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Abstract—This paper studies the problem of estimating the
vector input to a sparse linear transformation based on the
observation of the output vector through a bank of arbitrary
independent channels. The linear transformation is drawn ran-
domly from an ensemble with mild regularity conditions. The
central result is a decoupling principle in the large-system limit.
That is, the optimal estimation of each individual symbol in
the input vector is asymptotically equivalent to estimating the
same symbol through a scalar additive Gaussian channel, where
the aggregate effect of the interfering symbols is tantamount
to a degradation in the signal-to-noise ratio. The degradation is
determined from a recursive formula related to the score function
of the conditional probability distribution of the noisy channel.
A sufficient condition is provided for belief propagation (BP) to
asymptotically produce the a posteriori probability distribution
of each input symbol given the output. This paper extends the
authors’ previous decoupling result for Gaussian channels to
arbitrary channels, which was based on an earlier work of
Montanari and Tse. Moreover, a rigorous justification is provided
for the generalization of some results obtained via statical physics
methods.

I. INTRODUCTION

Consider the estimation of a vector input signal X which
traverses a linear system1 S in the Euclidean space and is
then observed through a noisy channel: SX 7→ Y . This
simple model is widely used in communications, control, and
signal processing. Most work considers the vector Gaussian
noise channel: Y = SX + N . As useful as the Gaussian
model is, it does not apply to many interesting applications.
One example is the Poisson multiple-access channel, in which
Y has Poisson distribution conditioned on SX . Assuming
that SX 7→ Y consists of a bank of arbitrary independent
channels, this paper studies the optimal a posteriori estimation
as well as efficient belief propagation (BP) estimators.

Early work along this direction considers the vector Gaus-
sian channel Y = SX + N with linear minimum mean-
square error (MMSE) estimation. In case of a large, randomly
generated linear transformation S, the mean-squared error
can be computed using random matrix theory. For the same
channel, optimal (nonlinear) estimation of discrete inputs is
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1This paper adopts the following notational convention unless noted
otherwise. Deterministic and random variables are denoted by lowercase
and uppercase letters respectively, and scalars, vectors and matrices are
distinguished using normal, bold and underlined bold fonts respectively.

a discrete optimization problem and random matrix theory is
not applicable. A breakthrough in performance analysis was
made by Tanaka using the replica method [1], a non-rigorous
technique commonly adopted in statistical physics. Guo and
Verdú subsequently generalized Tanaka’s results to arbitrary
input and a family of detectors [2]. It is claimed that for vector
Gaussian channels, the optimal estimate for each individual
symbol is of identical quality as the estimate of the same
symbol through a scalar Gaussian channel independent of all
other symbols [2]. This result is referred to as the decoupling
principle for vector Gaussian channels. The corresponding
signal-to-noise ratio (SNR) of each equivalent scalar Gaussian
channel, or rather, the degradation in SNR for each symbol
termed the efficiency, is determined by a fixed-point equation.
Unfortunately, the replica method relies on intractable assump-
tions and the results in [1] and [2] are subject to doubt.

In recent years, estimators based on BP and its approxima-
tion have received great attention [3]–[5]. By comparing BP
and maximum a posteriori (MAP) detection, Montanari and
Tse [6] justified Tanaka’s results for the first time in the special
case of “sparse” spreading matrix S with a relatively small
system load. Their result supports the conjecture from several
works that the large-system performance of the MAP detector
is determined by the solutions of the fixed-point equations for
efficiency in [1], [2].

