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5.1.2 Steady-State and Transient Response to Sinusoidal
Input Signals

In the discussion in the preceding section, we determined the response of a lin-
car time-invariant system to exponential and sinusoidal input signals applied to the
system at n = —oo. We usually call such signals eternal exponentials or eternal si-
nusoids, because they were applied at n = —oo. In such a case, the response that we
observe at the output of the system is the steady-state response. There is no transient
response in this case.

On the other hand, if the exponential or sinusoidal signal is applied at some
finite time instant, say at n = 0, the response of the system consists of two terms,
the transient response and the steady-state response. To demonstrate this behavior,
let us consider, as an example, the system described by the first-order difference

equation
y(r) =ay(n —1) + x(n) (5.1.20)

This system was considered in Section 2.4.2. Tts response to any input x(n) applied
at n = 0 is given by (2.4.8) as

y) =a" My + Y dxn—k), nz0 (5.1.21)
k=0

where y(—1) is the initial condition.
Now, let us assume that the input to the system is the complex exponential

x(n) = Aelm, n>0 (5122)

applied at n = 0. When we substitute (5.1.22) into (5.1.21), we obtain

n
y(n) — an+1y(_1) + AZakejw("_k)
k=0

n
_an+1y(__1)+A Z(ae—jw)k ejwn
k=0

1— an+1e—jw(n+1)

="y + A el",  nz=0

Aan+1e—jw(n+1) ) A .
n+ly, 1y Jjon jon
=a" (=D 1—aeJ® ¢ +1—ae‘j‘”e ’ nz0
We recall that the system in (5.1.20) is BIBO stable if |a| < 1. In this case
the two terms involving a”t? in (5.1.23) decay toward zero as n approaches infinity.
Consequently, we are left with the steady-state response

= 1 - Jjon :
Yss(n) = lm y(n) = 7————5; (51.24)
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The first two terms in (5.1.23) constitute the transient response of the system,
that is,

n+1 —jow(n+1)
Aa" e jon

ye(n) = a"y(~1) - ., n=0

(5.1.25)

1 —~age-Jje

which decay toward zero as n approaches infinity. The first term in the transient
response is the zero-input response of the system and the second term is the transient
produced by the exponential input signal.

In general, all linear time-invariant BIBO systems behave in a similar fashion
when excited by a complex exponential, or by a sinusoid at n = 0 or at some other
finite time instant. That is, the transient response decays toward zero as n — oo,
leaving only the steady-state response that we determined in the preceding section.
In many practical applications, the transient response of the system is unimportant,
and therefore it is usually ignored in dealing with the response of the system to
sinusoidal inputs.

5.1.3 Steady-State Response to Periodic Input Signals

Suppose that the input to a stable linear time-invariant system is a periodic signal
x(n) with fundamental period N. Since such a signal exists from —co < n < 0o, the
total response of the system at any time instant » is simply equal to the steady-state
response.

To determine the response y(r) of the system, we make use of the Fourier series
representation of the periodic signal, which is

N-1

x(n) - Z CkejZHkn/N’
k=0

(5.1.26) -

where the {c,} are the Fourier series coefficients. Now the response of the system to
the complex exponential signal

xi(n) = cred /N

is

2 .
we(n) = ckH (—ng) e2/N k0,1, N1 (5.127)

where

27k
H(—;—;—'):H(w),w=2n’k/N, k=0,1,..., N—1

By using the superposition principle for linear systems, we obtain the response of the
system to the periodic signal x(n) in (5.1.26) as

N-1

2k .
y(n) = Z aH (———; )eﬂ”k”/N, —00 <1 < 00
k=0

(5.1.28)
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This result implies that the response of the system to the periodic input signal
x(n) is also periodic with the same period N. The Fourier series coefficients for y(n)

are
2nk

dkECkH<‘N_)s k=0,1,...,N—1 (5.1.29)
Hence, the linear system can change the shape of the periodic input signal by scaling
the amplitude and shifting the phase of the Fourier series components, but it does
not affect the period of the periodic input signal.

