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Abstract—This work considers a commonly encountered wire-
less transmission scenario. The base station s would like to
send two independent packet streams to clients d1 and d2,
respectively. For each time slot, only one of the three nodes
{s, d1, d2} can transmit a packet and the packet will be heard
by a random subset of the other two nodes. We are interested
in the corresponding capacity region (R∗

1, R
∗
2). Such a setting

can also be viewed as allowing receiver coordination for the s-to-
{d1, d2} broadcast erasure channel with a critical feature that
any coordination/transmission between d1 and d2 also takes away
the precious time resources from s.

With the exclusive focus on linear network coding (LNC)
with causal packet acknowledgement feedback, this work char-
acterizes the exact LNC capacity region with arbitrary security
requirement, i.e, the system designer can decide for each di,
respectively, whether the corresponding (s, di)-flow needs to be
secure or not. The results show that for any channel parameters
and any security requirement, the LNC capacity can always
be achieved either by the XOR-in-the-air LNC scheme, or by
random LNC, or by time-sharing between the two.

I. INTRODUCTION

The seminal paper [1] has proven that under a theoretic

model, linear network coding (LNC) can achieve the network

capacity of the single multicast traffic, previously not attain-

able by any non-coding solutions. On the system side, recent

testbed implementation of wireless LNC in a local neigh-

borhood [2]–[5] has also demonstrated substantial throughput

gain over the traditional 802.11 protocols. Despite the above

promising results, there are several issues that hamper the

transition of LNC from a theoretical technique to a full-fledged

practical wireless networking solution.

Issue 1: Many theoretic results consider only one multicast

flow in the network, while in practice that there are often

multiple coexisting unicast flows. Issue 2: a widely used

channel model is the point-to-point noiseless channel, while a

more realistic/practical wireless setting is the broadcast packet

erasure channel (PEC) for which a packet may be heard

simultaneously by multiple nodes but sometimes may also get

lost (erased). Issue 3: Causal feedback is often not considered

in the theory side since it further complicates the analysis.

For the system side, causal packet ACKnowledgement (ACK)

has always been one of the most basic mechanisms of com-

munication networks. In fact, all the wireless LNC testbed

implementations [2]–[5] are based on ingenious use of ACK

to capture the diversity of the wireless channels.

There are many works that address these issues. E.g., [6]

characterizes the single-multicast capacity of erasure networks

with or without ACK, which effectively solves issues 2 and 3.

The first capacity result that takes into account all three issues

is [7], which characterizes the broadcast PEC capacity region

with ACK. Some subsequent results consider the settings of

K > 2 receivers [8], [9], degraded messages [10], concurrently

secure capacity [11], multi-input broadcast PECs [12], and

the generalizations to the XOR-in-the-air principle [13], line

networks [14], and the symmetric proximity networks [15].

Along a similar line of the above results, this work considers

the following new setting. Source s would like to send

two independent packet streams to destinations d1 and d2,

respectively. For each time slot, only one of the three nodes

{s, d1, d2} can transmit a packet and the packet will be heard

by a random subset of the other two nodes, which is modeled

by a broadcast PEC. Such a setting can also be viewed as

allowing receiver coordination for the s-to-{d1, d2} broadcast

PEC with a critical feature that any coordination/transmission

between d1 and d2 also takes away the precious time resources

from s. This setting closely models the scenario in which two

Wi-Fi clients are downloading different files from a common

Wi-Fi router. The clients can communicate with each other if

desired, but any client-to-client communication will disrupt

the router-to-client communication due to the half-duplex

and the Carrier-Sensing Multiple Access (CSMA) constraints.

The question to be answered in this work is what is the
optimal way of exploiting the ability of client-to-client Wi-Fi
communications.

With the exclusive focus on linear network coding (LNC)

with causal ACK, this work characterizes the exact LNC

capacity region with arbitrary security requirement, i.e, the

system designer can decide for each di, respectively, whether

the corresponding (s, di)-flow needs to be secure or not. Our

main results can be summarized as follows. For any arbitrary

broadcast PEC parameters and arbitrary security requirement,

the LNC capacity can be achieved either by the XOR-in-the-

air scheme [7], [11], or by random LNC (RLNC) [6], or by

time-sharing between the two.