Previously, under essentially the same setting of large sparse
linear systems and vector Gaussian channels, the authors [7],
[8] have generalized the results of [6] to arbitrary a priori
distributions of the input X and the linear transformation
S using the generalized density evolution [9], [10]. Both
the decoupling principle and the fixed-point characterization
in [2] are rigorously proved, and a sandwiching argument
is used to obtain the strongest, posterior-probability-based
characterization of the estimation of individual symbols Xk

and linearly transformed symbols (SX)l.
This paper generalizes the above vector Gaussian channel

results to arbitrary channels characterized by their condi-
tional probabilities. Remarkably, the decoupling into scalar
Gaussian channels still holds. In particular, the estimation of
any individual symbol using BP is equivalent to estimating
the same symbol through a scalar additive Gaussian noise
channel even though the vector channel SX 7→ Y is
neither additive nor Gaussian. The SNR degradation in the
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equivalent scalar Gaussian channel, which can be regarded
as the generalized efficiency of the underlying system, is
determined by the system load and the score function of the
channel conditional probability distribution through a double
recursion. If the system load is sufficiently small such that the
fixed point of the recursive formula is unique, the strongest
posterior-probability-equivalency between BP and a posteriori
estimation can be established by the sandwiching argument.
Interestingly, the results in this work are consistent with the
results developed using the replica method in [11].

II. MODEL AND FORMULATION

A. Linear System

Let X = [X1, . . . , XK ]> denote the input vector to a linear
transformation characterized by a (random) L×K matrix S.
The output of the transformation, SX , is observed through
arbitrary parallel independent noisy channels of the same type:

pY |X,S(y|x, s) =
L∏

l=1

f
(
yl

∣∣(sx)l

)
(1)

where f(y|w) = pY |W (y|w) denotes the conditional probabil-
ity density function of each scalar channel. A familiar special
case of the system with f being conditionally Gaussian is
described by

Y = SX + N (2)

where N is a Gaussian vector. Indeed, the model (1) can be
regarded as a generalization of (2) to arbitrary channels.

Consider any realization of S = s. Following the con-
vention in graphical modeling of communication systems,
a bipartite factor graph of the system (1) is illustrated in
Figure 1, where each pair of symbol node Xk and chip2 node
Yl are connected by an edge if slk 6= 0.

The task of the estimator is to infer the scalar value of Xk

for some k, given the observation Y , where the channel char-
acteristics f(·|·), the input distribution PX , and the realization
of the matrix S = s are known to the estimator.

We assume that the symbols {Xk} are independent and
identically distributed (i.i.d.) and take values in the alphabet
χ ⊂ R, which may be discrete or continuous. Let PX denote
the cumulative distribution function (cdf) of Xk, which is
of zero mean and finite variance. The k-th column of S is
denoted by Sk = 1√

Λk
[S1k, S2k, . . . , SLk]> and

√
Λk is a

normalization factor.

B. Random Ensemble and Large-System Limit

The ensemble of linear transformations is described in the
following. First, an L×K binary incidence matrix H = (Hlk)
is randomly picked from a certain ensemble to be described
shortly. For all (l, k) with Hlk = 0, set Slk = 0. For all
(l, k) with Hlk = 1, Slk are i.i.d. and equally likely to be
±1. The normalization factor for each spreading sequence sk

is 1/
√

Λk, where Λk =
∑L

l=1 Hlk is the symbol degree of

2Here we use a term originated in CDMA.
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Fig. 1. The Forney-style factor graph for the sparse linear system. The
square and the circle correspond to the factorizations associated with the noisy
observation pY |W (·|·) and the vector repetition skXk (of Xk) respectively.

Xk. Let Γl :=
∑K

k=1 Hlk denote the chip degree of Yl and
Γ̄ := 1

L

∑L
l=1 Γl denote the average chip degree.

For the random matrix ensemble of H , the doubly Poisson
ensemble is used as an illustrative example in this work, for
which each entry Hlk is i.i.d. Bernoulli with P {Hlk = 1} =
Γ̄/K. This paper considers the large-sparse-system limit, in
which K, L, Γ̄ →∞ with K/L → β < ∞ and Γ̄ = o(K1/2),
the last condition of which ensures that the bipartite graph of
H (see Figure 1) is free of cycles of length smaller than any
given number in probability.

More detailed description of the ensemble of interest can
be found in [8]. It is worth noting that the results in this
paper can be easily extended to accommodate more general
ensembles [12], as demonstrated in [8], for which some other
regular conditions, in addition to the asymptotic short-cycle-
free property, are required, including the chip-semi-regularity
and the balanced-symbol-degree conditions.