5.1.4 Response to Aperiodic Input Signals

The convolution theorem, given in (4.4.49), provides the desired frequency-domain
relationship for determining the output of an LTI system to an aperiodic finite-energy
signal. If {x(n)} denotes the input sequence, {y(n)} denotes the output sequence, and
{h(n)} denotes the unit sample response of the system, then from the convolution
theorem, we have

Y (@) = H()X (o) (5.1.30)

where Y(w), X(w), and H(w) are the corresponding Fourier transforms of {y(n)},
{x(n)}, and {h(n)}, respectively. From this relationship we observe that the spectrum
of the output signal is equal to the spectrum of the input signal multiplied by the
frequency response of the system.

If we express Y (w), H(w), and X (») in polar form, the magnitude and phase of -
the output signal can be expressed as

Y ()| = |H ()| X (w)] (5.1.31) -
XY (@) = %X (w) + X H(w) (5.1.32)

where |H (w)| and X H (w) are the magnitude and phase responses of the system.

By its very nature, a finite-energy aperiodic signal contains a continuum of fre-
quency components. The linear time-invariant system, through its frequency re-
sponse function, attenuates some frequency components of the input signal and am-
plifies other frequency components. Thus the system acts as a filferto the input signal.
Observation of the graph of |H ()| shows which frequency components are ampli-
fied and which are attenuated. On the other hand, the angle of H(w) determines the
phase shift imparted in the continuum of frequency components of the input signal
as a function of frequency. If the input signal spectrum is changed by the system in an
undesirable way, we say that the system has caused magnitude and phase distortion.

We also observe that the output of a linear time-invariant system cannot contain
frequency components that are not contained in the input signal. It takes either a
linear time-variant system or a nonlinear system to create frequency components
that are not necessarily contained in the input signal.

Figure 5.1.3 illustrates the time-domain and frequency-domain relationships that
can be used in the analysis of BIBO-stable LTI systems. We observe that in time-
domain analysis, we deal with the convolution of the input signal with the impulse
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Figure 5.1.3 Linear

Tlme'_ al}d frequency- x(n)  Input time-invariant Output  y(n) = h(n)+x(n)
dom'fnn input-output Xo) system T Yw) = Ho)X(@)
relationships in LTI systems. W(n), H(w)

response of the system to obtain the output sequence of the system. On the other
hand, in frequency-domain analysis, we deal with the input signal spectrum X (w) and
the frequency response H (w) of the system, which are related through multiplication,
to yield the spectrum of the signal at the output of the system.

We can use the relation in (5.1.30) to determine the spectrum Y () of the output
signal. Then the output sequence {y(n)} can be determined from the inverse Fourier
transform

y(n) = —1— /” Y(w)e!"dw (5.1.33)
27 Jn

However, this method is seldom used. Instead, the z-transform introduced in Chap-
ter 3 is a simpler method for solving the problem of determining the output sequence
{y(m}.

Let us return to the basic input-output relation in (5.1.30) and compute the
squared magnitude of both sides. Thus we obtain

Y (@)* = |H ()X (@)
(5.1.34)

Syy (@) = | H(@)[*Srx (@)

where Syx(w) and Sy, (o) are the energy density spectra of the input and output
signals, respectively. By integrating (5.1.34) over the frequency range (=7, 1), we
obtain the energy of the output signal as

1 m
Ey=—| Syy(w)dw
i (5.1.35)
1 big
= — | [H@Sx(w)do
2w J_p

EXAMPLES.1.5

A linear time-invariant system is characterized by its impulse response
1 n
h(n) = (5)'u(n)
2
Determine the spectrum and the energy density spectrum of the output signal when the system

is excited by the signal

1
x(n) = (Z)"u(n)
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Solution.  The frequency response function of the system

o0 1 ]
H(a)) — 2(5)718-—-](0!1
n=0

_ 1
C1- %e“f“’

Similarly, the input sequence {x(n)} has a Fourier transform

Hence the spectrum of the signal at the output of the system is

Y(w) = H(@)X (@)
1
(1 — Leioy(1 — Lemiw)

The corresponding energy density spectrum is

Syy(@) = Y (@)* = |H(@)*| X (@)
1

=73 7 _ 1
(3 —cosw)(3z — 7 COsS W)

5.2 Frequency Response of LTI Systems

In this section we focus on determining the frequency response of LTI systems that
have rational system functions. Recall that this class of LTI systems is described in
the time domain by constant-coefficient difference equations.

