{N}(2) e^{j\frac{\pi}{2}n} \{u(n) - u(n-8)\}$ $= e^{j\frac{\pi}{2}n} \{u(n) - u(n-8)\}$

(d) With $X_N(k)$ computed as the 8-pt DFT of $x[n] = e^{j\frac{\pi}{2}n} \{u[n] - u[n-8]\}$ and $H_N(k)$ computed as the 8-pt DFT of h[n] = u[n] - u[n-5], the product $Y_N(k) = X_N(k)H_N(k)$ is used in Eqn (1) with N=8. Write a closed-form expression for the reconstructed spectrum $Y_r(\omega)$. Note that $\sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$ and $\sin\left(\frac{5\pi}{4}\right) = -\frac{1}{\sqrt{2}}$.

There's only one nonzero term in the spectral reconstruction, the R=z term

$$Y_{r}(\omega) = Y_{N}(z) \sin\left[\frac{8}{2}(\omega - \frac{2\pi z}{8})\right] e^{-\frac{\pi z}{2}} \left(\omega - \frac{\pi z}{2}\right)$$

$$8 \sin\left[\frac{1}{2}(\omega - \frac{2\pi z}{8})\right]$$

$$= 8 - \frac{\sin\left[4\left(\omega - \frac{\pi}{2}\right)\right]}{8 \sin\left[\frac{1}{2}\left(\omega - \frac{\pi}{2}\right)\right]} = -\frac{1}{2}\left(\omega - \frac{\pi}{2}\right)$$

(The 8's cancel)
and (-1)'s cancel

$$\frac{1}{r}(\omega) = \frac{\sin\left(4\left(\omega - \frac{\pi}{2}\right)\right)}{\sin\left(\frac{1}{2}\left(\omega - \frac{\pi}{2}\right)\right)} = \frac{-j\frac{\pi}{2}(\omega - \frac{\pi}{2})}{\sin\left(\frac{1}{2}\left(\omega - \frac{\pi}{2}\right)\right)}$$