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Since (5.3.24) has the form of a convolution, the frequency-domain equivalent ex-
pression is

Iﬂyx (w) = H(@)Txx (w) (5325)
In the special case where x(n) is white noise, (5.3.25) reduces to

Ty (@) = 02H () (5.3.26)

where o? is the input noise power. This result means that an unknown system with
frequency response H(w) can be identified by exciting the input with white noise,
crosscorrelating the input sequence with the output sequence to obtain y,x (m), and
finally, computing the Fourier transform of y,, (m). The result of these computations
is proportional to H(w).

5.4 Linear Time-Invariant Systems as Frequency-Selective Filters

The term filter is commonly used to describe a device that discriminates, according to
some attribute of the objects applied at its input, what passes throughit. For example,
an air filter allows air to pass through it but prevents dust particles that are present
in the air from passing through. An oil filter performs a similar function, with the
exception that oil is the substance allowed to pass through the filter, while particles
of dirt are collected at the input to the filter and prevented from passing through. In
photography, an ultraviolet filter is often used to prevent ultraviolet light, which is
present in sunlight and which is not a part of visible light, from passing through and
affecting the chemicals on the film.

As we have observed in the preceding section, a linear time-invariant system
also performs a type of discrimination or filtering among the various frequency com-
ponents at its input. The nature of this filtering action is determined by the fre-
quency response characteristics H(w), which in turn depends on the choice of the
system parameters (e.g., the coefficients {ax} and {b;} in the difference equation
characterization of the system). Thus, by proper selection of the coefficients, we
can design frequency-selective filters that pass signals with frequency components in
some bands while they attenuate signals containing frequency components in other
frequency bands.

In general, a linear time-invariant system modifies the input signal spectrum
X (w) according to its frequency response H(w) to yield an output signal with spec-
trum Y (w) = H(w)X (w). In a sense, H(w) acts as a weighting function or a spectral
shaping function to the different frequency components in the input signal. When
viewed in this context, any linear time-invariant system can be considered to be a
frequency-shaping filter, even though it may not necessarily completely block any or
all frequency components. Consequently, the terms “linear time-invariant system”
and “filter” are synonymous and are often used interchangeably.

We use the term filter to describe a linear time-invariant system used to perform
spectral shaping or frequency-selective filtering. Filtering is used in digital signal
processing in a variety of ways, such as removal of undesirable noise from desired
signals, spectral shaping such as equalization of communication channels, signal de-
tection in radar, sonar, and communications, and for performing spectral analysis of
signals, and so on.
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5.4.1 Ideal Filter Characteristics

Filters are usually classified according to their frequency-domain characteristics as
lowpass, highpass, bandpass, and bandstop or band-elimination filters. The ideal mag-
nitude response characteristics of these types of filters are illustrated in Fig. 5.4.1. As
shown, these ideal filters have a constant-gain (usually taken as unity-gain) passband
characteristic and zero gain in their stopband.

Another characteristic of an ideal filter is a linear phase response. To demon-

strate this point, let us assume that a signal sequence {x(n)} with frequency compo-
nents confined to the frequency range w; < w < w; is passed through a filter with

H(w)|
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frequency response

H(w) = { Ce™/m, o1 <w<w (54.1)

0, otherwise

where C and ng are constants. The signal at the output of the filter has a spectrum

Y(w) = X(w)H (w)

(5.42)

= CX(w)e /¥, W) <o <w

By applying the scaling and time-shifting properties of the Fourier transform, we
obtain the time-domain output

y(®) = Cx(n — no) (5.43)

Consequently, the filter output is simply a delayed and amplitude-scaled version of
the input signal. A pure delay is usually tolerable and is not considered a distortionof
the signal. Neither is amplitude scaling, Therefore, ideal filters have a linear phase
characteristic within their passband, that is,

O(w) = —wny (5.4.4)

The derivative of the phase with respect to frequency has the units of delay.
Hence we can define the signal delay as a function of frequency as

dO(w)

— (5.4.5)

T(w) = —

7g(w) is usually called the envelope delayor the group delay of the filter. We interpret
7z () as the time delay that a signal component of frequency w undergoes as it passes
from the input to the output of the system. Note that when ® () is linear as in (5.4.4),
Tg(w) = ng = constant. In this case all frequency components of the input signal
undergo the same time delay.

In conclusion, ideal filters have a constant magnitude characteristic and a linear
phase characteristic within their passband. In all cases, such filters are not physically
realizable but serve as a mathematical idealization of practical filters. For example,
the ideal lowpass filter has an impulse response

hip(n) = w, —00 <1 < 00 (5.4.6)
TR

We note that this filter is not causal and it is not absolutely summable and therefore
it is also unstable. Consequently, this ideal filter is physically unrealizable. Never-
theless, its frequency response characteristics can be approximated very closely by

practical, physically realizable filters, as will be demonstrated in Chapter 10.
In the following discussion, we treat the design of some simple digital filters by
the placement of poles and zeros in the z-plane. We have already described how
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the location of poles and zeros affects the frequency response characteristics of the
system. In particular, in Section 5.2.2 we presented a graphical method for computing
the frequency response characteristics from the pole-zero plot. This same approach
can be used to design a number of simple but important digital filters with desirable
frequency response characteristics.