5.2.1 Frequency Response of a System with a Rational System
Function

From the discussion in Section 4.2.6 we know that if the system function H(z) con-
verges on the unit circle, we can obtain the frequency response of the system by
evaluating H(z) on the unit circle. Thus

(o]

H@) = H@lpio = ) h(n)e /" (52.1)

Re=—00
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In the case where H(z) is a rational function of the form H(z) = B(z)/A(z), we have

M

. B(w) _ k=0
H(w) = i) S ' (5.2.2)
1 Zake_"”k
k=1
M
1_[(1 — zge )
= byt (5.2.3)

0——‘—‘N .
[ 1A - pre?)
k=1

where the {a;} and {b;} are real, but {z;} and {pz} may be complex valued.
It is sometimes desirable to express the magnitude squared of H () in terms of
H (7). First, we note that
|H (@) = H(@)H* ()

For the rational system function given by (5.2.3), we have

M
[]a —zze/)
H*(@) = by (5.2.4)

[]a - pie’
k=1

It follows that H*(w) is obtained by evaluating H*(1/z*) on the unit circle, where
for a rational system function,

M
l_[(l —232)
H*(1/2*) = by "= — (5.2.5)

I—[(l - pr2)

k=1
However, when {h(n)} is real or, equivalently, the coefficients {a;} and {b;} are
real, complex-valued poles and zeros occur in complex-conjugate pairs. In this case,
H*(1/z*) = H(z™!). Consequently, H*(w) = H(—w), and
|H(@)* = H)H* () = H@)H(~0) = H@QH @ Y|,_o (5.2.6)

According to the correlation theorem for the z-transform (see Table 3.2), the
function H(z)H(z™!) is the z-transform of the autocorrelation sequence {ry;,(m)}
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of the unit sample response {#(n)}. Then it follows from the Wiener—-Khintchine
theorem that |H (w)|? is the Fourier transform of {ry,(m)}.

Similarly, if H(z) = B(z)/A(z), the transforms D(z) = B(z)B(z™%) and C(z) =
A(2)A(z™1) are the z-transforms of the autocorrelation sequences {c;} and {d;}, where

N—|l|
= Z R4, —-N<I<N (527)
k=0

M-l
d = bibiy, -M<i<M (5.2.8)
k=0

Since the system parameters {a;} and {b;} are real valued, it follows that ¢; = ¢
and d; = d_;. By using this symmetry property, | H (w)[> may be expressed as

M

dy +22dk coskw
k=1
N

co + Zch cos kw
k=1

|H()]* =

Finally, we note that cos kw can be expressed as a polynomial function of cosw.
That is,

k
coskw =Y Bn(cosw)” (5.2.10)

m==0

where {8,,} are the coefficients in the expansion. Consequently, the numerator and
denominator of |H(w)|? can be viewed as polynomial functions of cosw. The fol-
lowing example illustrates the foregoing relationships. ‘

EXAMPLE 5.2.1

Determine |H (w)[? for the system
yn) = —-01lyn— 1) +02y(n —2) +x(n) + x(n — 1)
Selution.  The system function is

142z1

H -
@ = 1T = 022

and its ROC s |z| > 0.5. Hence H(w) exists. Now

142771 ' 147z
14+01z71—-02z72 14+01z-0272

H@HE ™ =

3 24742771
T 1.05 + 008(z+2z1H—02(z2+2z72)
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By evaluating H (z)H (z™!) on the unit circle, we obtain

2+ 2cosw
Hw)? =
IH(@) 1.05 + 0.16 cosw — 0.4 cos 2w

However, cos 2w = 2 cos? @ — 1. Consequently, |H (w)|* may be expressed as

2(1 + cos w)
H@)P? =
H @ = 15 076 cosw — 0.8 008 @

We note that given H(z), it is straightforward to determine H (z71) and then
|H (w)|?. However, the inverse problem of determining H (z), given |H (w)|? or the
corresponding impulse response {k(n)}, is not straightforward. Since |H (w)|? does
not contain the phase information in H(w), it is not possible to uniquely determine
H(z).