II. PROBLEM FORMULATION

Consider a network of 3 nodes s, d1, and d2, see Fig. 1(a),

and assume slotted transmission. Within a total time budget
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Fig. 1. Erasure network models and illustration of the existing capacity results.

of n time slots, s would like to send n · Ri packets Wi
Δ
=

(Wi,1, · · · ,Wi,nRi) to di for i ∈ {1, 2}. Each packet Wi,l, l =
1, · · · , nRi, is chosen independently and uniformly randomly

from a finite field GF(q).

For any time slot t ∈ [n]
Δ
= {1, · · · , n}, consider a random

4-dimensional channel state information (CSI) vector:

Z(t) =(Zs→d1(t), Zs→d2(t), Zd1→d2(t), Zd2→d1(t)) ∈ {∗, 1}4

where “∗” and “1” represent erasure and successful reception,

respectively. That is, Zs→di(t) = 1 means that di will receive

Ys→di(t) = Xs(t), where Xs(t) ∈ GF(q) is the packet sent

by s at time t. The other case Zs→di(t) = ∗ means that di
will receive Ys→di(t) = ∗, an erasure. Since we allow receiver

coordination, we use Zdi→dj (t) to denote whether the packet

Xdi(t) ∈ GF(q) sent by di can be heard by dj . For simplicity,

for any distinct nodes u ∈ {s, d1, d2} and1 v ∈ {d1, d2}, we

use Yu→v(t) = Xu(t)◦Zu→v(t) as shorthand. We also assume

Z(t) being independent of W1 and W2.

For any time t, we assume that only one of {s, d1, d2} can

transmit. We use σ(t) ∈ {s, d1, d2} to denote the scheduling
decision at time t. For convenience, when a node u is not

scheduled at time t, we simply set Yu→v(t) = ∗ for any

possible receiver v. As a result, the σ(t) can be incorporated

into the following expression of Yu→v(t):

Yu→v(t) = Xu(t) ◦ Zu→v(t) ◦ 1{σ(t)=u}.

We assume that the PECs in the network (Fig. 1(a)) are

memoryless and stationary. We use pi
Δ
= Prob(Zs→di(t) = 1)

to denote the probability that Xs(t) is heard by di and use

p1∨2
Δ
= Prob(∃i ∈ {1, 2}, Zs→di

(t) = 1) to denote the

probability that Xs(t) is heard by at least one of {d1, d2}.

If the broadcast PEC is spatially independent (see [9] for

discussion), then p1∨2 = 1 − (1 − p1)(1 − p2). Throughout

this paper, we do not assume spatial independence. We only

require “max(p1, p2) ≤ p1∨2 ≤ p1 + p2” for consistence. For

1We implicitly assume that a packet sent by di will never arrive at s. The
reason is that since source s has all the packets to begin with, even if s
receives some packets from di, s can simply discard those packets without
affecting the overall throughput.

the di-to-dj channel, we define pi→j
Δ
= Prob(Zdi→dj = 1).

We use brackets [·]t1 to denote the collection from time 1 to t.

For example, [Z, Ys→d2 ]
t
1

Δ
= {Z(τ), Ys→d2(τ) : ∀τ ∈ [1, t]}.

Given the traffic load (R1, R2), a network code is defined

by n scheduling decision functions

∀t ∈ [n], σ(t) = fσ,t([Z]
t−1
1 ), (1)

3n encoding functions at s, d1, and d2, respectively: For all

t ∈ [n], i ∈ {1, 2}, and j ∈ {1, 2}\i,
Xs(t) = fs,t(σ(t),W1,W2, [Z]

t−1
1 ) (2)

Xdi
(t) = fdi,t(σ(t), [Ys→di

, Ydj→di
,Z]t−1

1 ), (3)

and 2 decoding functions at d1 and d2, respectively:

Ŵi = fdi([σ, Ys→di , Ydj→di ,Z]
n
1 ) for all distinct i, j. (4)