As a final remark, the input distribution PX and the system
load β are fixed system parameters and do not change with
respect to K, L, and Γ̄.

III. MAIN RESULTS

Let us introduce the canonical scalar Gaussian channel:

Z =
√

gX + N (3)

where X ∼ PX and N ∼ N (0, 1) are independent, and g
denotes the gain of the channel in SNR. Throughout this paper,
we use PX|Z;g to denote the cdf of the posterior distribution
of the input X given Z, according to the Gaussian model (3),
which is parameterized by g.

Consider first the problem of estimating an individual sym-
bol Xk given all observed chips in its supporting tree of depth
2t, denoted by Y (t). Precisely, Y (t) consists of all chips Yl

within distance 2t−1 to Xk on the factor graph. A key result in
this paper states that the posterior of Xk given Y (t) essentially
converges to the posterior of the scalar Gaussian channel, as
the size of the linear system increases.

Theorem 1: For every k and x where PX(x) is continuous,

PXk|Y (t),S

(
x
∣∣Y (t),S

)
→ PX|Z;η(t)

(
x
∣∣h(

Y (t)
))

(4)

in probability in the large-sparse-system limit, where η(t) is
some positive number, and h(·) is some function such that,
conditioned on Xk = a, h

(
Y (t)

)
∼ N

(
a
√

η(t), 1
)
.
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Theorem 1 states that the problem of estimating each
individual symbol Xk from Y (t) (i.e., using t iterations of
belief propagation) is asymptotically equivalent to that of
estimating the same symbol through a scalar Gaussian channel
with SNR equal to η(t). Thus the collective effect of the
noise and the interference of other symbols to the desired
symbol is equivalent to an additive Gaussian noise. The result
is significant and rather surprising because the sparse linear
system and noisy channel are arbitrary.

We relegate discussion of the function h to Section IV.
In the following we describe the solution to η(t), which
uniquely characterizes the estimation problem. Precisely, η(t),
t = 1, 2, . . . , are determined by the following recursion:

η(t+1) = E

{(
E

{
∇2 log f

(
Y

∣∣√βν(t) W
) ∣∣∣ Y

})2
}

(5)

ν(t) = E

{(
X − E

{
X |

√
η(t) X + N

})2
}

(6)

where η(0) = 0, ∇2g(y|u) = ∂
∂ug(y|u) for arbitrary bivariate

functions g(y|u), and the random variables are defined in the
following:

1) X ∼ PX and N ∼ N (0, 1) are independent;
2) Y and W are jointly distributed with W ∼ N (0, 1) and

PY |W (y|w) = f
(
y
∣∣√βν(t) w

)
.

The relationship between the random variables and parame-
ters ν(t), η(t) is illustrated in Figure 2. The above description
completely determines the joint distribution of (W,Y ), which
is parameterized by ν(t) and hence η(t). In particular, ν(t) is
the average variance of X conditioned on its noisy observation
Z through a Gaussian channel with SNR equal to η(t), where
η(t) is the variance of the conditional mean of a score function
of the channel characteristic f(·|·).

W

∼ N (0, 1)

-⊗
6√

β ν(t)

- f(y|·) - Y

X

∼ PX

-⊗
6√

η(t)

-⊕
6

N ∼ N (0, 1)

- Z

Fig. 2. The relationship between random variables in (5) and (6). Note that
ν(t) is the average variance of the input to the Gaussian channel with SNR
equal to η(t) conditioned on its output.

Theorem 2: Suppose the recursive formulas (5) and (6)
have a unique fixed point (η, ν). Then for every k and x where
PX(x) is continuous,

PXk|Y ,S

(
x
∣∣Y ,S

)
→ PX|Z;η(x|h(Y )) (7)

in probability in the large-sparse-system limit, where h(·) is
such that, conditioned on Xk = a, h(Y ) ∼ N (a

√
η, 1).

