NAME: 27 Oct. 2017 ECE 538 Digital Signal Processing I Exam 2 Fall 2017

Cover Sheet

WRITE YOUR NAME ON THIS COVER SHEET

Test Duration: 60 minutes.
Open Book but Closed Notes.
One (both sides) handwritten 8.5 in x 11 in crib sheet allowed
Calculators NOT allowed.
All work should be done in the space provided.

There are THREE problems.

Continuous-Time Fourier Transform (Hz): $X(F) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-j2\pi Ft}dt$ Continuous-Time Fourier Transform Pair (Hz): $\mathcal{F}\left\{\frac{\sin(2\pi Wt)}{\pi t}\right\} = rect\left\{\frac{F}{2W}\right\}$ where rect(x) = 1 for |x| < 0.5 and rect(x) = 0 for |x| > 0.5. Continuous-Time Fourier Transform Property: $\mathcal{F}\{x_1(t)x_2(t)\} = X_1(F) * X_2(F)$, where * denotes convolution, and $\mathcal{F}\{x_i(t)\} = X_i(F)$, i = 1, 2. Relationship between DTFT and CTFT frequency variables in Hz: $\omega = 2\pi \frac{F}{F_s}$, where $F_s = \frac{1}{T_s}$ is the sampling rate in Hz **Problem 1.** Consider the upsampler system below in Figure 1.

- (a) Draw block diagram of efficient implementation of the upsampler system in Fig. 1.
- (b) Your answer to part (a) should involve the polyphase components of h[n]: $h_0[n] = h[3n]$, $h_1[n] = h[3n+1]$, and $h_2[n] = h[3n+2]$ and the DTFT of h[n], denoted $H(\omega)$. For the plots requested below, you can do all magnitude plots on one graph and you can do all phase plots on one graph, to save time and space.
 - (i) For the ideal case where $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$, plot the magnitude of the DTFT of $h_0[n] = h[3n]$, $H_0(\omega)$, over $-\pi < \omega < \pi$.
 - (ii) For the general case where h[n] is an arbitrary impulse response, express the DTFT of $h_1[n] = h[3n+1]$, denoted $H_1(\omega)$, in terms of $H(\omega)$.
 - (iii) For the ideal case where $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$, plot both the magnitude AND phase of the DTFT $h_1[n] = h[3n+1]$, $H_1(\omega)$, over $-\pi < \omega < \pi$.
 - (iv) For the general case where h[n] is an arbitrary impulse response, write an expression for the DTFT, $H_2(\omega)$, of $h_2[n] = h[3n+2]$ in terms of $H(\omega)$ that holds for all ω .
 - (v) For the ideal case where $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$, plot both the magnitude AND phase of the DTFT $h_2[n] = h[3n+2]$, $H_2(\omega)$, over $-\pi < \omega < \pi$.
- (c) Consider that the input to the system in Figure 1 is a sampled version of the analog sinewave below (turned-on forever) sampled at a rate of $F_s = 2$ Hz. This is Nyquist rate sampling with no aliasing. The answer to each of the parts below should be an expression that holds for all time, for example, a DT sinewave turned-on forever.

$$x[n] = x_a(nT_s), \quad T_s = \frac{1}{2}$$
 where: $x_a(t) = \cos(2\pi t)$

- (i) For the ideal case where $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$, determine the output $y_0[n] = x[n] * h_0[n]$, when x[n] is input to the filter $h_0[n] = h[3n]$.
- (ii) For the ideal case where $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$, determine the output $y_1[n] = x[n] * h_1[n]$, when x[n] is input to the filter $h_1[n] = h[3n+1]$.
- (iii) For the ideal case where $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi^n}$, determine the output $y_2[n] = x[n] * h_2[n]$, when x[n] is input to the filter $h_2[n] = h[3n+2]$.
- (iv) For the ideal case where $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$, determine the output y[n] of the system in Figure 1, when x[n] is input to the system.

This page left intentionally blank for student work for Problem 1.

This page left intentionally blank for student work for Problem 1.