Eq. (1) implies that the scheduling decision at time t is based

on the network-wide CSI in time 1 to (t−1). A network code

is linear if (2) and (3) can be written as

Xs(t) = (W1,W2,V) · cTs,t
and Xdi(t) = (W1,W2,V) · cTdi,t,

where V is an nseed-dimensional row vector in GF(q) of

which each coordinate is a “seed” independently and uni-

formly randomly generated at source s that is unknown to

d1 and d2 unless being communicated. cs,t and cdi,t are

(nR1 + nR2 + nseed)-dimensional row vectors in GF(q), also

termed the global coding vectors (GCVs), and cTs,t and cTdi,t

are the corresponding transpose. For the input/output consis-

tence, we require cdi,t being in the linear span of the GCVs of

the received packets [Ys→di , Ydj→di ]
t−1
1 . The LNC designer

can choose the GCVs cs,t and cdi,t based on the current

scheduling σ(t) and the past CSI [Z]t−1
1 . The introduction

of the random seed packets in V is to encompass the design

of any one-time pad encryption under the general umbrella of

LNC designs. The value of nseed can be chosen arbitrarily by

the LNC designer. Decoding of LNC (cf. (4)) can be easily

implemented [5] by Gaussian elimination.

A security requirement is denoted by sr ∈ {0, 1}2. For

any θ1, θ2 ∈ {0, 1}, sr = (θ1, θ2) represents the following

information-theoretic security requirement: “For any i satisfy-

ing θi = 1, we must have I(Wi; [Ys→dj , Ydi→dj ]) = 0 where

j ∈ {1, 2}\i and I(·; ·) is the mutual information.” Namely,

the (s, di)-flow needs to be secure if θi = 1. For example,

sr = (0, 1) means that only the (s, d2)-flow needs to be secure

while there is no security constraint on the (s, d1)-flow.

Definition 1: Fix the p1, p2, p1∨2, p1→2, p2→1, and sr val-

ues. A rate vector (R1, R2) is LNC-achievable if for any ε > 0,

there exists a linear network code with sufficiently large n,

nseed, and GF(q) such that max∀i∈{1,2} Prob(Wi �= Ŵi) < ε
and the security requirement sr is satisfied. The LNC-capacity

region is the closure of all LNC-achievable (R1, R2).

III. DEGENERATE CASES

If we choose p1→2 = p2→1 = 0, then our setting collapses

to [7] when sr = (0, 0) and collpases to [11] when sr = (1, 1).



The following is a restatement of the results in [7], [11] for

these degenerate cases.

Proposition 1 ([7], [11]): Suppose p1→2 = p2→1 = 0 (no

receiver coordination). The sr = (0, 0) capacity region is the

convex hull of (0, 0) and the following three rate vectors:

(p1, 0), (0, p2), and (Rnon.sec
1,XOR, R

non.sec
2,XOR)

Δ
=

(
p1p1∨2(p1∨2 − p2)

p1∨22 − p1p2
,
p2p1∨2(p1∨2 − p1)

p1∨22 − p1p2

)
.

The sr = (1, 1) capacity region is the convex hull of (0, 0)
and the following three rate vectors:(

p1(p1∨2 − p2)p1∨2
p1p2 + p1∨2(p1∨2 − p2)

, 0

)
,

(
0,

p2(p1∨2 − p1)p1∨2
p1p2 + p1∨2(p1∨2 − p1)

)
, and

(Rsecure
1,XOR, R

secure
2,XOR)

Δ
=

(
p1(p1∨2 − p2)

p1∨2
,
p2(p1∨2 − p1)

p1∨2

)
.

The subscript “XOR” denotes that those rates can be achieved

by the XOR-in-the-air principle, which are provably optimal

[7], [11] when receiver coordination is prohibited.

The following is a combination of [6] and some new find-

ings on the secure unicast capacity of erasure relay channels.