The basic principle underlying the pole—zero placement method is to locate poles
near points of the unit circle corresponding to frequencies to be emphasized, and to
place zeros near the frequencies to be deemphasized. Furthermore, the following
constraints must be imposed:

1. Allpoles should be placed inside the unit circle in order for the filter to be stable.
However, zeros can be placed anywhere in the z-plane.

2. All complex zeros and poles must occur in complex-conjugate pairs in order for
the filter coefficients to be real.

From our previous discussion we recall that for a given pole-zero pattern, the system
function H(z) can be expressed as

M M
Zka_k H(l -z h
Hz) = —=2 = b= (54.7)
14+) gz []a-pz™
k=1 k=1

where by is a gain constant selected to normalize the frequency response at some
specified frequency. That is, by is selected such that

|H(wo) =1 (5.4.8)

where wy is a frequency in the passband of the filter. Usually, N is selected to equal
or exceed M, so that the filter has more nontrivial poles than zeros.

In the next section, we illustrate the method of pole—zero placement in the design
of some simple lowpass, highpass, and bandpass filters, digital resonators, and comb
filters. The design procedure is facilitated when carried out interactively on a digital
computer with a graphics terminal.

5.4.2 Lowpass, Highpass, and Bandpass Filters

In the design of lowpass digital filters, the poles should be placed near the unit circle
at points corresponding to low frequencies (near » = 0) and zeros should be placed
near or on the unit circle at points corresponding to high frequencies (near w = 7).
The opposite holds true for highpass filters.

Figure 5.4.2 illustrates the pole—zero placement of three lowpass and three high-
pass filters. The magnitude and phase responses for the single-pole filter with system
function

—a
1~az 1

Hy(z) = (5.4.9)
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Highpass
Figure 5.4.2 Pole-zero patterns for several lowpass and highpass
filters.

are illustrated in Fig. 5.4.3 for a = 0.9. The gain G was selected as 1 — a, so that the
filter has unity gain at w = 0. The gain of this filter at high frequencies is relatively
small.

The addition of a zero at z = —1 further attenuates the response of the filter at
high frequencies. This leads to a filter with a system function

1Hy ()l
1. z(w)| ]

Figure 5.4.3

Magnitude and phase
response of (1) a
single-pole filter and (2) a
one-pole, one-zero filter;
Hi(x) = (1 -a)/(d —az™),
Hy(z) = [(1 - a)/2)[A +
/(1 —az™hH) and
a=009.
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and a frequency response characteristic that is also illustrated in Fig. 5.4.3. In this
case the magnitude of H,(w) goes to zero at w = 7.

Similarly, we can obtain simple highpass filters by reflecting (folding) the pole~
zero locations of the lowpass filters about the imaginary axis in the z-plane. Thus we
obtain the system function

l—a1-—z"1

7 Ttat (G411

H3(z) =

which has the frequency response characteristics illustrated in Fig. 5.4.4 for a = 0.9.

EXAMPLE 5.4.1

A two-pole lowpass filter has the system function

by

1= Ty

Determine the values of by and p such that the frequency response H (w) satisfies the condi-

tions
HOy =1

and
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Solution. At w = 0 we have b
0
HO) = —2— =
(1 - p)?

Hence
bo = (1 — p)*
At w = /4,
(1-p)*
- (1 . pe—jn/4)2
B (1-p)?
T (1 — pcos(r/4) + jpsin(r/4))?

_ (1 - p)?
(1 — p/V2+jp/2)?

1-p* 1

(L= p/v22 + P22k 2

or, equivalently,
V2(l-p?=1+p"=V2p

The value of p = 0.32 satisfies this equation. Consequently, the system function for the desired
filter is
0.46

H@ = 03217

The same principles can be applied for the design of bandpass filters. Basically,
the bandpass filter should contain one or more pairs of complex-conjugate poles near
the unit circle, in the vicinity of the frequency band that constitutes the passband of
the filter. The following example serves to illustrate the basic ideas.

EXAMPLE5.4.2

Design a two-pole bandpass filter that has the center of its passband at @ = 7/2, zero in its
frequency response characteristic at @ = 0 and w = 7, and a magnitude response of 1/4/2 at
w =4m/9.

Solution.  Clearly, the filter must have poles at

pip =re*im

and zeros at z = 1 and z = —1. Consequently, the system function is

z— D+
(z—jr)z+jr)
Z-1

P
247

HZ)=G

=G
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0.15[(1 — z73/(1 +0.7z7%)].

The gain factor is determined by evaluating the frequency response H(w) of the filter at
w = /2. Thus we have

)-orant

_1—}’2
)

G

The value of r is determined by evaluating H (w) at @ = 4x /9. Thus we have

(5)

2= 2-2cos(87/9) 1

4 14r4+2r%cos(8/9) ~ 2

or, equivalently,
1.94(1 — rH? =1 —1.88¢2 + r*

The value of 2 = 0.7 satisfies this equation. Therefore, the system function for the desired

filter is
-2

1—72

Its frequency response is illustrated in Fig. 5.4.5.