To elaborate on the point, let us assume that the N poles and M zeros of H(z)
are {p:} and {z;}, respectively. The correéponding poles and zeros of H (z7Y) are
{1/pi) and {1/z;}, respectively. Given |H(w)|* or, equivalently, H(z2)H @1, we
can determine different system functions H(z) by assigning to H(z), a pole py or
its reciprocal 1/p;, and a zero z or its reciprocal 1/z;. For example, if N =2 and
M =1, the poles and zeros of H(z)H (z™') are {p1, p2, 1/p1, 1/p2} and {z1,1/z1}. If
p1 and p, are real, the possible poles for H(z) are {p1, p2}, (1/p1. 1/ p2}, {1, 1/ P2},
and {p, 1/p1} and the possible zeros are {z1} or {1/z1}. Therefore, there are eight
possible choices of system functions, all of which result in the same |H (w)|?. Even if
we restrict the poles of H(z) to be inside the unit circle, there are still two different
choices for H(z), depending on whether we pick the zero {z1} or {1/z1}. Therefore,
we cannot determine H (z) uniquely given only the magnitude response |H(w)].

5.2.2 Computation of the Frequency Response Function

In evaluating the magnitude response and the phase response as functions of fre-
quency, it is convenient to express H(w) in terms of its poles and zeros. Hence we
write H(w) in factored form as

M
1_[(1 — zre Ik

H(w) = by (5.2.11)
[T1a = pee™h

k=1

or, equivalently, as

M .
H(e/w - Zr)
H(w) = bpeloW-mE L (5.2.12)

N .
[ [ —po
k=1




318 Chapter 5 Frequency-Domain Analysis of LTI Systems
Let us express the complex-valued factors in (5.2.12) in polar form as

eja) - =V (w)ej@k(w) (5213)

e? — pr = Up(w)e! 2@ (5.2.14)

Vi(w) = 1e/? — zi],  Oplw) = £(e/° — ) (5.2.15)

Ur(w) =1/ — prl,  Or(w) = £(e® — p) (5.2.16)

The magnitude of H(w) is equal to the product of magnitudes of all terms in
(5.2.12). Thus, using (5.2.13) through (5.2.16), we obtain

_ Vi(w) - Viy(w)
|H ()] = |bo] U1 U@ - Un @ (5.2.17)

since the magnitude of e/*W—M) js 1.

The phase of H(w) is the sum of the phases of the numerator factors, minus the
phases of the denominator factors. Thus, by combining (5.2.13) through (5.2.16), we
have

X H(w) = Xby+ (N — M)+ 01(w) + O2(w) + - -+ + Opy(w)

(52.18)
— [®1(@) + P2(w) + - - + Pn ()]

The phase of the gain term by is zero or 7, depending on whether by is positive or
negative. Clearly, if we know the zeros and the poles of the system function H(z),
we can evaluate the frequency response from (5.2.17) and (5.2.18).

There is a geometric interpretation of the quantities appearing in (5.2.17) and
(5.2.18). Let us consider a pole p; and a zero z; located at points A and B of the
z-plane, as shown in Fig. 5.2.1(a). Assume that we wish to compute H(w) at a specific
value of frequency w. The given value of w determines the angle of /¢ with the
positive real axis. The tip of the vector e/ specifies a point L on the unit circle.
The evaluation of the Fourier transform for the given value of w is equivalent to
evaluating the z-transform at the point L of the complex plane. Let us draw the
vectors AL and BL from the pole and zero locations to the point L, at which we wish
to compute the Fourier transform. From Fig. 5.2.1(a) it follows that

CL =CA + AL

and
CL = CB + BL

However, CL = ¢/, CA = p; and CB = z;. Thus

AL = ¢/ — p (5.2.19)
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and
BL =¢/% — 7 (5.2.20)

By combining these relations with (5.2.13) and (5.2.14), we obtain

AL = &% — pp = Up(w)e/ @ (5.2.21)
(5.2.22)

BL = ¢/? — 74 = Vi (w)e/%*@

Thus Uy (w) is the length of AL, that is, the distance of the pole p; from the point

(5.2.19) L corresponding to e/, whereas V() is the distance of the zero z; from the same
P g
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Im(z)

%

Unit circle

/ﬁ
X
P <I>k(w)