Proposition 2: The unicast capacity points of the sr = (0, 0)
capacity region (the farthest points along the x- and y-axes)

are (Rnon.sec
1,RLNC, 0) and (0, Rnon.sec

2,RLNC), respectively, where

Rnon.sec
1,RLNC

Δ
= max

(
p1,

p2→1p1∨2
p2→1 + p1∨2 − p1

)
(5)

Rnon.sec
2,RLNC

Δ
= max

(
p2,

p1→2p1∨2
p1→2 + p1∨2 − p2

)
. (6)

The unicast capacity points of the sr = (1, 1) LNC-capacity

region are (Rsecure
1,RLNC, 0) and (0, Rsecure

2,RLNC), respectively, where

Rsecure
1,RLNC

Δ
= max

(
p1(p1∨2 − p2)p1∨2

p1p2 + p1∨2(p1∨2 − p2)
,

p2→1(p1∨2 − p2)p1∨2
p1p2 + p1∨2(p1∨2 − p2 + p2→1 − p1)

)
(7)

Rsecure
2,RLNC

Δ
= max

(
p2(p1∨2 − p1)p1∨2

p1p2 + p1∨2(p1∨2 − p1)
,

p1→2(p1∨2 − p1)p1∨2
p1p2 + p1∨2(p1∨2 − p1 + p1→2 − p2)

)
. (8)

The subscript “RLNC” denotes that the two unicast capacity

points can be achieved by RLNC [3], [4], [6]. The proof of

this proposition is relegated to Section V.

Fig. 1(c) illustrates the relative positions of the rate vectors

in Propositions 1 and 2. The triangular regions correspond to

the rates achievable by time-sharing the unicast capacity points

described in Proposition 2.

IV. MAIN RESULT

Proposition 3: Consider arbitrary p1, p2, p1∨2, p1→2, and

p2→1 values. We then have
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Fig. 2. The LNC-capacity regions for sr = (0, 0), (1, 1), and (0, 1),
respectively, with (p1, p2, p1∨2, p1→2, p2→1) = (0.4, 0.5, 0.8, 0.7, 0.6).

• If sr = (0, 0), the LNC-capacity is the convex

hull of (0, 0) and the following three rate vectors:

(Rnon.sec
1,XOR, R

non.sec
2,XOR), (R

non.sec
1,RLNC, 0), and (0, Rnon.sec

2,RLNC).
• If sr = (0, 1), the LNC-capacity is the convex

hull of (0, 0) and the following three rate vectors:

(Rsecure
1,XOR, R

secure
2,XOR), (R

non.sec
1,RLNC, 0), and (0, Rsecure

2,RLNC).
• If sr = (1, 1), the LNC-capacity is the convex

hull of (0, 0) and the following three rate vectors:

(Rsecure
1,XOR, R

secure
2,XOR), (R

secure
1,RLNC, 0), and (0, Rsecure

2,RLNC).
• The case sr = (1, 0) is symmetric to the case sr = (0, 1).

If we use dashed lines to represent the existing “re-

gions” first plotted in Fig. 1(c), then the LNC capac-

ity regions for different security requirements are plotted

in Fig. 2. It is worth noting that in this example, the

point (Rnon.sec
1,XOR, R

non.sec
2,XOR) is outside the convex hull of (0, 0),

(Rnon.sec
1,RLNC, 0) and (0, Rnon.sec

2,RLNC). This means that XOR-in-the-air

strictly outperforms time-sharing plus random LNC. However,

for certain (p1, p2, p1∨2, p1→2, p2→1) values, we may have

(Rnon.sec
1,XOR, R

non.sec
2,XOR) being strictly within the convex hull of

(0, 0), (Rnon.sec
1,RLNC, 0) and (0, Rnon.sec

2,RLNC). In those cases, time-

sharing plus RLNC is LNC-capacity-achieving.

V. AN OUTLINE OF THE PROOF

A. Achievability

Consider the security requirement sr = (0, 0). By [7],

the rate vector (Rnon.sec
1,XOR, R

non.sec
2,XOR) is achievable. Since the

unicast capacity point corresponds to an erasure relay channel

Fig. 1(b), the results in [6], [13] can be used to prove directly

that (Rnon.sec
1,RLNC, 0) is achievable. Symmetrically, (0, Rnon.sec

2,RLNC) is

achievable. The achievability proof for sr = (0, 0) is complete.