It should be emphasized that the main purpose of the foregoing methodology
for designing simple digital filters by pole-zero placement is to provide insight into
the effect that poles and zeros have on the frequency response characteristic of
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systems. The methodology is not intended as a good method for designing digital
filters with well-specified passband and stopband characteristics. Systematic methods
for the design of sophisticated digital filters for practical applications are discussed
in Chapter 10.
A simple lowpass-to-highpass filter transformation. Suppose that we have designed
a prototype lowpass filter with impulse response A (n). By using the frequency
translation property of the Fourier transform, it is possible to convert the prototype
filter to either a bandpass or a highpass filter. Frequency transformations for con-
verting a prototype lowpass filter into a filter of another type are described in detail
in Section 10.3. In this section we present a simple frequency transformation for
converting a lowpass filter into a highpass filter, and vice versa.

If hip(n) denotes the impulse response of a lowpass filter with frequency re-
sponse Hip(w), a highpass filter can be obtained by translating Hp(w) by 7 radians
(i.e., replacing w by w — 7). Thus

Hpp(w) = Hyp(w — 1) (5.4.12)
where Hpp(w) is the frequency response of the highpass filter. Since a frequency

translation of 7 radians is equivalent to multiplication of the impulse response hip (1)
by e/, the impulse response of the highpass filter is

np(n) = (/™) hip(n) = (=1)"hip(n) (5.4.13)

Therefore, the impulse response of the highpass filter is simply obtained from the
impulse response of the lowpass filter by changing the signs of the odd-numbered
samples in Ay, (n). Conversely,

hip(n) = (=1)"hnp(n) (5.4.14)

If the Jowpass filter is described by the difference equation

N M
y(n) = — Zaky(n - k) + Z bix(n — k) (5.4.15)

k=1 k=0
its frequency response is
M
bk e~ Jjwk
0

Hip(@) = —= (5.4.16)

N
1+ ake_f“’k
k=1

Now, if we replace w by @ — 7, in (5.4.16), then
M
Y Db
k=0
N

14 ) (—DFage ™/

k=1

th (w) =
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which corresponds to the difference equation

N

M
y(n) = — Z(—l)kaky(n — k) + Z(—l)kbkx(n -k (5.4.18)

k=1 k=0
EXAMPLE 5.4.3
Convert the lowpass filter described by the difference equation
y(n) =09y(n — 1) + 0.1x(n)
into a highpass filter.
Solution.  The difference equation for the highpass filter, according to (5.4.18), is
y@m) = —09y(n —1) + 0.1x(n)

and its frequency response is
0.1

Foe () = T 70.9¢7

The reader may verify that Hy,(w) is indeed highpass.

5.4.3 Digital Resonators

A digital resonator is a special two-pole bandpass filter with the pair of complex-
conjugate poles located near the unit circle as shown in Fig. 5.4.6(a). The magnitude
of the frequency response of the filter is shown in Fig. 5.4.6(b). The name resonator
refers to the fact that the filter has a large magnitude response (i.e., it resonates) in
the vicinity of the pole location. The angular position of the pole determines the
resonant frequency of the filter. Digital resonators are useful in many applications,
including simple bandpass filtering and speech generation.

In the design of a digital resonator with a resonant peak at or near w = wp, we
select the complex-conjugate poles at
+jawy ,

pia=re O<r<1

In addition, we can select up to two zeros. Although there are many possible choices,
two cases are of special interest. One choice is to locate the zeros at the origin. The
other choice is to locate a zero at z = 1 and azero at z = —1. This choice completely
eliminates the response of the filter at frequencies « = 0 and w = 7, and it is useful
in many practical applications.

The system function of the digital resonator with zeros at the origin is

H@) = (1 —re/@z=1)(1 — re~jooz=1) (5:4.19)
H(z) = bo (5.4.20)

1— Q2rcoswo)z™! +r2z=2
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Figure 5.4.6

(a) Pole-zero pattern and
(b) the corresponding
magnitude and phase
response of a digital
resonator with (1) r = 0.8
and (2) r = 0.95.

Since |H(w)| has its peak at or near @ = wp, we select the gain by so that
|H(wp)| = 1. From (5.4.19) we obtain

bo
a- reije-j‘”O)(l — re‘j’”Oe_j“’O)
by
T (1 -r)(1 — re=J2%0)

H(wg) =
(5.4.21)

and hence
by

(1 = 1/14r2 —2rcos2wy

=1

|H(wo)| =




2(z)

ain by so that

(5.4.21)
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Thus the desired normalization factor is

by = (1 — r)v/1 +r2 — 2r cos 2w (5.4.22)

The frequency response of the resonator in (5.4.19) can be expressed as

bo
Ur(@)Uz(w) (5.4.23)
O(w) =20 — P1(w) — P2(w)

|H(w)| =

where Uq(w) and Us(w) are the magnitudes of the vectors from p; and p; to the
point w in the unit circle and ®1(w) and ®,(w) are the corresponding angles of these
two vectors. The magnitudes U (w) and U,(w) may be expressed as

Ur(®) = /1 + r?2 — 2r cos(wy — o)
(5.4.24)

Us(®) = /1 + 12 — 2r cos(wp + )

For any value of r, Uj(w) takes its minimum value (1 —r) at w = wy. The
product U; (w)Us(w) reaches a minimum value at the frequency

2
w, = cos™! (1%r— cos a)()) (5.4.25)
r

which defines precisely the resonant frequency of the filter. We observe that when
r is very close to unity, @, ~ wp, which is the angular position of the pole. We also
observe that as r approaches unity, the resonance peak becomes sharper because
Ui (w) changes more rapidly in relative size in the vicinity of wp. A quantitative
measure of the sharpness of the resonance is provided by the 3-dB bandwidth Aw
of the filter. For values of r close to unity,

Aw~2(1—7r) (5.4.26)

Figure 5.4.6 illustrates the magnitude and phase of digital resonators with wy =
/3, r = 0.8 and wy = /3, r = 0.95. We note that the phase response undergoes
its greatest rate of change near the resonant frequency.