\C | 1 RC(Z)

(a)

Im(z)

N

®

BL = ¢/¥ — 7 (5.2.20)
By combining these relations with (5.2.13) and (5.2.14), we obtain

AL = ¢/® — pp = Up(w)e! %@ (5.2.21)
BL = /% — 73 = Vi (w)e/ %@ (5.2.22)

Thus Ui (w) is the length of AL, that is, the distance of the pole p; from the point
L corresponding to e/?, whereas Vi (w) is the distance of the zero z; from the same
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Unit circle

Figure 5.2.2

A zero on the unit circle
causes [H(w)| = 0 and
w = Xzp. In contrast, a
pole on the unit circle
results in |H(w)] = oo at
@ = X pg.

point L. The phases ®(w) and O (w) are the angles of the vectors AL and BL
with the positive real axis, respectively. These geometric interpretations are shown
in Fig. 5.2.1(b).

Geometric interpretations are very useful in understanding how the location of
poles and zeros affects the magnitude and phase of the Fourier transform. Suppose
that a zero, say z;, and a pole, say py, are on the unit circle as shown in Fig. 5.2.2.
We note that at w = X.zx, Vi(w) and consequently | H (w)| become zero. Similarly, at
w = X py the length Uy (») becomes zero and hence | H (w)| becomes infinite. Clearly,
the evaluation of phase in these cases has no meaning.

From this discussion we can easily see that the presence of a zero close to the unit
circle causes the magnitude of the frequency response, at frequencies that correspond
to points of the unit circle close to that point, to be small. In contrast, the presence of
a pole close to the unit circle causes the magnitude of the frequency response to be
large at frequencies close to that point. Thus poles have the opposite effect of zeros.
Also, placing a zero close to a pole cancels the effect of the pole, and vice versa. This
can be also seen from (5.2.12), since if zz = py, the terms e/ — z; and e/® — p;
cancel. Obviously, the presence of both poles and zeros in a transform results in a
greater variety of shapes for |H (w)| and X H (w). This observation is very important
in the design of digital filters. We conclude our discussion with the following example
illustrating these concepts.

EXAMPLES.2.2

Evaluate the frequency response of the system described by the system function

1 z
H@ =087~ 7"03

Solution.  Clearly, H(z) has a zero at z = 0 and a pole at p = 0.8. Hence the frequency
response of the system is
el®

Her= 08
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Magnitude and -7 F ‘ , . 1
phase of system with ~7 I 0 7 7
H(z) =1/(1 — 0.8z71). 2 2

The magnitude response is

le/®| 1

le/* —08] /164 —16cos0

[H ()] =

and the phase response is
sinw

—_y -1 __ 2%
f(@) = o —tan cosw — 0.8

The magnitude and phase responses are illustrated in Fig. 5.2.3. Note that the peak of the
magnitude response occurs at @ = 0, the point on the unit circle closest to the pole located
at 0.8.

If the magnitude response in (5.2.17) is expressed in decibels,

M N

|H (@)laz = 2010g;q lbol +20 Y logyg Vi(@) — 20> log;o U(w) (5.2.23)
k=1 k=1

Thus the magnitude response is expressed as a sum of the magnitude factors in
|H (w)].

5.3 Correlation Functions and Spectra at the Output of LTI
Systems

In this section, we derive the spectral relationships between the input and output
signals of LTI systems. Section 5.3.1 describes the relationships for the energy density
spectra of deterministic input and output signals. Section 5.3.2 is focused on the
relationships for the power density spectra of random input and output signals.
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5.3.1 Input-Output Correlation Functions and Spectra

In Section 2.6.4 we developed several correlation relationships between the input
and the output sequences of an LTI system. Specifically, we derived the following
equations:

ryy(m) = rpp(m) * ryy(m) (531)
ryx(m) = h(m) * Fyx (M) (532)

where r,, (m) is the autocorrelation sequence of the input signal {x(n)}, r,,(m) is the
autocorrelation sequence of the output {y(n)}, rz, (m) is the autocorrelation sequence
of the impulse response {4(n)}, and r,, (m) is the crosscorrelation sequence between
the output and the input signals. Since (5.3.1) and (5.3.2) involve the convolution
operation, the z-transform of these equations yields