Theorem 2 states that the problem of estimating each Xk

given the entire observation Y , is also asymptotically equiva-
lent to estimating the same symbol through a scalar Gaussian
channel, the SNR of which is equal to η = limt→∞ η(t). In
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Fig. 3. Statistical inference over the corresponding tree structure.

view of Theorem 1, it implies that observing Y (t) becomes as
good as observing Y as t →∞, even though the ratio of the
dimensions of Y and Y (t) approaches infinity. Remarkably,
this implies that BP is asymptotically as good as the (optimal)
a posteriori estimation.

In the special case where f(·|·) represents a Gaussian
channel, i.e., ∇2 log f(y|w) = y − w, (5) becomes

η(t+1) = E

{(
E

{
Y −W

√
βν(t)

∣∣∣ Y
})2

}
(8)

= E

{(
Y − βν(t)

1 + βν(t)
Y

)2
}

(9)

=
1

1 + βν(t)
. (10)

Together with (6), we find the following recursion

1
η(t+1)

= 1 + βE

{(
X − E

{
X |

√
η(t) X + N

})2
}

(11)

which was first obtained in [7], [8], where η(t) is the multiuser
efficiency achieved by BP after t iterations. Note that Boutros
and Caire obtained a similar formula in the context of iterative
decoding of coded CDMA using an empirically inspired
Gaussian approximation [13]. The fixed-point equation cor-
responding to (11) was originally obtained in [2].

IV. PROOF

A. Notation

Consider the inference tree illustrated in Figure 3, which is
a subgraph of the factor graph depicted in Figure 1. The nodes
correspond to random variables, and the edges correspond to
dependencies between the nodes. Let Xk be the root, which
has children Yl1 , . . . , YlΛk

, where Λk is the node degree of
Xk. Suppose further that Yl1 has children Xk1 , . . . , XkΓ where
Γ+1 = Γl1 is its node degree. Suppose the subgraph contains
all nodes within distance 2t to Xk, while only the first 3 layers
of the subgraph are shown. It is understood that for the random
ensemble of our interest, the graph is a tree (i.e., cycle-free)
in the large-sparse-system limit with probability 1.

Use Y l to denote the collection of all chip nodes Ym

in the subtree with Yl as the root. Use Y k to denote the
collection of Ym in the subtree with Xk as the root. Let
{Y km} = (Y k1 , . . . , Y kΓ). The letters l and k here are
designated to indexing chips and symbols respectively.

ISIT2007, Nice, France, June 24 – June 29, 2007

948



Consider a fixed reference value x0 ∈ χ. In general, define
the LLR function of X given some observation U = u as

LU |X(u|x) = log
pU |X(u|x)
pU |X(u|x0)

, x ∈ χ. (12)

B. Density Evolution

Consider the estimation of Xk given the subtree Y k of
depth 2t with Xk as its root. An optimal scheme is to
pass “messages” upwards starting from the leaves. Each
symbol node Xki sends to its parent the LLR function
{LY ki |Xki

(yki |x), x ∈ χ}, while each chip node Ylj sends
to its parent (in this case Xk) {LY lj |Xk

(ylj |x), x ∈ χ}. The
messages is in general a function defined on χ. At the final
stage, the LLR given the entire subtree Y k = yk is

LY k|Xk
(yk|x) =

Λk∑
n=1

LY ln |Xk
(yln |x) (13)

because the subtrees Y ln are independent conditioned on Xk.
By the central limit theorem, the LLR (13) as a sum of i.i.d.

random functions is asymptotically Gaussian for every x and
in fact a Gaussian random process indexed by x ∈ χ. In the
following we derive the mean and variance of the LLR in the
large-system limit, which determines the equivalent channel
between the desired symbol Xk and the observation Y k.

Consider LY l1 |Xk
, which is obtained from pY l1 |Xk

(yl1 |x).