If the zeros of the digital resonator are placed at z = 1 and z = —1, the resonator
has the system function

A-zHa+zH
(1 —rei@z=1)(1 —re—Jwoz=1)

H@) =G

(5.4.27)
1—z72

=G
1— 2rcoswy)z=! +r2z2
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and a frequency response characteristic

1 _e—ij

[1 — rej(wO"w)][l _— re_j(a)0+w)]

H(w) = by (5.4.28)

We observe that the zeros at z = %1 affect both the magnitude and phase response
of the resonator. For example, the magnitude response is

N(w)
U1 (@) Uz ()

|H ()] = b (5.4.29)

where N(w) is defined as

N(w) = /21 — cos2w)

Due to the presence of the zero factor, the resonant frequency is altered from
that given by the expression in (5.4.25). The bandwidth of the filter is also altered.
Although exact values for these two parameters are rather tedious to derive, we can
easily compute the frequency response in (5.4.28) and compare the result with the
previous case in which the zeros are located at the origin.

Figure 5.4.7 illustrates the magnitude and phase characteristics for wy = /3,
r = 0.8 and wy = 7/3, r = 0.95. We observe that this filter has a slightly smaller
bandwidth than the resonator, which has zeros at the origin. In addition, there
appears to be a very small shift in the resonant frequency due to the presence of
the zeros.

Figure 5.4.7
Magnitude and phase
response of digital
resonator with zeros
atw=0and w=um
and (1) r = 0.8 and
(2) r =0.95.
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1H(w)l
Figure 5.4.8
Frequency response
characteristic of a notch 0 : -—w
filter. 0 @y ; P

5.4.4 Notch Filters

A notch filter is a filter that contains one or more deep notches or, ideally, perfect
nulls in its frequency response characteristic. Figure 5.4.8 illustrates the frequency
response characteristic of a notch filter with nulls at frequencies wy and w;. Notch
filters are useful in many applications where specific frequency components must be
eliminated. For example, instrumentation and recording systems require that the
power-line frequency of 60 Hz and its harmonics be eliminated.

To create a null in the frequency response of a filter at a frequency wy, we simply
introduce a pair of complex-conjugate zeros on the unit circle at an angle wy. That is,

L
732 = e 7™

Thus the system function for an FIR notch filter is simply

H(z) = bo(1 — e/0z71)(1 — 7720771
(5.4.30)
=bo(1 = 2coswoz ' +z72)

As an illustration, Fig. 5.4.9 shows the magnitude response for a notch filter having
anull at w = /4.

The problem with the FIR notch filter is that the notch has a relatively large
bandwidth, which means that other frequency components around the desired null
are severely attenuated. To reduce the bandwidth of the null, we can resort to
a more sophisticated, longer FIR filter designed according to criteria described in
Chapter 10. Alternatively, we could, in an ad hoc manner, attempt to improve on
the frequency response characteristics by introducing poles in the system function.

Suppose that we place a pair of complex-conjugate poles at
P12 =rei
The effect of the poles is to introduce a resonance in the vicinity of the null and thus
to reduce the bandwidth of the notch. The system function for the resulting filter is

1—2coswpz ! + 772

H(z) =b
@ = bo 1—2rcoswoz! +r2z72

(5.4.31)

The magnitude response |H(w)| of the filter in (5.4.31) is plotted in Fig. 5.4.10 for
wo =n/4,r = 0.85,and for wy = 7 /4, r = 0.95. When compared with the frequency
response of the FIR filter in Fig. 5.4.9, we note that the effect of the poles is to reduce
the bandwidth of the notch.
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20 log | H(w)|

Figure 5.4.9

Frequency response
characteristics of a
notch filter with a

notch at w = /4

or f =1/8;, H(z) =
G[1 ~2coswpz™* +272].

Figure 5.4.10

Frequency response
characteristics of two

notch filters with poles

at (1) r = 0.85 and
2)r=095; H(z) =
bo[(1—2coswpz~ T 4272 /(1 —
2r coswoz™! +1%z7%)].
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In addition to reducing the bandwidth of the notch, the introduction of a pole
in the vicinity of the null may result in a small ripple in the passband of the filter
due to the resonance created by the pole. The effect of the ripple can be reduced by
introducing additional poles and/or zeros in the system function of the notch filter.
The major problem with this approach is that it is basically an ad hoc, trial-and-error
method.

5.4.5 Comb Filters

In its simplest form, a comb filter can be viewed as a notch filter in which the nulls
occur periodically across the frequency band, hence the analogy to an ordinary comb
that has periodically spaced teeth. Comb filters find applications in a wide range of
practical systems such as in the rejection of power-line harmonics, in the separation of
solar and lunar components from ionospheric measurements of electron concentra-
tion, and in the suppression of clutter from fixed objects in moving-target-indicator
(MTI) radars.

