Digital Signal Processing I Session 38

Exam 3 Fall 2008 24 Nov. 2007

Cover Sheet

Test Duration: 55 minutes.
Open Book but Closed Notes.
Calculators NOT allowed.
This test contains **three** problems.

All work should be done on blank 8.5" x 11" white sheets of paper (NOT provided).

Do **not** return this test sheet, just return your answer sheets.

Digital Signal Processing I Session 38

Exam 3 Fall 2008 24 Nov. 2008

Problem 1. [30 pts]

Let x[n] be of length L=7, i.e., x[n]=0 for n<0 and $n\geq 7$, and h[n] also be of length M=7. Let $X_8(k)$ and $H_8(k)$ denote 8-point DFT's of x[n] and h[n], respectively. The 8-point inverse DFT of the product $Y_8(k)=X_8(k)H_8(k)$, denoted $y_8[n]$, produces the following values:

n	0	1	2	3	4	5	6	7
$y_8[n]$	-2	0	-2	0	-2	0	7	0

Let $X_{10}(k)$ and $H_{10}(k)$ denote the 10-point DFT's of the aforementioned sequences x[n] and h[n]. The 10-point inverse DFT of the product $Y_{10}(k) = X_{10}(k)H_{10}(k)$, denoted $y_{10}[n]$, produces the following values:

n	0	1	2	3	4	5	6	7	8	9
$y_{10}[n]$	-2	0	-2	0	-1	0	7	0	-1	0

Given $y_8[n]$ and $y_{10}[n]$, find the **linear** convolution of x[n] and h[n], i. e., list all of the numerical values of y[n] = x[n] * h[n].

Problem 2. [30 points]

A signal x[n] of length 12 is broken up into two nonoverlapping blocks of length 6, denoted $x_1[n]$ and $x_2[n]$, respectively, for the purposes of filtering with $h[n] = \{-1, 2, -1\}$ via the overlap-add method. Specifically, $x[n] = x_1[n] + x_2[n-6]$, where

$$x_1[n] = \{1, 1, 1, 1, 1, 1\}$$

and

$$x_2[n] = \{-1, -1, -1, -1, -1, -1\}$$

- (a) $y_1[n]$ is formed by computing $X_1(k)$ as an 8-pt DFT of $x_1[n]$, H(k) as an 8-pt DFT of h[n], and then $y_1[n]$ as the 8-pt inverse DFT of $Y_1(k) = X_1(k)H(k)$. Write out the values of $y_1[n]$ in sequence form (similar to how $x_1[n]$ and $x_2[n]$ are written out above.)
- (b) $y_2[n]$ is formed by computing $X_2(k)$ as an 8-pt DFT of $x_2[n]$, H(k) as an 8-pt DFT of h[n], and then $y_2[n]$ as the 8-pt inverse DFT of $Y_2(k) = X_2(k)H(k)$. Write out the 8 values of $y_2[n]$ in sequence form.
- (c) Show how $y_1[n]$ and $y_2[n]$ are combined to form the full linear convolution y[n] = x[n] * h[n], via the overlap-add method.
- (d) To reduce computation, consider FFT based processing of two blocks simultaneously. To this end, we form the complex-valued sequence

$$v[n] = x_1[n] + jx_2[n]$$

V(k) is computed as an 8-pt DFT of v[n]. After that, z[n] is computed as the 8-pt inverse DFT of the product Z(k) = V(k)H(k), where H(k) is the 8 pt-DFT of $h[n] = \{-1, 2, -1\}$. (**NOTE:** You do NOT have to compute any 8-pt DFTs to answer the two questions on the top of the next page.)

- (i) Is the real part of z[n] equal to the $y_1[n]$ found in part (a)? You must briefly justify/explain your answer.
- (ii) Is the imaginary part of z[n] equal to the $y_2[n]$ found in part (b)? You must briefly justify/explain your answer.

Problem 3. [30 points] Consider a causal FIR filter of length M=6 with impulse response

$$h[n] = \{1, 1, 1, 1, 1, 1\}$$

- (a) Provide a closed-form expression for the 8-pt DFT of h[n], denoted $H_8(k)$, as a function of k. Simplify as much as possible.
- (b) Consider the sequence x[n] of length L=8 below, equal to a sum of several finite-length sinewaves.

 $x[n] = \cos\left(\frac{\pi}{2}n\right) + 2\cos(\pi n), \quad n = 0, 1, ..., 7.$

 $y_8[n]$ is formed by computing $X_8(k)$ as an 8-pt DFT of x[n], $H_8(k)$ as an 8-pt DFT of h[n], and then $y_8[n]$ as the 8-pt inverse DFT of $Y_8(k) = X_8(k)H_8(k)$. Express the result $y_8[n]$ as a weighted sum of finite-length sinewaves similar to how x[n] is written above.