 $This \ page \ left \ intentionally \ blank \ for \ student \ work \ for \ Problem \ 1.$

2(a) Consider the continuous-time signal $x_0(t)$ below. A discrete-time signal is created by sampling $x_0(t)$ according to $x_0[n] = x_0(nT_s)$ with $F_s = \frac{1}{T_s} = 4W$. Plot the magnitude of the DTFT of $x_0[n]$, $|X_0(\omega)|$, over $-\pi < \omega < \pi$. Show all work.

$$x_0(t) = \cos(2\pi W t)$$

2(b) Consider the continuous-time signal $x_1(t)$ below. A discrete-time signal is created by sampling $x_1(t)$ according to $x_1[n] = x_1(nT_s)$ with $F_s = \frac{1}{T_s} = 2W$. Plot the magnitude of the DTFT of $x_1[n]$, $|X_1(\omega)|$, over $-\pi < \omega < \pi$. Show all work.

$$x_1(t) = T_s \frac{1}{W} \left\{ \frac{\sin(2\pi \frac{W}{2}t)}{\pi t} \right\}^2$$

2(c) Consider the continuous-time signal $x_2(t)$ below. A discrete-time signal is created by sampling $x_2(t)$ according to $x_2[n] = x_2(nT_s)$ with $F_s = \frac{1}{T_s} = 3W$. Plot the magnitude of the DTFT of $x_2[n]$, $|X_2(\omega)|$, over $-\pi < \omega < \pi$. Show all work.

$$x_2(t) = T_s \frac{1}{2} \left\{ \frac{\sin(2\pi W t)}{\pi t} + \frac{\sin(2\pi \frac{W}{2}t)}{\pi t} \right\}$$

N	ΓΛ	$\mathbf{\Lambda}$	II.
1		$\perp \mathbf{V}$	I DJ

Page intentionally blank for Problem 2(c) Work

Figure 2.

Problem 3. This problem is about digital subbanding of the three DT signals $x_i[n]$, i = 0, 1, 2 from Problem 2. Digital subbanding of these three signals is effected in an efficient way via filter bank in Figure 2. All of the quantities in Figure 2 are defined below; the respective impulse responses of the polyphase component filters are defined in terms of the ideal lowpass filter impulse response below.

$$h_{LP}[n] = 3 \frac{\sin\left(\frac{\pi}{3}n\right)}{\pi n} \tag{1}$$

The polyphase component filters on the left side of Figure 2 are defined as

$$h_{\ell}^{+}[n] = h_{LP}[3n + \ell], \quad \ell = 0, 1, 2.$$
 (2)

The respective signals at the inputs to these filters are formed from the input signals as (from Problem 2) as described below. There is only ONE part to this problem: plot the magnitude of the DTFT $Y(\omega)$ of the interleaved signal y[n].

$$y_{0}[n] = x_{0}[n] + x_{1}[n] \cos\left(\frac{2\pi}{3}0\right) - \hat{x}_{1}[n] \sin\left(\frac{2\pi}{3}0\right) + x_{2}[n] \cos\left(\frac{2\pi}{3}0\right) + \hat{x}_{2}[n] \sin\left(\frac{2\pi}{3}0\right)$$

$$y_{1}[n] = x_{0}[n] + x_{1}[n] \cos\left(\frac{2\pi}{3}1\right) - \hat{x}_{1}[n] \sin\left(\frac{2\pi}{3}1\right) + x_{2}[n] \cos\left(\frac{2\pi}{3}1\right) + \hat{x}_{2}[n] \sin\left(\frac{2\pi}{3}1\right)$$

$$y_{2}[n] = x_{0}[n] + x_{1}[n] \cos\left(\frac{2\pi}{3}2\right) - \hat{x}_{1}[n] \sin\left(\frac{2\pi}{3}2\right) + x_{2}[n] \cos\left(\frac{2\pi}{3}2\right) + \hat{x}_{2}[n] \sin\left(\frac{2\pi}{3}2\right)$$

$$(3)$$

N	ΓΛ	$\mathbf{\Lambda}$	II.
1		$\perp \mathbf{V}$	I DJ

 $Page\ intentionally\ blank\ for\ Problem\ 3\ Work$

	Λ	Λ	L,
1 1	\boldsymbol{A}	IVI	P / "

 $Page\ intentionally\ blank\ for\ Problem\ 3\ Work$