To illustrate a simple form of a comb filter, consider a moving average (FIR)
filter described by the difference equation

1 M
OR v kgox(n — k) (5.4.32)

The system function of this FIR filter is

1 M
Hp)=—-Y 7*
@ =371 Z—;Z
= (5.4.33)
1 [1- z~M+D)]
TMi1 (1-zD

and its frequency response is

e=ioM/2 gin o (LH)

H() = 5.4.34
@) =TT “Sn/2) (5:4.34)
From (5.4.33) we observe that the filter has zeros on the unit circle at

7 = /MY, k=1,2,3,....M (5.4.35)

Note that the pole at z = 1 is actually canceled by the zero at z = 1, so that in effect
the FIR filter does not contain poles outside z = 0.

A plot of the magnitude characteristic of (5.4.34) clearly illustrates the ex-
istence of the periodically spaced zeros in frequency at o, = 2mk/(M + 1) for
k=1,2,..., M. Figure 5.4.11 shows |H(w)| for M = 10.
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In more general terms, we can create a comb filter by taking an FIR filter with
system function

M
H@) =Y hk)z™ (5.4.36)
k=0

and replacing z by z», where L is a positive integer. Thus the new FIR filter has a
system function

M
Hi(z) =) h(k)z™** (5.4.37)
k=0

If the frequency response of the original FIR filter is H(w), the frequency response
of the FIR in (5.4.37) is

M
Hp(w) =Y h(k)e /*e
: k; (5.4.38)

= H(Lw)

Consequently, the frequency response characteristic Hy (w) is simply an L-order
repetition of H () in the range 0 < w < 27 . Figure 5.4.12 illustrates the relationship
between H;(w) and H(w) for L = 5.

Now, suppose that the original FIR filter with system function H (z) has a spectral
null (i.e., a zero), at some frequency wp. Then the filter with system function Hy (2)
has periodically spaced nulls at wy = wo + 27k/L, k = 0,1, 2,..., L-1. As
an illustration, Fig. 5.4.13 shows an FIR comb filter with M = 3 and L = 3. This
FIR filter can be viewed as an FIR filter of length 10, but only four of the 10 filter
coefficients are nonzero.

Let us now return to the moving average filter with system function given by
(5.4.33). Suppose that we replace z by z~. Then the resulting comb filter has the
system function

1 1— Z—L(M—’rl)

T = (5.4.39)

Hi(z) =

and a frequency response

1 sin[wL(M + 1)/2]e_ijM/2

M+1  sin(wL/2) (5.440)

Hp(w) =
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H(w)

w

D% 87 6m 4r 2x 0  2r  4x  6m 8t 27
5 5 5 5 5
(b)
Figure 5.4.12 Comb filter with frequency response Hy(w)
obtained from H(w).

This filter has zeros on the unit circle at
2 = e 2K/ LMAD) (5.4.41)

for all integer values of k except k = 0, L, 2L, ..., ML. Figure 5.4.14 illustrates
|Hp (w)| for L =3 and M = 10.

The comb filter described by (5.4.39) finds application in the separation of solar
and lunar spectral components in ionospheric measurements of electron concen-
tration as described in the paper by Bernhardt et al. (1976). The solar period is
Ty = 24 hours and results in a solar component of one cycle per day and its har-
monics. The lunar period is 77, = 24.84 hours and provides spectral lines at 0.96618
cycle per day and its harmonics. Figure 5.4.15(a) shows a plot of the power density
spectrum of the unfiltered ionospheric measurements of the electron concentration.
Note that the weak lunar spectral components are almost hidden by the strong solar
spectral components.

The two sets of spectral components can be separated by the use of comb filters.
If we wish to obtain the solar components, we can use a comb filter with a narrow
passband at multiples of one cycle per day. This can be achieved by selecting L such
that F,/L =1 cycle per day, where F; is the corresponding sampling frequency. The

Figure 5.4.13 Realization of an FIR comb filter having M =3 and L = 3.
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1.2

1.0
0.8
0.6

Figure 5.4.14 0.4
Magnitude response 0.2
characteristic for a comb

filter given by (5.4.40), with

L =3 and M =10.

result is a filter that has peaks in its frequency response at multiples of one cycle per
day. By selecting M = 58, the filter will have nulls at multiples of (Fy/L)/(M +1) =
1/59 cycle per day. These nulls are very close to the lunar components and result in
good rejection. Figure 5.4.15(b) illustrates the power spectral density of the output of
the comb filter that isolates the solar components. A comb filter that rejects the solar
components and passes the lunar components can be designed in a similar manner.
Figure 5.4.15(c) illustrates the power spectral density at the output of such a lunar
filter.

Magnitude
spectrum
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Figure 5.4.15 (a) Spectrum of unfiltered electron content data; (b) spec-
trum of output of solar filter; (c) spectrum of output of lunar filter. [From
paper by Bernhardt et al. (1976). Reprinted with permission of the Amer-
ican Geophysical Union.]
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5.4.6 All-Pass Filters

An all-pass filter is defined as a system that has a constant magnitude response for
all frequencies, that is,

|H(w)| =1, O0<w=m (5.4.42)
The simplest example of an all-pass filter is a pure delay system with system function
H@) =z"*

This system passes all signals without modification except for a delay of & samples.
This is a trivial all-pass system that has a linear phase response characteristic.
A more interesting all-pass filter is described by the system function

H() = ay +ay-1z7 4 +agz N 4 N
- T4aiz7 4+ +ayz™V

(5.4.43)

