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Fourier Transform 11

where
To/2

6 = | gyexp(=jonpydr (1.27)
—To/2
Suppose we now let the period Ty approach infinity, or equivalently its reciprocal
Af approach zero. Then, we find that, in the limit, the discrete frequency f, ap-
proaches the continuous frequency variable f, and the discrete sum in Eq. (1.26)
becomes an integral defining the area under a continuous function of frequency f,
namely, G(f)exp(j2nft). Also, as T, approaches infinity, the function g,()
approaches g(t). Therefore, in the limit, Egs. (1.26) and (1.27) become, respectively,

g(t) = [~ G(f)exp(j2nft)df (1.28)
where "
60N = | gwexs(=upir (1.29)

We have thus achieved our aim of representing an-arbitrarily defined signal g(t)
in terms of exponential functions over the entire interval (—oo < ¢ < co0). Note
that in Eqgs. (1.28) and (1.29) we have used a lowercase letter to denote the time
function and an uppercase letter to denote the corresponding frequency function.

Equation (1.29) states that, given a time function g(¢), we can determine a
new function G(f) of the frequency variable f. Equation (1.28) states that, given
this new or transformed function G(f), we can recover the original time function
g(t). Thus, since from g(t) we can define the function G(f) and from G(f) we
can reconstruct g(t), the time function is also specified by G(f). The function G(f)
can be thought of as a transformed version of g(¢) and is referred to as the Fourier
transform of g(t). The time function g(z) is similarly referred to as the inverse Fourier
transform of G(f). The functions g(t) and G(f) are said to constitute a Fourier
transform pair, and one is called the mate of the other.*

For a signal g(¢) to be Fourier transformable, it is sufficient that g(¢) satisfies
Dirichlet’s conditions:

1. The function g(t) is single-valued, with a finite number of maxima and minima

and a finite number of discontinuities in any finite time interval.
2. The function g(t) is absolutely integrable, that is,

fw 9@)d < o0

* For an extensive list of Fourier transform pairs, see G. A. Campbell and R. M. Foster, Fourier Integrals
for Practical Applications (Van Nostrand, 1948).




Property 1  Linearity (Superposition)

Let g(t) =G (f) and g,(t) = G,(f). Then for all constants a and b, we have

ag(t) + bgx(1) =aG,(f) + bG,(f) (141)
The proof of this property follows simply from the linearity of the integrals

defining G(f) and g(1).

Table 1.1 Summary of Properties of the Fourier Transform

Property Mathematical Description
1. Linearity ag((t) + bg,(t) =aG,(f) + bG,(f)
where a and b are constants
. : v (f
2. Time scaling glat)y=— G| =
lal \a
where a is a constant
3. Duality If g(t) = G(f),
then G(t)=g(—f)
4. Time shifting g(t — to) = G(f)exp(—j27nft,)
5. Frequency shifting exp(j2nf.)g(t) = G(f — f.)
6. Area under g(t) f g(Hdt = G(0)
7. Area under G( f). g(0) = J- G(f)df
8. Differentiation in the time domain n g()==j2nf G(f)
G2t gt) <----> d G(f)
9, Differentiation in the frequency domain .
df
10. Conjugate functions If g(t) = G(f),
then  g*()=G*(-f)
11. Multiplication in the time domain  g,(t)g,(t) = f G,(DG,(f — AdA
12. Convolution in the time domain f g1(7)g,(t — t)dt = G{(f)G,(f).

Parseval's Theorem area under |g(t)|*2 = area under |G(f)|"2
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Let g.(t) == G,(f) and g,(t) = G,(f). Then

[ 01000 = D =6,(16:9) (189)

This result follows directly by combining Property 3 (duality) and Property 11
(time-domain multiplication). We may thus state that the convolution of two signals
in the time domain is transformed into the multiplication of their individual Fourier
transforms in the frequency domain.

Example 17

Consider the convolution of the rectangular pulse 4 rect(t/T) with itself. As illustrated in
Fig. 1.17, the result of this convolution process is a triangular pulse of duration 2T and ampli-
tude 42T, centered at ¢t = 0. Because the Fourier transform of the rectangular pulse is equal to
AT sinc(f T), it follows from Property 12 that the Fourier transform of the triangular pulse of
Fig. 1.17(c) is equal to A*>T? sinc*(f'T). Except for a change in the scaling factor, this result is
exactly the same as that obtained in Example 14.

In Table 1.2 we have collected for reference a number of basic Fourier transform
pairs derived in this section and the previous one.

Table 1.2 Fourier Transform Pairs.

Time Function Fourier Transform
t . .
rect(—) ‘ T sinc(f T)
T
inc(QWt L t /
sincQWt) W rec W
(~atu(®),  a>0 —
exp(—at)u(t), a e
exp(—nt?) exp(—nf?)
t
1-— |—T|’ |t|< T
T sinc*(f T)
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Equation (1.131) states that the Fourier transform of a periodic train of delta func
spaced T, seconds apart, consists of another set of delta functions scaled by the factor 1/7,
regularly spaced 1/T; hertz apart along the frequency axis as in Fig. 1.30(b). In the special
of the period T, equal to 1 second, a periodic train of delta functions is, like a Gaussian ¢
its own transform.

In Table 1.3, we have collected for reference the Fourier transforms of the vari
finite-power signals considered in this section.

Table 1.3 Fourier Transforms of Finite-
Power Signals

Time Function " Fourier Transform

o(t) ‘ 1

1 o(f)

5(t — to) exp(—j2nfto)

exp(j2nf, 1) 5(f =1

cos(2nf, 1) L6Cf — f) + o(f + £)]
1

sin(2nf, 1) % [6(f — fo) — 6(f + fI]

sgn(t) l—

& i

L —j sgn(f)

it

(1) 85(f) + ﬁ%

oo 1 o
=Z_w5(t — nTy) T Z (3(f— ?0)

n 0 n=-c