The conditional distribution pYl1 |Xk,{Xkm} is determined by
f(·|·). We average over Xkm

conditioned on their respective
subtrees to obtain pY l1 |Xk

(yl1 |x), which can be expressed
using Taylor series expansion in Λ−1/2

km
in (14)–(16). Sufficient

regularity conditions are used to guarantee uniform conver-
gence so that o(1/Λkm

) can walk in and out of the integrals.
The LLR is obtained by plugging (16) into

LY l1 |Xk
(yl1 |x) = log

pY l1 |Xk
(yl1 |x)

pY l1 |Xk
(yl1 |x0)

. (17)

Let

Wl1 =
Γ∑

m=1

sl1km√
Λkm

Xkm
(18)

and define a random variable Y ′
l1

independent of everything
else conditioned on Wl1 , where pY ′

l1
|Wl1

(y|w) = f(y|w).
Clearly, Y ′

l1
–{Xkm}–{Y km} form a Markov chain. The in-

tegral in (16), taken over the variables in the middle of the
Markov chain, is proportional to pY ′

l1
,{Y km}(yl1 , {ykm}). In

fact, we can write (19) in below for arbitrary g(·). Con-
sequently, the LLR (17) can be expressed concisely using
conditional expectations.

By (16)–(19), the LLR LY l1 |Xk
(Y l1 |Xk) is expressed in

the form of Taylor series expansion in (20), where two of the
three significant components involve the conditional mean of
the score function ∇2 log f

(
Y ′

l1
|Wl1

)
.

pY l1 |Xk
(yl1 |x) =

∫
pYl1 |Xk,{Xkm}(yl1 |x, {xkm

})
Γ∏

m=1

pY km |Xkm
(ykm |xkm

)
Γ∏

m=1

dPXkm
(xkm

) (14)

=
∫

f

(
yl1

∣∣∣∣ sl1k√
Λk

x +
Γ∑

m=1

sl1km√
Λkm

xkm

) Γ∏
m=1

(
pY km |Xkm

(ykm |xkm) dPXkm
(xkm)

)
(15)

=
∫ [

f

(
yl1

∣∣∣∣ Γ∑
m=1

sl1km√
Λkm

xkm

)
+

sl1k√
Λk

x∇2f

(
yl1

∣∣∣∣ Γ∑
m=1

sl1km√
Λkm

xkm

)

+
s2

l1k

2Λk
x2∇2

2
f

(
yl1

∣∣∣∣ Γ∑
m=1

sl1km√
Λkm

xkm

)
+ o

(
1

Λkm

) ]
Γ∏

m=1

(
pY km |Xkm

(ykm |xkm
) dPXkm

(xkm
)
)

(16)

∫
g({xkm

})f
(

yl1

∣∣∣∣ Γ∑
m=1

sl1km√
Λkm

xkm

) Γ∏
m=1

(pY km |Xkm
(ykm |xkm

) dPXkm
(xkm

))

∫
f

(
yl1

∣∣∣∣ Γ∑
m=1

sl1km√
Λkm

xkm

) Γ∏
m=1

(pY km |Xkm
(ykm |xkm

) dPXkm
(xkm

))

= E
{

g({Xkm
}) | Y ′

l1 = yl1 , {Y km} = {ykm}
}

(19)

LY l1 |Xk
(yl1 |x) =

sl1k√
Λk

(x− x0)E
{
∇2 log f(Y ′

l1 |Wl1)
∣∣ Y ′

l1 = yl1 , {Y km} = {ykm}
}

+
s2

l1k

2Λk
(x2 − x2

0)E

{
∇2

2
f(Y ′

l1
|Wl1)

f(Y ′
l1
|Wl1)

∣∣∣∣∣ Y ′
l1 = yl1 , {Y km} = {ykm}

}

−
s2

l1k

2Λk
(x2 − x2

0)
(
E

{
∇2 log f(Y ′

l1 |Wl1)
∣∣ Y ′

l1 = yl1 , {Y km} = {ykm}
} )2

+ o
( 1

Λk

)
(20)
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Consider now LY l1 |Xk
(Y l1 |x) as a random variable for any

given x, which consists of three components according to (20).
We estimate its mean and variance to the first order of 1/Λk,
conditioned on that the true value of Xk = xk. Only the
first term on the right hand side of (20) contributes to the
variance of the LLR in the order of O(1/Λk). The mean of
the LLR is a little more involved, because the prior of Yl1 is
slightly different than that of Y ′

l1
. If they were the same, the

expectation of the first two terms on the right hand side of
(20) is 0 due to properties of the score function. While the
third term contributes in the order of O(1/Λk), the difference
between the prior of Yl1 and Y ′

l1
is of size O(1/

√
Λk). Taking

into account the small correction, the first term also contribute
to the mean in the order of O(1/