N —N+k
—_0 Ak
= ______________Zk—() s ap = 1

Z/Icv=o axz™
where all the filter coefficients {a;} are real. If we define the polynomial A(z) as

N

AR =Y az™*  a=1

k=0
then (5.4.43) can be expressed as

_N AZH
A(2)

H(z) =z (5.4.44)
Since
|H@) = H@H @ Dlpmpio =1

the system given by (5.4.44) is an all-pass system. Furthermore, if zg is a pole of H(z),
then 1/zg is a zero of H(z) (i.e., the poles and zeros are reciprocals of one another).
Figure 5.4.16 illustrates typical pole-zero patterns for a single-pole, single-zero filter
and a two-pole, two-zero filter. A plot of the phase characteristics of these filters is
shown in Fig. 5.4.17 for a = 0.6 and r = 0.9, wg = n /4.

g (l wo)
S

e
\

a |1 O/wol

r

=

(r, ~wg) (i ; —“’0)

(2) ®

Figure 5.4.16 Pole-zero patterns of (a) a first-order and (b) a
second-order all-pass filter.
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Figure 5.4.17

Frequency response
characteristics of an
all-pass filter with system
functions (1) H(z) =

0.6 4+z71/(1 +0.6271),
) H(z) =

(r? — 2rcoswoz™t +z72)/
(1 —2r cosmwpz™t +r2772),
r=20.9, wy = n/4.

The most general form for the system function of an all-pass system with real
coefficients, expressed in factored form in terms of poles and zeros, is

Np 1 Ne -1 -1 *
B rlea 15 @ =BG =B
Hap(2) —]1 i —ae Ll pzha gz (5.4.45)

where there are Ny real poles and zeros and N, complex-conjugate pairs of poles
and zeros. For causal and stable systems we require that —1 < o < 1 and || < 1.
Expressions for the phase response and group delay of all-pass systems can easily
be obtained using the method described in Section 5.2.1. For a single pole—single zero
all-pass system we have
eJ® — ype=J0
Hap(@) = 1 —relfe-jo
1 rsin(w - 6)
® =—w-2tan! ——
(@) = o -2 @ = 0)
dOup(w) 1 —r2
do ~ 1+r2=2rcos(w—6)

Tp(w) = — (5.4.46)
We note that for a causal and stable system, r < 1 and hence 1,(w) > 0. Since the
group delay of a higher-order pole-zero system consists of a sum of positive terms
as in (5.4.46), the group delay will always be positive.
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All-pass filters find application as phase equalizers. When placed in cascade
with a system that has an undesired phase response, a phase equalizer is designed to
compensate for the poor phase characteristics of the system and therefore to produce
an overall linear-phase response.

5.4.7 Digital Sinusoidal Oscillators

A digital sinusoidal oscillatorcan be viewed as a limiting form of a two-pole resonator
for which the complex-conjugate poles lie on the unit circle. From our previous
discussion of second-order systems, we recall that a system with system function

bo
H(z) = 5.4.47
@ 1+aiz7l 4+ az™? ( )
and parameters
a; = —2rcoswy and ap =r> (5.4.48)
has complex-conjugate poles at p = re*/® and a unit sample response
bor™ .
h(n) = — sin(n + Dawgu(n) (5.4.49)
S1N wq

If the poles are placed on the unit circle (» = 1) and by is set to A sin wy, then
h(n) = Asin(n + Dwou(n) (5.4.50)

Thus the impulse response of the second-order system with complex-conjugate poles
on the unit circle is a sinusoid and the system is called a digital sinusoidal oscillator
or a digital sinusoidal generator.

A digital sinusoidal generator is a basic component of a digital frequency syn-
thesizer.

The block diagram representation of the system function given by (5.4.47) is
illustrated in Fig. 5.4.18. The corresponding difference equation for this system is

y(n) = —a1y(n —1) — y(n — 2) + bod(n) (5451)
(A sin 600)5(_”)’_® y(n)=Asin (n + Day

ay =-2cos wy

Figure 5.4.18 T a=1
Digital sinusoidal generator.
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where the parameters are a; = —2 cos wy and by = A sin wg, and the initial conditions
are y(—1) = y(=2) = 0. By iterating the difference equation in (5.4.51), we obtain

y(0) = Asinwy
y(1) = 2cos wgy(0) = 2A sin wg cos wy = A sin 2wy
¥(2) =2coswpy(1) — y(0)

= 2A cos wg sin 2wg — A sin wyg

= A(4 cos® wy ~ 1) sin wg

=3Asinwy — 4sin’ wp = A sin 3wy

and so forth. We note that the application of the impulse at n = 0 serves the purpose
of beginning the sinusoidal oscillation. Thereafter, the oscillation is self-sustaining
because the system has no damping (i.e., r = 1).

It is interesting to note that the sinusoidal oscillation obtained from the system
in (5.4.51) can also be obtained by setting the input to zero and setting the initial
conditions to y(—1) = 0, y(—2) = —Asinwy. Thus the zero-input response to the
second-order system described by the homogeneous difference equation

y(n) = —a1y(n — 1) — y(n — 2) (5.4.52)
with initial conditions y(—1) = 0 and y(—2) = —Asinwy, is exactly the same as

the response of (5.4.51) to an impulse excitation. In fact, the difference equation in
(5.4.52) can be obtained directly from the trigonometric identity

o+ B o—p
2

sino + sin B = 2sin cos — (5.4.53)

where, by definition, & = (n + Dy, B = (n — Dy, and y(n) = sin(n + 1wp.

