NAME:

EE538 Digital Signal Processing I Fall 2013 Exam 1 Friday, Sept. 27, 2013

Cover Sheet

Write your name on this and every page

Test Duration: 60 minutes.
Coverage: Chapters 1-5.
Open Book but Closed Notes.
Calculators NOT allowed.

This test contains **TWO** problems.

Show your work in the space provided for each problem. You must show all work for each problem to receive full credit.

Always simplify your answers as much as possible.

Prob. No.	Topic(s)	Points
1.	Frequency Response and Interconnection	50
	of LTI Systems, Pole-Zero Diagrams	
2.	DT Autocorrelation, Cross-Correlation	50
	Correlation in terms of Convolution	

NAME:

Problem 1. [50 points] System 1 and System 2 defined in parts (a) and (b), respectively, will eventually be connected in parallel. We first analyze them individually.

(a) Consider System 1 below:

System 1:
$$y_1[n] = 0.9j \ y[n-1] - 0.9j \ x[n] - x[n-1]$$

- (i) Determine the Transfer Function for System 1, denoted $H_1(z)$. $H_1(z)$ is the Z-Transform of the impulse response, $h_1[n]$, for System 1, although you can find $H_1(z)$ anyway you like. Identify the poles and zeros, and do a pole-zero plot.
- (ii) Determine the frequency response of System 1, denoted $H_1(\omega)$. $H_1(\omega)$ is the DTFT of the impulse response, $h_1[n]$, for System 1, although you can find $H_1(\omega)$ anyway you like. Plot the magnitude $|H_1(\omega)|$ over $-\pi < \omega < \pi$.
- (iii) Determine the autocorrelation of the impulse response $h_1[n]$. Do a stem plot of $r_{h_1h_1}[\ell]$.
- (b) Consider System 2 below:

System 2:
$$y_1[n] = -0.9j \ y[n-1] + 0.9j \ x[n] - x[n-1]$$

- (i) Determine the Transfer Function for System 2, denoted $H_2(z)$. $H_2(z)$ is the Z-Transform of the impulse response, $h_2[n]$, for System 2, although you can find $H_2(z)$ anyway you like. Identify the poles and zeros, and do a pole-zero plot.
- (ii) Determine the frequency response of System 2, denoted $H_2(\omega)$. $H_2(\omega)$ is the DTFT of the impulse response, $h_2[n]$, for System 2, although you can find $H_2(\omega)$ anyway you like. Plot the magnitude $|H_2(\omega)|$ over $-\pi < \omega < \pi$.
- (iii) Determine the autocorrelation of the impulse response $h_2[n]$. Do a stem plot of $r_{h_2h_2}[\ell]$.
- (c) The overall system is formed from connecting System 1 and System 2 in parallel.
 - (i) Determine the Transfer Function for the overall system, denoted H(z). H(z) is the Z-Transform of the impulse response, h[n], for the parallel combination of Systems 1 and 2. You can find H(z) anyway you like. Identify the poles and zeros for the overall system, and do a pole-zero plot.
 - (ii) Determine the frequency response of the overall system, denoted $H(\omega)$. $H(\omega)$ is the DTFT of the impulse response, h[n], for the overall system; you can find $H(\omega)$ anyway you like. Plot the magnitude $|H(\omega)|$ over $-\pi < \omega < \pi$. showing as much detail as possible. Point out any frequencies for which $H(\omega) = 0$.
 - (iii) Determine the output of the overall system, y[n], when the input is the DT signal below. The overall system is the parallel combination of Systems 1 and 2.

$$x[n] = 3 + 2\cos\left(\frac{\pi}{2}n\right) + (-1)^n \quad -\infty < n < \infty$$

1	V	A	$\mathbf{\Lambda}$	/ [F,	•

Page intentionally blank for Problem 1 Work

T	V	Δ	. 1	/	E	•
- 1	7				- 1	•

 $Page\ intentionally\ blank\ for\ Problem\ 1\ Work$

T	V	Δ	$\mathbf{\Lambda}$	/	\mathbf{E}	•
- 1	v	$\overline{}$		<i>y</i>	• . /	•

 $Page\ intentionally\ blank\ for\ Problem\ 1\ Work$

NAME:

