NAME:

EE538 Digital Signal Processing I Fall 2015 Exam 1 Monday, Sept. 28, 2015

Cover Sheet

Write your name on this and every page

Test Duration: 60 minutes.
Coverage: Chapters 1-5.
Open Book but Closed Notes.
Calculators NOT allowed.
This test contains **three** problems.

Show your work in the space provided for each problem. You must show all work for each problem to receive full credit.

Always simplify your answers as much as possible.

Prob. No.	$\mathrm{Topic}(\mathrm{s})$	Points
1.	Frequency Response and Interconnection	40
	of LTI Systems, Pole-Zero Diagrams	
2.	LTI Systems: All-Pass Filters	20
3.	DT Autocorrelation, Cross-Correlation	40
	and their Related Properties	

NAME:

Problem 1. [35 points]

(a) Consider two LTI systems connected in SERIES. System 1 has impulse response $h_1[n]$ below, where $p_1 = 0.5$ (in fractional form $p_1 = \frac{1}{2}$)

System 1:
$$h_1[n] = \frac{1}{p_1} \left\{ \delta[n] + (p_1^2 - 1)p_1^n u[n] \right\}$$

System 2 has impulse response $h_2[n]$ below, where $p_2 = -0.5$

System 2:
$$h_2[n] = \frac{1}{p_2} \left\{ \delta[n] + (p_2^2 - 1)p_2^n u[n] \right\}$$

(a) Determine a closed-form expression for the impulse response, h[n], of the overall system. Write how h[n] is related to $h_1[n]$ and $h_2[n]$, and then show all work in determining your final answer. You may want to make use of the convolution result below. Note: you can solve the rest of this problem (except the extra credit) without the answer to part (a.)

$$\alpha^{n}u[n] * \beta^{n}u[n] = \frac{\alpha}{\alpha - \beta}\alpha^{n}u[n] + \frac{\beta}{\beta - \alpha}\beta^{n}u[n]$$

- (b) Determine the Z-Transform of the overall system. Draw the pole-zero diagram.
- (c) Plot the magnitude of the frequency response $|H(\omega)|$ of the overall system over $-\pi < \omega < \pi$. Explain your answer.
- (d) Write the difference equation for the overall system.
- (e) Determine the output y[n] of the overall system when the input is the sum of sinewaves (turned on forever) below

$$x[n] = 4 + 3(j)^{n} + 2(-j)^{n} + (-1)^{n}$$

(f) **Extra Credit.** Consider creating a new impulse response from your answer for part (a) as

g[n] = h[2n+1] where: h[n] is the overall impulse response of the system

That is, g[n] is formed by keeping only the values of h[n] for odd values of time, i.e., throwing the values of h[n] for even values of time. Compute the energy of g[n]:

$$E_g = \sum_{n=-\infty}^{\infty} g^2[n]$$

2

1	V	A	$\mathbf{\Lambda}$	/ [F,	•

Page intentionally blank for Problem 1 Work

T	V	Δ	. 1	/	E	•
- 1	7				- 1	•

 $Page\ intentionally\ blank\ for\ Problem\ 1\ Work$

T	V	Δ	$\mathbf{\Lambda}$	/	\mathbf{E}	•
- 1	v	$\overline{}$		<i>y</i>	• . /	•

 $Page\ intentionally\ blank\ for\ Problem\ 1\ Work$

Problem 2. (a)

(a) Consider $h_1[n]$ and $h_2[n]$ to be two distinct all-pass filters $(p_1 \neq p_2)$ with respective impulse responses below. Is the sum $h[n] = h_1[n] + h_2[n]$ an all-pass filter for any and all values of p_1 and p_2 $(p_1 \neq p_2)$?? Explain your answer. Your explanation is much more important than your answer.

$$h_1[n] = \frac{1}{p_1} \left\{ \delta[n] + (p_1^2 - 1)p_1^n u[n] \right\}$$
 (1)

$$h_2[n] = \frac{1}{p_2} \left\{ \delta[n] + (p_2^2 - 1)p_2^n u[n] \right\}$$
 (2)

Problem 2.(b)

(b) Consider h[n] to be an all-pass filter with respective impulse response below.

$$h[n] = \frac{1}{p} \left\{ \delta[n] + (p^2 - 1)p^n u[n] \right\}$$
 (3)

Is the product

$$g[n] = e^{j\omega_o n} h[n]$$

an all-pass filter for any and all values of the frequency ω_o ? Explain your answer. Your explanation is much more important than your answer.

Problem 3. Note: this problem is different from a similar problem on last year's exam in that the two sequences, $x_1[n]$ and $x_2[n]$, are of different lengths.

(a) Determine the autocorrelation $r_{x_1x_1}[\ell]$ of the length-3 sequence $x_1[n]$ below, which is written two different ways. Write your answer in sequence form indicating where the value for $\ell = 0$ is located.

$$x_1[n] = \{1, 1, -1\} = \delta[n] + \delta[n-1] - \delta[n-2]$$

(b) Determine the autocorrelation $r_{x_2x_2}[\ell]$ of the length-5 sequence $x_2[n]$ below, which is written two different ways. Write your answer in sequence form indicating where the value for $\ell=0$ is located.

$$x_2[n] = \{1, 1, 1, -1, 1\} = \delta[n] + \delta[n-1] + \delta[n-2] - \delta[n-3] + \delta[n-4]$$

(c) The sequence $x_1[n]$ defined above is input to the system described by the simple difference equation below. Do a stem plot of the cross-correlation $r_{y_1x_1}[\ell]$ between the output and input.

$$y_1[n] = 4x_1[n-3] + x_1[n-4]$$

(d) The sequence $x_2[n]$ defined above is input to the same system described by the simple difference equation below. Do a stem plot of the cross-correlation $r_{y_2x_2}[\ell]$ between the output and input.

$$y_2[n] = 4x_2[n-3] + x_2[n-4]$$

(e) Sum your answers to parts (c) and (d) to form the sum below. Do a stem plot of $r_{yx}[\ell]$.

$$r_{yx}[\ell] = r_{y_1x_1}[\ell] + r_{y_2x_2}[\ell]$$

N	Λ	$\mathbf{\Lambda}$	/	F .	•
1			∕ ▮	L.	•

 $Page\ intentionally\ blank\ for\ Problem\ 3\ Work$

Ī	V	Δ	$\mathbf{\Lambda}$	/ []	₽,•
- 1	•	$\overline{}$			· / •

 $Page\ intentionally\ blank\ for\ Problem\ 3\ Work$

Ī	V	Δ	$\mathbf{\Lambda}$	/ []	₽,•
- 1	•	$\overline{}$			· / •

 $Page\ intentionally\ blank\ for\ Problem\ 3\ Work$