pulse is expanded (compressed) in time, its transform is compressed (expanded) in frequency. This behavior, between the time function and its spectrum, is a type of uncertainty principle that appears in different forms in various branches of science and engineering.

Finally, the energy density spectrum of the rectangular pulse is

$$S_{xx}(F) = (A\tau)^2 \left(\frac{\sin \pi F \tau}{\pi F \tau}\right)^2 \tag{4.1.46}$$

4.2 Frequency Analysis of Discrete-Time Signals

In Section 4.1 we developed the Fourier series representation for continuous-time periodic (power) signals and the Fourier transform for finite energy aperiodic signals. In this section we repeat the development for the class of discrete-time signals.

As we have observed from the discussion of Section 4.1, the Fourier series representation of a continuous-time periodic signal can consist of an infinite number of frequency components, where the frequency spacing between two successive harmonically related frequencies is $1/T_p$, and where T_p is the fundamental period. Since the frequency range for continuous-time signals extends from $-\infty$ to ∞ , it is possible to have signals that contain an infinite number of frequency components. In contrast, the frequency range for discrete-time signals is unique over the interval $(-\pi, \pi)$ or $(0, 2\pi)$. A discrete-time signal of fundamental period N can consist of frequency components separated by $2\pi/N$ radians or f = 1/N cycles. Consequently, the Fourier series representation of the discrete-time periodic signal will contain at most N frequency components. This is the basic difference between the Fourier series representations for continuous-time and discrete-time periodic signals.

4.2.1 The Fourier Series for Discrete-Time Periodic Signals

Suppose that we are given a periodic sequence x(n) with period N, that is, x(n) = x(n+N) for all n. The Fourier series representation for x(n) consists of N harmonically related exponential functions

$$e^{j2\pi kn/N}$$
, $k = 0, 1, ..., N-1$

and is expressed as

$$x(n) = \sum_{k=0}^{N-1} c_k e^{j2\pi kn/N}$$
 (4.2.1)

where the $\{c_k\}$ are the coefficients in the series representation.

To derive the expression for the Fourier coefficients, we use the following formula:

$$\sum_{n=0}^{N-1} e^{j2\pi kn/N} = \begin{cases} N, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$$
 (4.2.2)

(narrower) and more 1.9. Thus as the signal

Note the similarity of (4.2.2) with the continuous-time counterpart in (4.1.3). The proof of (4.2.2) follows immediately from the application of the geometric summation formula

$$\sum_{n=0}^{N-1} a^n = \begin{cases} N, & a = 1\\ \frac{1-a^N}{1-a}, & a \neq 1 \end{cases}$$
 (4.2.3)

The expression for the Fourier coefficients c_k can be obtained by multiplying both sides of (4.2.1) by the exponential $e^{-j2\pi ln/N}$ and summing the product from n=0 to n=N-1. Thus

$$\sum_{n=0}^{N-1} x(n)e^{-j2\pi ln/N} = \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} c_k e^{j2\pi (k-l)n/N}$$
(4.2.4)

If we perform the summation over n first, in the right-hand side of (4.2.4), we obtain

$$\sum_{n=0}^{N-1} e^{j2\pi(k-l)n/N} = \begin{cases} N, & k-l = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$$
 (4.2.5)

where we have made use of (4.2.2). Therefore, the right-hand side of (4.2.4) reduces to Nc_l and hence

$$c_l = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j2\pi l n/N}, \qquad l = 0, 1, \dots, N-1$$
 (4.2.6)

Thus we have the desired expression for the Fourier coefficients in terms of the signal x(n).

The relationships (4.2.1) and (4.2.6) for the frequency analysis of discrete-time signals are summarized below.

Frequency Analysis of Discrete-Time Periodic Signals

Synthesis equation	$x(n) = \sum_{k=0}^{N-1} c_k e^{j2\pi kn/N}$	(4.2.7)
Analysis equation	$c_k = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j2\pi kn/N}$	(4.2.8)

Equation (4.2.7) is often called the discrete-time Fourier series (DTFS). The Fourier coefficients $\{c_k\}$, $k=0,1,\ldots,N-1$ provide the description of x(n) in the frequency domain, in the sense that c_k represents the amplitude and phase associated with the frequency component

$$s_k(n) = e^{j2\pi kn/N} = e^{j\omega_k n}$$

where $\omega_k = 2\pi k/N$.

N. H coeffi-

There tende

that is of a si N. Cc compl A attent since $0 \le a -\pi < i$ inconv $0 \le k$

EXAM Detern

(a) x(

(b) x(

(c) x(

Solutio

(a) Fo pe the

(b) In (4.

rt in (4.1.3). The netric summation

(4.2.3)

ed by multiplying the product from

(4.2.4)

ide of (4.2.4), we

(4.2.5)

of (4.2.4) reduces

(4.2.6)

erms of the signal

s of discrete-time

ies (DTFS). The on of x(n) in the phase associated

We recall from Section 1.3.3 that the functions $s_k(n)$ are periodic with period N. Hence $s_k(n) = s_k(n+N)$. In view of this periodicity, it follows that the Fourier coefficients c_k , when viewed beyond the range k = 0, 1, ..., N-1, also satisfy a periodicity condition. Indeed, from (4.2.8), which holds for every value of k, we have

$$c_{k+N} = \frac{1}{N} \sum_{n=0}^{N-1} x(n)e^{-j2\pi(k+N)n/N} = \frac{1}{N} \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N} = c_k$$
 (4.2.9)

Therefore, the Fourier series coefficients $\{c_k\}$ form a periodic sequence when extended outside of the range k = 0, 1, ..., N - 1. Hence

$$c_{k+N} = c_k$$

that is, $\{c_k\}$ is a periodic sequence with fundamental period N. Thus the spectrum of a signal x(n), which is periodic with period N, is a periodic sequence with period N. Consequently, any N consecutive samples of the signal or its spectrum provide a complete description of the signal in the time or frequency domains.

Although the Fourier coefficients form a periodic sequence, we will focus our attention on the single period with range $k=0,1,\ldots,N-1$. This is convenient, since in the frequency domain, this amounts to covering the fundamental range $0 \le \omega_k = 2\pi k/N < 2\pi$, for $0 \le k \le N-1$. In contrast, the frequency range $-\pi < \omega_k = 2\pi k/N \le \pi$ corresponds to $-N/2 < k \le N/2$, which creates an inconvenience when N is odd. Clearly, if we use a sampling frequency F_s , the range $0 \le k \le N-1$ corresponds to the frequency range $0 \le F < F_s$.

EXAMPLE 4.2.1

Determine the spectra of the signals

- (a) $x(n) = \cos \sqrt{2\pi}n$
- **(b)** $x(n) = \cos \pi n/3$
- (c) x(n) is periodic with period N = 4 and $x(n) = \{1, 1, 0, 0\}$

Solution

- (a) For $\omega_0 = \sqrt{2}\pi$, we have $f_0 = 1/\sqrt{2}$. Since f_0 is not a rational number, the signal is not periodic. Consequently, this signal cannot be expanded in a Fourier series. Nevertheless, the signal does possess a spectrum. Its spectral content consists of the single frequency component at $\omega = \omega_0 = \sqrt{2}\pi$.
- **(b)** In this case $f_0 = \frac{1}{6}$ and hence x(n) is periodic with fundamental period N = 6. From (4.2.8) we have

$$c_k = \frac{1}{6} \sum_{n=0}^{5} x(n)e^{-j2\pi kn/6}, \qquad k = 0, 1, \dots, 5$$