$\begin{array}{ccc} EE538 & Exam \ 3 \\ Digital \ Signal \ Processing \ I \end{array}$

Fall 2001 29 November 2001

Cover Sheet

Test Duration: 75 minutes.

Open Book but Closed Notes.

Calculators **not** allowed.

This test contains **three** problems.

All work should be done in the blue books provided.

You must show all work for each problem to receive full credit.

Do **not** return this test sheet, just return the blue books.

No.	Topic(s) of Problem	Points
1.	Autoregressive (AR) Spectral Estimation	40
2.	Sum of Sinewaves Spectral Analysis	30
3.	Spectral Characteristics of ARMA Processes	30

Digital Signal Processing I Exam 3 30 Oct. 2001

Problem 1. [30 points]

Consider the autoregressive AR(2) process generated via the difference equation

$$x[n] = \frac{7}{12}x[n-1] - \frac{2}{12}x[n-2] + w[n]$$

where w[n] is a stationary white noise process with variance $\sigma_w^2 = 35/6$. (The value of σ_w^2 was chosen so that the autocorrelation values requested in part (a) below are whole numbers.)

- (a) Determine the numerical values of $r_{xx}[0]$, $r_{xx}[1]$, $r_{xx}[2]$, where $r_{xx}[m]$ is the autocorrelation sequence $r_{xx}[m] = E\{x[n]x[n-m]\}$.
- (b) Determine a simple closed-form expression for the spectral density for x[n], $S_{xx}(\omega)$, which may be expressed as the DTFT of $r_{xx}[m]$:

$$S_{xx}(\omega) = \sum_{m=-\infty}^{\infty} r_{xx}[m]e^{-jm\omega}$$

(c) Consider the first-order predictor

$$\hat{x}[n] = -a_1(1)x[n-1]$$

Determine the numerical value of the optimum predictor coefficient $a_1(1)$ and the corresponding minimum mean-square error.

(d) Consider the third-order predictor

$$\hat{x}[n] = -a_3(1)x[n-1] - a_3(2)x[n-2] - a_3(3)x[n-3]$$

Determine the numerical values of the optimum predictor coefficients $a_3(1)$, $a_3(2)$, and $a_3(3)$ and the corresponding minimum mean-square error.

Problem 2. [30 points]

Consider the discrete-time complex-valued random process defined for all n:

$$x[n] = e^{J(\omega_1 n + \Theta_1)} + \sqrt{2} e^{J(\omega_2 n + \Theta_2)}$$

where the respective frequencies, ω_1 and ω_2 , of the two complex sinewaves are deterministic but unknown constants. Θ_1 and Θ_2 are independent random variables with each uniformly distributed over a 2π interval. The values of the autocorrelation sequence for x[n], $r_{xx}[m] = E\{x[n]x^*[n-m]\}$, for three different lag values are given below.

$$r_{xx}[0] = 3$$
, $r_{xx}[1] = -2 + j$, $r_{xx}[2] = 1$

(a) Determine the numerical values of ω_1 and ω_2 . You have to use what you've learned during the parametric spectral analysis portion of this course. You will be given no credit if you simply set up a system of equations to solve based on the form of $r_{xx}[m] = \sum_{i=1}^p A_i^2 e^{j\omega_i m}$ and solve this nonlinear system of equations. Part (b) is on top of next page.

(b) Consider a second-order predictor

$$\hat{x}[n] = -a_2(1)x[n-1] - a_2(2)x[n-2]$$

Determine the numerical values of the optimum predictor coefficients $a_2(1)$ and $a_2(2)$, and the numerical value of the corresponding minimum mean-square error.

Problem 3. [30 points]

Consider the ARMA(1,1) process generated via the difference equation

$$x[n] = \frac{1}{2}x[n-1] + w[n] + w[n-1]$$

where w[n] is a stationary white noise process with variance $\sigma_w^2 = 1$.

- (a) Determine the numerical values of $r_{xx}[0]$, $r_{xx}[1]$, $r_{xx}[2]$, where $r_{xx}[m]$ is the autocorrelation sequence $r_{xx}[m] = E\{x[n]x[n-m]\}$. (Note that $r_{xx}[m]$ is the inverse DTFT of the spectral density $S_{xx}(\omega)$ asked for in Part (b) below, but there at least three different ways you can solve this part of the problem.)
- (b) Determine a simple closed-form expression for the spectral density for x[n], $S_{xx}(\omega)$, which may be expressed as the DTFT of $r_{xx}[m]$:

$$S_{xx}(\omega) = \sum_{m=-\infty}^{\infty} r_{xx}[m]e^{-jm\omega}$$

(c) Consider the first-order predictor

$$\hat{x}[n] = -a_1(1)x[n-1]$$

Determine the numerical value of the optimum predictor coefficient $a_1(1)$ and the corresponding minimum mean-square error.