Problem 2. [50 points] Let x[n] and y[n] be DT signals with autocorrelations and cross-correlations defined in terms of convolution as below.

$$r_{xx}[\ell] = x[\ell] * x^*[-\ell] \quad r_{yy}[\ell] = y[\ell] * y^*[-\ell] \quad r_{xy}[\ell] = x[\ell] * y^*[-\ell] \quad r_{yx}[\ell] = y[\ell] * x^*[-\ell] \quad (1)$$

(a) Consider the case where x[n] and y[n] are both causal, finite-length signals of duration N. That is, x[n] and y[n] are both only nonzero for n = 0, 1, ..., N - 1. A concatenated signal of length 2N is formed as below:

$$z[n] = x[n] + y[n - N] \tag{2}$$

Express the autocorrelation, $r_{zz}[\ell]$, for z[n] = x[n] + y[n-N] in terms of $r_{xx}[\ell]$, $r_{yy}[\ell]$, $r_{xy}[\ell]$, and $r_{yx}[\ell]$.

(b) Now, consider the specific case where x[n] and y[n] form a complementary pair of +1's and -1's such that

$$r_{xx}[\ell] + r_{yy}[\ell] = 2N\delta[\ell] \tag{3}$$

Simplify your answer for $r_{zz}[\ell]$ in part (a) for this special case.

(c) Specifically, consider the Barker codes of length 4

$$x[n] = \{1, 1, 1, -1\} \qquad y[n] = \{1, 1, -1, 1\} \tag{4}$$

such that z[n] = x[n] + y[n - N] is:

$$z[n] = \{1, 1, 1, -1, 1, 1, -1, 1\}$$

$$(5)$$

Determine the autocorrelation $r_{zz}[\ell]$ for z[n] using the results that you derived above (you can compare to a direct calculation of $r_{zz}[\ell]$ to check your answer.)

(d) Now, we repeat the steps above for the case where the concatenated signal of length 2N is formed as below with a negative sign on the second term.

$$w[n] = x[n] - y[n - N] \tag{6}$$

Express the autocorrelation, $r_{ww}[\ell]$, for w[n] = x[n] - y[n-N] in terms of $r_{xx}[\ell]$, $r_{yy}[\ell]$, $r_{xy}[\ell]$, and $r_{yx}[\ell]$.

(e) Again, consider the specific case where x[n] and y[n] form a complementary pair of +1's and -1's such that

$$r_{xx}[\ell] + r_{yy}[\ell] = 2N\delta[\ell] \tag{7}$$

Simplify your answer for $r_{ww}[\ell]$ in part (d) for this special case.

(f) Again, let $x[n] = \{1, 1, 1, -1\}$ and $y[n] = \{1, 1, -1, 1\}$ be Barker codes of length 4, such that

$$w[n] = x[n] - y[n - N] = \{1, 1, 1, -1, -1, -1, 1, -1\}$$
(8)

Determine the autocorrelation $r_{ww}[\ell]$ for z[n] using the results that you derived above

(g) Sum your answers to parts (b) and (d) to form $r_{vv}[\ell] = r_{zz}[\ell] + r_{ww}[\ell]$, Do a stem plot of the sum $r_{vv}[\ell]$. Compare against the sum of your answers to (c) and (e).

	Λ 1	1	/	D.	•
1 1	\boldsymbol{H}	-1V	′▮	Γ_J	-

Page intentionally blank for Problem 2 Work

		_		
\mathbf{T}		T /		
1	/1	11/	ΙН.	•
	$\overline{}$	1 V	• • . /	_

 $Page\ intentionally\ blank\ for\ Problem\ 2\ Work$

T	V	Δ	$\mathbf{\Lambda}$	/	\mathbf{E}	•
- 1	v	$\overline{}$		<i>y</i>	• . /	•

 $Page\ intentionally\ blank\ for\ Problem\ 2\ Work$