√
Λk), while the second term

remains insignificant.
Let us define

η = lim
K→∞

E
{(

E
{
∇2 log f(Y ′

l1 |Wl1)
∣∣ Y ′

l1 , {Y
km}

})2
}

(21)

Conditioned on Xk = xk, the mean of the LLR is then

E
{
LY l1 |Xk

(Y l1 |x)
∣∣ Xk = xk

}
= η

2(x− x0)xk − (x2 − x2
0)

2Λk
+ o

( 1
Λk

) (22)

where we use the fact that s2
lk = 1, and the variance is

E
{
L2

Y l1 |Xk
(Y l1 |x)

∣∣∣Xk = xk

}
= η

(x− x0)2

Λk
+o

( 1
Λk

)
(23)

In view of (13), the asymptotic statistics of the Gaussian LLR
LY k|Xk

(Y k|x) are

var
{
LY k|Xk

(Y k|x)
}

= η(x− x0)2 (24)

E
{
LY k|Xk

(Y k|x)
}

= ηxk(x− x0)−
η

2
(x2 − x2

0). (25)

Proposition 1: The LLR LY k|Xk
(Y k|x) is asymptotically

Gaussian conditioned on Xk and identically distributed as

LZ|Xk
(Z|x) =

√
ηZ(x− x0)−

η

2
(x2 − x2

0) (26)

where Z =
√

ηXk + N (27)

and N ∼ N (0, 1) is standard Gaussian.
Proof: Let Z be defined according to (27). The likelihood

LZ|Xk
(Z|x) = log

exp
[
− 1

2 (Z −√ηx)2
]

exp
[
− 1

2 (Z −√ηx0)2
] (28)

is equal to the right hand side of (26), the mean and variance
of which are identical to those of LY l1 |Xk

(Y l1 |x).
The significance of Proposition 1 is that in terms of es-

timating Xk, having access to the output of the companion
scalar channel (27) is as good as observing the entire subtree
Y k. Indeed, there exists a conditionally Gaussian variable
Z = f(Y k), which is a sufficient statistic of Y k for Xk in the
large-sparse-system limit. The SNR of the equivalent channel
η is given by (21).

In the following, we briefly explain why η can be obtained
from the evolution formula (5). The problem of estimating

Xkm
given Y km is identical to that of estimating Xk given

Y k, except for two points: (i) the subtree with Xkm
as the

root has depth 2(t− 1); (ii) Xkm has Λkm − 1 children while
Xk has Λk. The impact of (ii) vanishes as Λk → ∞. As a
result of (i), (21) can be regarded as an evolution of η(t),
which is dependent on the depth of the subtree. It suffices
to evaluate the variance of Wl1 given {Y km}, which is the
sum of the variance of Xkm

given Y km due to conditional
independence. The individual variance of Xkm given Y km

depends on Y km , which is equivalent to the sufficient statistic
Z =

√
η(t−1) Xk + N . As the linear combination of Xkm ,

Wl1 is asymptotically Gaussian whose variance is β times the
variance of individual Xkm

given Y km . Indeed, if the left hand
side of (21) is replaced by η(t+1), then Wl1 in (21) can be
replaced by

√
βν(t)W where W ∼ N (0, 1), and ν(t) is the

average variance of X conditioned on its noisy observation
through a Gaussian channel with SNR equal to η(t). The
iterative formulas (5)–(6) are thus justified. Furthermore, the
function h in Theorem 1 produces the same Gaussian statistic
as BP does asymptotically.
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