We now focus on the more interesting case: sr = (1, 1).
By [11], the rate vector (Rsecure

1,XOR, R
secure
2,XOR) is achievable.

We now prove that (Rsecure
1,RLNC, 0) is achievable. Without

loss of generality, assume p2→1 ≥ p1, in which case

Rsecure
1,RLNC = p2→1(p1∨2−p2)p1∨2

p1p2+p1∨2(p1∨2−p2+p2→1−p1)
by (7). Otherwise, we

have Rsecure
1,RLNC = p1(p1∨2−p2)p1∨2

p1p2+p1∨2(p1∨2−p2)
, which is achievable even

without receiver coordination, see Proposition 1 and [11].

We borrow the ideas in [11] and develop the following 3-

staged scheme sending nRsecure
1,RLNC packets from s to d1 within

n time slots while respecting the security requirement.

Stage 1: For each time slot, s sends an independently and

uniformly randomly generated “seed” packet. We continue

Stage 1 for t1
Δ
=

nRsecure
1,RLNC·p2

p1∨2(p1∨2−p2)
time slots. After Stage 1, d1



will receive t1 · (p1∨2 − p2) number2 of seeds that are shared

only between s and d1, i.e., completely unknown to d2. We

use V1 to Vt1(p1∨2−p2) to denote the shared seeds. Obviously,

d2 cannot extract any information of W1 in Stage 1 since all

seeds are generated randomly.

Stage 2: For each time slot, s sends a linear sum Xs(t) =
Vh + W1,l where the indices h and l are initialized to 1.

Whenever d2 receives Xs(t), we update h ← h+1. Whenever

at least one of {d1, d2} receives Xs(t), we update l ← l + 1.

We continue Stage 2 for t2
Δ
=

nRsecure
1,RLNC

p1∨2
time slots. We first

observe that t2p2 = t1(p1∨2 − p2). Therefore, the h value

reaches t1(p1∨2 − p2) in the end of Stage 2. This means

that every packet received by d2 is a linear sum with a

distinct random seed Vh as one of its summands. Therefore, d2
cannot extract any information of W1 in Stage 2. From d1’s

perspective, d1 knows all Vh in Stage 1. Therefore, whenever

d1 receives a linear sum Xs(t), it can decode its desired W1,l

by subtracting Vh. Since t2p1∨2 = nRsecure
1,RLNC, the l value

reaches nRsecure
1,RLNC in the end of Stage 2. This means that every

information packet W1,1 to W1,nRsecure
1,RLNC

is either decoded by

d1, or participates in one of the linear sums received by d2. If

we count those linear sums that contains a W1,l that has not

been decoded by d1, we will have t2(p1∨2 − p1) such linear

sums. We denote them by U1 to Ut2(p1∨2−p1).

Stage 3: For each time slot, d2 sends Xd2(t) = Um

where the index m is initialized to 1. Whenever d1 receives

Xd2(t), we update m ← m + 1. We continue Stage 3 for

t3
Δ
= t2(p1∨2−p1)

p2→1
time slots. Since neither s nor d1 transmits

in Stage 3, d2 cannot extract any further information of W1

in Stage 3. We also observe that t3p2→1 = t2(p1∨2 − p1).
Therefore, the m value reaches t2(p1∨2 − p1) in the end of

Stage 3. This means that every Um packet has been sent to

d1. Since each Um is a linear sum of a Vh and a W1,l, d1
can decode in Stage 3 all the W1,l that have not already been

decoded (by d1) in Stage 2. The above arguments show that

after 3 stages, d2 cannot extract any information of W1 while

d1 can decode all W1 packets. One can easily verify by (7)

that t1+ t2+ t3 = n in our construction. We have thus shown

that rate vector (Rsecure
1,RLNC, 0) is achievable under sr = (1, 1).

Symmetrically, (0, Rsecure
2,RLNC) is achievable. The achievability

proof for sr = (1, 1) is complete.