In some practical applications involving modulation of two sinusoidal carrier
signals in phase quadrature, there is a need to generate the sinusoids A sin wpn and
A cos won. These signals can be generated from the so-called coupled-form oscillator,
which can be obtained from the trigonometric formulas

cos(o + B) = cos cos B — sinw sin

sin(o + 8) = sinw cos B + cosa sin B
where, by definition, & = nwq, f = wq, and

ye(n) = cos nwou(n) (5.4.54)
Ys(n) = sin nwou(n) (5.4.55)
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COS w
g T
y.(n) = cos wgn

sin wy

—sin wq
Figure 5.4.19 7 e +
Realization of the cos wy \/ ¥5(n) = sin won
coupled-form oscillator.

Thus we obtain the two coupled difference equations

ve(n) = (coswg)y.(n — 1) — (sinwg) y;(n — 1) (5.4.56)
ys(n) = (Sinwg)y.(n — 1) + (coswy) y;(n — 1) (5.4.57)

which can also be expressed in matrix form as

[yc(n):| _ |:COSC()() ——sina)o:l [yc(n — 1)] (5.4.58)

ys (1) sin wy coswg || ys(n—=1)

The structure for the realization of the coupled-form oscillator is illustrated in
Fig. 5.4.19. We note that this is a two-output system which is not driven by any input,
but which requires the initial conditions y.(—1) = A coswg and y;(—1) = —A sin wg
in order to begin its self-sustaining oscillations.

Finally, it is interesting to note that (5.4.58) corresponds to vector rotation in the
two-dimensional coordinate system with coordinates y.(n) and y,(n). As a conse-
quence, the coupled-form oscillator can also be implemented by use of the so-called
CORDIC algorithm [see the book by Kung et al. (1985)].

Inverse Systems and Deconvolution

As we have seen, a linear time-invariant system takes an input signal x(n) and pro-
duces an output signal y(n), which is the convolution of x(n) with the unit sample
response h(n) of the system. In many practical applications we are given an output
signal from a system whose characteristics are unknown and we are asked to de-
termine the input signal. For example, in the transmission of digital information at
high data rates over telephone channels, it is well known that the channel distorts
the signal and causes intersymbol interference among the data symbols. The inter-
symbol interference may cause errors when we attempt to recover the data. In such
a case the problem is to design a corrective system which, when cascaded with the
channel, produces an output that, in some sense, corrects for the distortion caused
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by the channel, and thus yields a replica of the desired transmitted signal. In digi-
tal communications such a corrective system is called an equalizer. In the general
context of linear systems theory, however, we call the corrective system an inverse
system, because the corrective system has a frequency response which is basically the
reciprocal of the frequency response of the system that caused the distortion. Fur-
thermore, since the distortive system yields an output y(xn) that is the convolution
of the input x(rn) with the impulse response h(n), the inverse system operation that
takes y(n) and produces x(n) is called deconvolution.

If the characteristics of the distortive system are unknown, it is often neces-
sary, when possible, to excite the system with a known signal, observe the output,
compare it with the input, and in some manner, determine the characteristics of the
system. For example, in the digital communication problem just described, where
the frequency response of the channel is unknown, the measurement of the channel
frequency response can be accomplished by transmitting a set of equal-amplitude
sinusoids, at different frequencies with a specified set of phases, within the frequency
band of the channel. The channel will attenuate and phase shift each of the sinusoids.
By comparing the received signal with the transmitted signal, the receiver obtains a
measurement of the channel frequency response which can be used to design the in-
verse system. The process of determining the characteristics of the unknown system,
either h(n) or H(w), by a set of measurements performed on the system is called
system identification.

The term “deconvolution” is often used in seismic signal processing, and more
generally, in geophysics to describe the operation of separating the input signal from
the characteristics of the system which we wish to measure. The deconvolution
operation is actually intended to identify the characteristics of the system, which in
this case, is the earth, and can also be viewed as a system identification problem. The
“inverse system,” in this case, has a frequency response that is the reciprocal of the
input signal spectrum that has been used to excite the system.

5.5.1 Invertibility of Linear Time-Invariant Systems

A system is said to be invertible if there is a one-to-one correspondence between its
input and output signals. This definition implies that if we know the output sequence
y(n), —0o < n < 00, of an invertible system 7, we can uniquely determine its input
x(n), —0o < n < oo. The inverse system with input y(n) and output x(rn) is denoted
by 7 1. Clearly, the cascade connection of a system and its inverse is equivalent to
the identity system, since

wn) =T ym)] =T HT [x(m)]} = x(n) (5.5.1)

as illustrated in Fig. 5.5.1. For example, the systems defined by the input-output
relations y(n) = ax(n) and y(n) = x(n —5) are invertible, whereas the input-output
relations y(n) = x%(n) and y(n) = 0 represent noninvertible systems.

Asindicated above, inverse systems are important in many practical applications,
including geophysics and digital communications. Let us begin by considering the
problem of determining the inverse of a given system. We limit our discussion to the
class of linear time-invariant discrete-time systems.
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Identity system

X - W e =)
Figure 5.5.? . ; Direct Inverse !
System 7 in cascade with ' system system I

its inverse L. . !