Syy(R) = Sun(2)Sxx(2)
= H(Z)H(Z._l)sxx @)
Syx(Z) = H(2)8:x(2)

If we substitute z = ¢/ in (5.3.4), we obtain

Syx (a)) = H(w)Sxx (w)
(5.3.5)
= H(w)|X (w)[*

where Sy, (w) is the cross-energy density spectrum of {y(n)} and {x(n)}. Similarly,
evaluating Sy, (z) on the unit circle yields the energy density spectrum of the output
signal as

Syy(@) = |H(@)* Syx (@) (5.3.6)

where S, (w) is the energy density spectrum of the input signal.
Since ry,(m) and S,,(w) are a Fourier transform pair, it follows that

1 (7 ;
ryy(m) = E,/ Syy(w)e! " dew
—T

The total energy in the output signal is simply

1 w
E, = 2—;/; Syy(w)dw = 1y, (0)

= -—}— " [H(Cl))|2 Sxx(w)dw
27 J_ o

The result in (5.3.8) may be used to easily prove that E, > 0.
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Finally, we note that if the input signal has a flat spectrum [i.e., Sy, (w) = S, =
constant for 7 < w < —n], (5.3.5) reduces to

Sy (@) = H(w)S, (53.9)
where S, is the constant value of the spectrum. Hence
1
H(@) = =Sy (@) (5.3.10)
or, equivalently,
1
h(n) = 5 Fyx (M) (5.3.11)

The relation in (5.3.11) implies that A(n) can be determined by exciting the input to
the system by a spectrally flat signal {x(n)}, and crosscorrelating the input with the
output of the system. This method is useful in measuring the impulse response of an
unknown system.

5.3.2 Correlation Functions and Power Spectra for Random Input
Signals

This development parallels the derivations in Section 5.3.1, with the exception that
we now deal with the statistical mean and autocorrelation of the input and output
signals of an LTT system.

Let us consider a discrete-time linear time-invariant system with unit sample
response {h(n)} and frequency response H(f). For this development we assume
that {A(n)} is real. Let x(n) be a sample function of a stationary random process
X (n) that excites the system and let y(n) denote the response of the system to x(n).

From the convolution summation that relates the output to the input we have

o0

y) = > hk)x(n — k) (5.3.12)

k=—00

Since x(n) is a random input signal, the output is also a random sequence. In other
words, for each sample sequence x(n) of the process X(n), there is a correspond-
ing sample sequence y(n) of the output random process Y (n). We wish to relate
the statistical characteristics of the output random process Y(n) to the statistical
characterization of the input process and the characteristics of the system.

The expected value of the output y(n) is

o0

my = E[ym]=E[ Y hk)x(n - k)]
k=—00
= Y h(k)E[x(n —b)] (5.3.13)
k=—c0

My = iy Z h(k)

k=—00
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From the Fourier transform relationship

H(w) = Z h(k)e /@ (5.3.14)

k=—o00

we have

HO) = Y hk) (5.3.15)
k=—00

which is the dc gain of the system. The relationship in (5.3.15) allows us to express
the mean value in (5.3.13) as
my = m, H(0) (5.3.16)

The autocorrelation sequence for the output random process is defined as

Yyy(m) = E[y*(n)y(n +m)]

o0

=E| Y hx*n—k) Y h(Dx@+m— j)

k=—00 Jj=—00

w0 oo (5.3.17)
>0 > rBRGEX (n — Bx(n +m — )]

k=—00 j=—00

= 3 Y @Gyt — j +m)

k=—00 j==00

This is the general form for the autocorrelation of the output in terms of the auto-
correlation of the input and the impulse response of the system.
A special form of (5.3.17) is obtained when the input random process is white,
that 1s, when m, = 0 and
Yar (M) = 028 (m) (5.3.18)

where 02 = y,,(0) is the input signal power. Then (5.3.17) reduces to

[ee]

Vyy(m) =2 3" h(h(k +m) (5.3.19)

k=—o00
Under this condition the output process has the average power
o0 172
Vyy(0) = o Z R*(n) = o / o |H(f)%df (5.3.20)
A=—00 -1/

where we have applied Parseval’s theorem.