Consider sr = (0, 1). Since there is no security requirement

on flow-1, rate (Rnon.sec
1,RLNC, 0) is achievable. Since sr = (0, 1) is

a less demanding requirement than sr = (1, 1), any achievable

rate for sr = (1, 1) is also achievable for sr = (0, 1). As a

result, both (Rsecure
1,XOR, R

secure
2,XOR) and (0, Rsecure

2,RLNC) are achievable

by our previous analysis. The achievability proof for sr =
(0, 1) is complete.

B. The Converse

For the following, we only outline the proof for the hybrid

security requirement sr = (0, 1). The proofs for other sr values

are similar and are thus omitted due to the space constraint.

2We only use the first-order analysis (n → ∞) based on the laws of large
numbers and omit the technical discussion of the ε terms when n is finite.

The main structure of the proof is as follows. Given any

(p1, p2, p1∨2, p1→2, p2→1) and any (R1, R2) values, we first

construct a linear programming (LP) problem and prove that if

(R1, R2) is LNC-achievable, then the LP problem is feasible.

Then for any fixed R̂1 value, we can maximize R2 subject to

the LP formulation that captures all feasible (R1, R2). This

leads to an outer bound on the achievable (R̂1, R2) for the

given R̂1. Finally, we convert the maximization problem into

its dual and derive the converse part of Proposition 3 that holds

for any arbitrary (R1, R2).
Consider sr = (0, 1) and assume p1→2 ≥ p2 and p2→1 ≥

p1. The other case (either p1→2 < p2 or p2→1 < p1) is actually

a degenerate case and is less interesting. For any time t, we

define the knowledge space Si as the linear span of all the

GCVs of the packets [Ys→di , Ydj→di ]
t−1
1 that di has received

until time t − 1. The message space Ωi is the linear span of

the GCVs corresponding to sending uncoded Wi,l packets (the

delta vectors). For two linear spaces, T1 and T2, we define the

sum-space operator ⊕ by T1 ⊕ T2 = span(v : ∀v ∈ T1 ∪ T2).
We define the following 8 linear subspaces

A1
Δ
= S1; A2

Δ
= S2; A3

Δ
= S1 ⊕ Ω1; A4

Δ
= S2 ⊕ Ω2;

A5
Δ
= S1 ⊕ S2; A6

Δ
= S1 ⊕ S2 ⊕ Ω1;

A7 = S1 ⊕ S2 ⊕ Ω2; A8
Δ
= S1 ⊕ Ω2. (9)

Using A1 to A8, we can now partition the overall message

space Ω into 28 = 256 disjoint subsets depending on whether

a GCV c is in Ak or not, for k = 1, · · · , 8. Each subset is

termed a coding type and can be indexed by an 8-bit string

b = b1b2 · · · b8 where each bk indicates whether c belongs to

Ak or not. See [12] for the discussion of coding types.

Given any scheme that can achieve rate (R1, R2) with

sr = (0, 1), we claim that the source s must never send

a GCV c of type-00000011 during the course of executing

this scheme. The reason is that type-00000011 corresponds to

(A7 ∩ A8)\
(⋃6

k=1 Ak

)
. Suppose the scheme sends a GCV

in A8 = S1 ⊕ Ω2 but not in A1 = S1. This means that

whenever d1 receives such a packet, the “collective” space

S1 ⊕ Ω2 will remain the same, but the individual space S1

will increase. Therefore, the overlap S1 ∩ Ω2 will increase,
which implies that S1 can now derive some information of
W2. This violates the requirement sr = (0, 1). By applying

such a security-based observation, we can follow the steps in

[12] and derive the corresponding LP problem. Due to space

constraints, we directly present the final result.

Define the following finite index sets S, D1, and D2:

S
Δ
= {0, 2, 4, 6, 14, 18, 22, 30,

36, 38, 46, 54, 62, 94, 126, 175, 191, 255},
D1

Δ
= {175, 191, 255}, and D2

Δ
= {94, 126, 255}.

For any 8-bit coding type b = b1b2 · · · b8, we can view b
as a base-2 expression with the leftmost bit being the most

significant bit (MSB). For example, the statement “b = 38”

is equivalent to “b = 00100110” and the statement “b ∈ S
and b7 = 0” is equivalent to “b ∈ {0, 4, 36}”. For simplicity,



we use bs, bd1 , and bd2 to denote the strings in S, D1, and

D2, respectively. bs,i denotes the i-th coordinate of the given

string bs. Similarly, we define bd1,i and bd2,i.