Now, suppose that the linear time-invariant system 7 has an impulse response
h(n) and let h;(n) denote the impulse response of the inverse system 7~!. Then
(5.5.1) is equivalent to the convolution equation

wr) =h;m) *h(n) *x(m) = x(n) (5.5.2)

But (5.5.2) implies that
h(n) x hr(n) = 8(n) (5.5.3)

The convolution equation in (5.5.3) can be used to solve for h;(n) for a given
h(n). However, the solution of (5.5.3) in the time domain is usually difficult. A
simpler approach is to transform (5.5.3) into the z-domain and solve for 7~1. Thus
in the z-transform domain, (5.5.3) becomes

H@Hi(x) =1

and therefore the system function for the inverse system is

1
Hi(z) = 710 (5.5.4)

If H(z) has a rational system function

_ B

H(z) = e (5.5.5)
then AG)
z

Hi(z) = B (5.5.6)

Thus the zeros of H(z) become the poles of the inverse system, and vice versa.
Furthermore, if H(z) is an FIR system, then H;(z) is an all-pole system, or if H(z)
is an all-pole system, then H,(z) is an FIR system.

EXAMPLE 5.5.1

Determine the inverse of the system with impulse response

h(n) = (%)"u(n)
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Solution.  The system function corresponding to k(n) is

1
H(z) = ROC: |z] > 5

1-2z71

This system is both causal and stable. Since H (z) is an all-pole system, its inverse is FIR and
is given by the system function

1
Hi(@)=1~- EZ_]

Hence its impulse response is ’

1
hi(n) =68(n) — 55(11 -D

EXAMPLE 5.5.2

Determine the inverse of the system with impulse response
1
hin) =6(n) — 58(;1 -1)
This is an FIR system and its system function is
T 4
H(z):l—zz , ROC:|z] >0

The inverse system has the system function

1 1 z

H@) 1-1z1 z-1

Hi(z) =

Thus H;(z) has a zero at the origin and a pole at z = % In this case there are two possible
regions of convergence and hence two possible inverse systems, as illustrated in Fig. 5.5.2. If
we take the ROC of H,(z) as |z| > %, the inverse transform yields

1
hi(n) = (5)”14(11)

which is the impulse response of a causal and stable system. On the other hand, if the ROC s
assumed to be |z] < %, the inverse system has an impulse response

1 n
hi(n) = — ('2‘) u(—n-1)

In this case the inverse system is anticausal and unstable.
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Figure 5.5.2 Two possible regions of convergence for H(z) = z/(z — %).
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We observe that (5.5.3) cannot be solved uniquely by using (5.5.6) unless we
specify the region of convergence for the system function of the inverse system.

In some practical applications the impulse response 2(n) does not possess a z-
transform that can be expressed in closed form. As an alternative we may solve
(5.5.3) directly using a digital computer. Since (5.5.3) does not, in general, possess a
unique solution, we assume that the system and its inverse are causal. Then (5.5.3)
simplifies to the equation

> hk)hi(n = k) = 8(n) (5.5.7)

k=0
By assumption, i;(n) = 0 for n < 0. For n = 0 we obtain
h1(0) =1/h(0) (5.5.8)
The values of 4;(n) for n > 1 can be obtained recursively from the equation

AN NOEDY @%ﬁ, n>1 (5.5.9)

k=1

This recursive relation can easily be programmed on a digital computer.

There are two problems associated with (5.5.9). First, the method does not
work if #(0) = 0. However, this problem can easily be remedied by introducing
an appropriate delay in the right-hand side of (5.5.7), that is, by replacing d(n) by
8(n —m), where m = 1 if #(0) = 0 and k(1) # 0, and so on. Second, the recursion in
(5.5.9) gives rise to round-off errors which grow with n and, as a result, the numerical
accuracy of h(n) deteriorates for large n.
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EXAMPLES.5.3

Determine the causal inverse of the FIR system with impulse response
h(n) =8(@n) —ad(n —1)
Since h(0) =1, k(1) = —a, and h(n) = 0 for n > «, we have
hi(0)=1/h(0) =1

and
hi(n) =ah;y(n—1), n>1

Consequently,
) =a k@) = ...,

which corresponds to a causal IIR system as expected.

5.5.2 Minimum-Phase, Maximum-Phase, and Mixed-Phase Systems

The invertibility of a linear time-invariant system is intimately related to the charac-
teristics of the phase spectral function of the system. To illustrate this point, let us
consider two FIR systems, characterized by the system functions

1 1
Hi(z) =1+ Ez_l =7+ 5) (5.5.10)

1 1
Hy(2) = 5 + 7= z_l(iz +1 (5.5.11)

The system in (5.5.10) has a zero at z = —% and an impulse response 2(0) = 1,
h(1) = 1/2. The system in (5.5.11) has a zero at z = —2 and an impulse response
h(0) = 1/2, h(1) = 1, which is the reverse of the system in (5.5.10). This is due to
the reciprocal relationship between the zeros of Hi(z) and Hy(z).

In the frequency domain, the two systems are characterized by their frequency
response functions, which can be expressed as

|Hi(w)] = [Hp(@)] = 4/ % + cosw (5.5.12)

1 Sihw
1
2

O1(w) = —w + tan™ (5.5.13)

+ cosw

sin w

— 5.5.14
2 +cosw ( )

O (w) = —w+ tan™!