Claim: A rate vector (R1, R2) is in the sr = (0, 1) LNC-

capacity region only if there exist 18 + 3 + 3 non-negative

variables xs,bs , xd1,bd1
, and xd2,bd2

for all bs, bd1 and bd2 ;

8 non-negative variables y1 to y8 such that jointly they satisfy

4 groups of linear conditions:

• Group 1, termed the time-sharing condition:∑
∀bs

xs,bs +
∑
∀bd1

xd1,bd1
+

∑
∀bd2

xd2,bd2
≤ 1. (10)

• Group 2, termed the rank-conversion conditions:

y1 =
∑

∀bs w. bs,1=0

xs,bsp1 +
∑

∀bd2
w. bd2,1=0

xd2,bd2
p2→1

y2 =
∑

∀bs w. bs,2=0

xs,bsp2 +
∑

∀bd1
w. bd1,2=0

xd1,bd1
p1→2

y3 = R1 +
∑

∀bs w. bs,3=0

xs,bsp1 +
∑

∀bd2
w. bd2,3=0

xd2,bd2
p2→1

y4 = R2 +
∑

∀bs w. bs,4=0

xs,bsp2 +
∑

∀bd1
w. bd1,4=0

xd1,bd1
p1→2

y5 =
∑

∀bs w. bs,5=0

xs,bsp1∨2

y6 = R1 +
∑

∀bs w. bs,6=0

xs,bsp1∨2

y7 = R2 +
∑

∀bs w. bs,7=0

xs,bs
p1∨2

y8 = R2 +
∑

∀bs w. bs,8=0

xs,bsp1 +
∑

∀bd2
w. bd2,8=0

xd2,bd2
p2→1

• Group 3, termed the rank-comparison conditions:

y5 ≤ y6, y8 ≤ y7, and y4 + y5 − y7 ≥ y2.

• Group 4, termed the decodability conditions:

y3 = y1 and y4 = y2.

The intuition behind the above LP formulation is as follows.

Fix any scheme that achieves rate (R1, R2) and satisfies sr =
(0, 1). We define for any u ∈ {s, d1, d2}
xu,bu

Δ
=

E
{∑n

t=1 1{u is scheduled and transmits a cu,t ∈ TYPEbu}
}

n
.

That is, xu,bu is the normalized time allocation for which the

scheme lets node u send coding type bu. As a result, they

satisfy (10) naturally. Define yk
Δ
= 1

nE {Rank(Ak)} as the

normalized rank of space Ak in the end of time n. The rank

conversion equalities establish the relationship between “how

frequently we send a packet of type-b” and “how fast the rank

of Ak grows over time”. By definition (9),

A5 = (S1 ⊕ S2) ⊆ A6 = (S1 ⊕ S2 ⊕ Ω1). (11)

Taking the normalized expected rank of (11), we immediately

have the rank comparison inequality y5 ≤ y6. The decod-

ability condition ensures that destination di can successfully

decode Wi. See [12] for detailed discussion. From the above

arguments, given any achievable scheme, we can explicitly

construct the x and y variables satisfying the above LP

problem. The existence of an achievable scheme thus implies

the feasibility of the LP problem.
The final step is to convert the above LP problem to its dual

and prove the converse of the sr = (0, 1) LNC-capacity.

VI. CONCLUSION

This work considers the 1-to-2 broadcast PEC with causal

feedback, receiver coordination, and arbitrary security require-

ment. We have proven that the LNC capacity can be achieved

either by the XOR-in-the-air scheme, or by RLNC, or by time-

sharing between the two. The results imply that to design an

optimal Wi-Fi receiver coordination scheme, a system designer

only needs to focus the efforts on optimally combining the

existing RLNC solutions [4] and XOR-in-the-air [5] solutions

without the need to explore any other forms of LNC.
This work was supported in part by NSF grants CCF-

0845968 and CNS-0905331.
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